
TTCN-3 Test Case Generation
from Message Sequence Charts

Michael Ebner

Telematics Group, Institute for Informatics,
Georg-August-Universität Göttingen, Germany,

ebner@cs.uni-goettingen.de

Abstract Scenario-based testing, manual as automatic, is applicable
for black-box and specific white-box testing for communication proto-
cols and distributed systems. UML models provide scenario descrip-
tions by sequence diagrams respectively MSCs. Thus, the combination
of TTCN-3, as test description language, and UML by MSC to specify
and automatically generate test cases has to be considered.
The work in this paper describes a translation of MSC elements to
TTCN-3 statements in order to use MSC to define test cases and test
case execution order in TTCN-3.

Keywords: Testing and Test Control Notation, TTCN-3, MSC, UML,
sequence diagram, test case generation

1 Introduction

The complexity of modern telecommunication systems has increased significantly
and the necessity for thorough and systematic testing is undisputed. For instance,
conformance and functional testing is widely used in the telecommunication area.
However, testing is an expensive and time-consuming task. Before concrete tests
can be carried out on a system, much effort has to be spent on specifying what
and how to test and on obtaining the test descriptions in a format that is accepted
by the test equipment.

Testing has to be integrated into the development process. Therefore, to
reduce testing effort tests should be generated from system specification which
is named Computer Aided Test Generation (CATG). Manual test generation is
error-prone wherefore test generation must be automated to be effective and
repeatable. However, test generation based on state space exploration is helpful
but generates frequently inefficient tests, lacks to cover specific parts, or may not
be possible because of an incomplete or missing specification. Thus, scenario-
based, manual test specification is interesting where the test designer can focus on
specific elements in the System Under Test (SUT) and requires no test specific
knowledge like the used test language.

In the telecommunication area, the Tree and Tabular Combined Notation
(TTCN) is used as a standardised test description language. For example, Tree
and Tabular Combined Notation (version 2) (TTCN-2) [1] has been applied
successfully to functional testing of communication protocols for years.

2

Unified Modeling Language (UML) models, defined by the Object Manage-
ment Group (OMG) [2], are an important source for test development and using
UML from a test perspective has to be considered. Additionally, there is ongo-
ing work on a UML Testing Profile (UTP) which can be mapped to Testing and
Test Control Notation (version 3) (TTCN-3).

Scenario-based testing, manual as automatic, is applicable for black-box and
specific white-box testing for communication protocols and distributed systems
like CORBA-based systems, for instance. In particular, manual scenario-based
testing is used by test designers to test specific parts of the SUT which are
interesting or not covered by a automatic test generation process.

UML provides sequence diagrams which are very similar toMessage Sequence
Charts (MSCs). Thus, they are used to specify test scenarios. Furthermore,
main concepts of MSC have been introduced in Unified Modeling Language 2.0
(UML 2.0) which leads to the convergence of sequence diagrams to MSCs [3,4].

Using TTCN as test description language is quite natural because of its
successful application in the telecommunication area by using automatic test
generation, and the possible usage of TTCN-3 with UML via the UML Testing
Profile (UTP). In addition, it was successfully applied for testing Common Object
Request Broker Architecture (CORBA)-based systems.

The remainder of this paper is structured as follows. Firstly, some basic con-
cepts of TTCN-3 and MSC are introduced. Secondly, the translation of MSC to
TTCN-3 to generate test cases gets explained. Finally, some concluding remarks
are given.

2 Test and Test Control Notation-3

The Testing and Test Control Notation (version 3) (TTCN-3) is the third part
of the Conformance Testing Methodology and Framework (CTMF) standard for
the specification of test suites for conformance testing [5].

TTCN is designed for functional, black-box testing and to describe Abstract
Test Suites (ATS) which are independent of a concrete test platform. Therefore,
special interfaces defined by TTCN between a System Under Test (SUT) and
the ATS are required to make a test suite executable. First, there has to be an
Abstract Test System Interface (ATSI) which defines the sight of the ATS upon
the SUT. The access points between ATS and SUT are called Point of Control
and Observation (PCO). Secondly, there is a Real Test System Interface required
which maps the ATSI to the SUT.

Test configuration in TTCN is done by the Main Test Component (MTC)
which controls all other test components called Parallel Test Components (PTCS).
PTCs can be dynamically created whereas the MTC is created automatically at
each test case execution. Test components in TTCN-3 communicate with each
other via ports (in TTCN-2 via Communication Points (CP)), which are mod-
elled as infinite FIFO queues to store incoming calls. Communication between
test components and the test system is also done via ports (in TTCN-2 via
PCOs).

3

TTCN-3 improves concepts of TTCN-2 and introduces new concepts to be
a test description language for reactive system tests over a variety of commu-
nication platforms such as CORBA-based platforms. An important feature of
TTCN-3 is the enhanced communication concept which now supports procedure-
based communication to provide synchronous communication, as well as the
message-based communication which is asynchronous. In addition, a test exe-
cution control part, a module and grouping concept and new data types, are
introduced to provide a better control and grouping mechanism.

3 Message Sequence Chart

Message Sequence Chart (MSC) is a graphical specification language standard-
ised by ITU – Telecommunications Standardisation Sector (ITU-T) as Recom-
mendation Z.120 [6]. It is a scenario language to describe communication beha-
viour between system entities and their environment. Sequence charts like UML
sequence diagrams [2] and Message Sequence Charts (MSCs) are used to spe-
cify and describe communication behaviour by message interchange including
procedure calls between several distributed entities in a temporal order. MSCs
are well used for test purpose and test case specification. Furthermore, there is
ongoing work which introduces MSC concepts into UML 2.0 which leads to the
convergence of sequence diagrams to MSCs [3,4].

Three types of charts are provided by MSC. Namely, (basic) MSC to de-
scribe concrete events in a temporal ordering, High-Level Message Sequence
Chart (HMSC) to illustrate how to combine MSCs, and MSC documents which
serve as a summary of belonging charts.

MSC documents are used to provide an associated collection of MSCs (set
of traces) and define all kinds of instances used in the MSCs.

Basic MSCs are used to specify and describe the communication flow between
system entities where the concept of instances and messages is used (see Fig-
ure 1). Communication with the environment can be described and usage of
gates to compose MSCs is supported. Actions are used to describe internal be-
haviour of entities and conditions are used to restrict number of traces. Timers
are available to express time limits for execution. Instances can be dynamically
created and terminated.

Temporal ordering of exchanged messages is defined by a total temporal
ordering on instance axis and a partial order between instances where only the
order is defined but no concrete timing. Apart from message interchange, MSC
supports synchronous message exchange by means of calls and replies. Calls are
like remote method invocations where the result is returned by the reply.

Beside basic MSCs the structural concepts coregions, MSC references, in-
stance decomposition, and inline expressions are supported.

Total ordering on instance axes can be suspended by coregions where ordering
gets changed to allow any event order.

Inline operators are used for easier definition of event structures. The op-
erators alt, par, seq, opt, exc, and loop are available to define alternative,

4

env
ISAP1

IniBlock
decomposed as IniProcs

Initiator
block

Medium
env

MSAP2

ICONreq MDATind(CR)

ICONconf MDATreq(CC)ConnectionEstablishment

IDATreq(42)

MDATreq(DT,one,42)

loop <4,4>

IDISind

MDATreq(DT,one,42)

MDATind(DT,one,42)

MDATreq(AK,one)

MDATind(AK,one)

IDISreq

IDISind

MDATreq(DR)

MDATind(DR)

alt

msc DataTransfer

(b) MSC Expressions, Coregions, and Gates

Figure 1. Basic MSCs for the Inres protocol

parallel, and sequential composition, optional regions, exceptions, and iterations.
Alternative composition is used to define alternative execution traces of an MSC
whereby only one trace gets executed. The choice between different traces has
to be done after executing the common part of the possible traces.

Apart from MSC documents and basic MSCs there are High-Level Message
Sequence Charts (HMSCs) available as another structuring type. HMSCs are
directed graphs which describe how to combine a set of MSCs. Thus, HMSCs
provide a higher description and structuring level by abstracting from concrete
message exchanges.

5

UML

Sequence
Chart

Activity
Diagram

Basic MSC HMSC

TTCN-3
test case

TTCN-3
module

control part

Test Suite

Figure 2. Basic MSC to TTCN-3 translation concept

4 MSC to TTCN-3 Translation

CATG based on state space exploration generates frequently inefficient test
cases. Therefore, it is desirable to use, for instance, graphical test purposes,
for CATG which are also more suitable for a test designer. Test case generation
and specification using MSCs were formerly done for TTCN-2 by using Message
Sequence Chart-1996 (MSC-96) and is provided, for instance, with Autolink
in the TAU tool set from Telelogic [7,8,9]. Hence, a translation from MSC to
TTCN-3 gets defined to allow definition of graphical test purposes for TTCN-3,
too.

The focus is on timed order of message exchanges and test suite details are
hidden. This distinguishes this approach in contrary to UTP where a test suite
is represented in more detail. Thus, specification of scenario-based test cases
gets simplified. Furthermore, usage of a given specification by MSCs or UML
diagrams which can be converted into MSCs is possible. The Message Sequence
Chart-2000 (MSC-2000) is used as substitute for UML sequence charts as stated
before. UML activity diagrams can be converted to HMSC which is used to define
test execution order (see Figure 2). Thus, MSC is used to generate TTCN-3 test
cases and control parts.

MSC is also used for real-time testing and MSC concepts have been used
to develop TTCN-3 Graphical Presentation Format (GFT) and UTP. The in-
troduction of new concepts for real-time testing with TTCN-3 and MSC is
discussed in [10,11]. The GFT in context of MSC and UML is discussed in [12].
The deployment of UTP is detailed in [13] where a UML-based specification of
test descriptions is explained.

The translation starts with a description of the used approach to motivate the
following parts which are structured similar to the MSC specification document
[6] to provide easy access to the translation of each MSC element. Therefore,
translation of the MSC documents and comments, basic MSCs, structural con-
cepts, and HMSCs are explained.

6

4.1 Approach

Contrary to the TTCN-3 presentation format GFT [14] and UML test specific-
ation via UTP [13] which are inspired by MSC the approach here uses MSC
to manually specify test purposes and cases. However, the approach is also not
using the full MSC semantics because some restrictions and adaptations respect-
ively have to be done to permit test case specification via MSC. Thus, MSC
semantics is overwritten by an own MSC to TTCN semantics which is as near
as possible to the MSC semantics without introducing new graphical elements.
Hence, seamless use by test designer familiar with MSC is supported.

Requirements There are some requirements which are desirable to provide
good support for TTCN-3 with MSC and to widen usability and acceptance:

Structure It should be feasible to control the TTCN-3 test case generation
process to get a desired test suite structure. For instance, the MSC document
structure can be used.

Aliases Use of aliases is important to write easily test cases via MSCs wherefore
usage of TTCN-3 templates has to be supported.

Statements Support insertion of TTCN-3 statements (program code) in MSC,
for instance, insertion of setverdict(pass) at the end of a MSC diagram.

Defaults Usage of predefined TTCN-3 defaults must be possible.
Concurrency Support concurrent and non-concurrent TTCN-3 wherefore non-

concurrent TTCN-3 should be a special case of concurrent TTCN-3.

Basic Structure In order to use MSC for generating TTCN-3 the test ar-
chitecture and communication has to be mapped first. Static information like
types and data has to be given by other sources like by a Interface Definition
Language (IDL) mapping [15]. Test architecture and communication is based
on components and ports whereby ports are the element which connects both
together. Furthermore, usage of components would be too abstract for scenario-
based testing. Therefore, MSC instances are mapped to ports (see Figure 3).
At least the static Main Test Component (MTC) and SUT ports have to be
used to specify test cases. Dynamic Parallel Test Components (PTCs) can be
represented by instance creation. In order to distinguish ports by components
the instance head provides the component name in addition. Hereby, an own
test case for each component can be generated in case of concurrent TTCN. In
case of non-concurrent TTCN usage of PTCs is forbidden and component name
MTC is optional and only test case(s) for the MTC are generated.

In case where a MSC is ambiguous in sense of a TTCN-3 test case several test
cases will be generated to comply the ambiguities. Nevertheless, an ambiguous
test case specification in sense of this approach cannot be seen as a test purpose
in its proper meaning because traces have not to be completed. Ambiguous
test cases can appear by using sending messages in front of alternative inline
expressions and must appear by using HMSCs.

7

ISAP1
SUT

syminres ISAP2

ICONreq

ICONind

ICONresp

ICONconf

msc Structure Example

Figure 3. Basic instance structure to specify test cases via MSC

Restrictions and Adaptations As stated before, some restrictions and ad-
aptations are made to use MSC in conjunction with TTCN-3:

Configuration file A configuration file has to provide the used data types,
templates (constraints), and configuration information like port definitions
and their types and components (for create, connect, visibility) which can
be provided by a Specification and Description Language (SDL) or IDL
specification, for instance.
The configuration file has to be a correct TTCN-3 module. A reference to
the configuration file can be given via a text comment in the MSC because
the generated test case will be inside a TTCN-3 module, too.

Synchronisation At the border of an inline expressions synchronisation is al-
ways assumed to prevent cases of interleave and to permit loop abortion in
loop expressions. MSC references are synchronised per component.
Synchronise conditions and local synchronise rules will be used and hence,
no global synchronisation and global references are available.

Message type In an inline expression the first message has to be type lim-
ited to make sense in TTCN-3. Therefore, only receive messages and receive
statements respectively are permitted as first message in an alternative, op-
tional, and exceptional inline expression.

4.2 MSC Documents and Comments

MSC documents are used to structure test cases in a TTCN-3 module wherefore
the MSC document name is used as module name and the referenced MSCs are
converted to appropriate test cases inside the module. The document relation
is used to bind a configuration file to the MSCs where static informations are
provided.

The three comment types note, comment, and text are used to insert TTCN-3
statements and comments. Notes occur only in the textual syntax and therefore,
may be used in comment types comment or text to insert TTCN-3 comments.
Comments are associated with a symbol or comment type text why they can be
used to insert TTCN-3 statements at special positions. Text is used for global

8

TTCN-3 comments and statements which have to be set at the beginning of
the generated TTCN test case. For instance, defaults can be activated in text
comments.

4.3 Basic Message Sequence Charts

The conversion concepts for basic MSC are given below. Instances, messages,
and control flow is discussed first and the ordering and synchronisation of events
gets explained afterwards. At the end the conversion of environment and gates,
actions, timers, and dynamic instances is detailed (see Figure 4).

Each chart contains a chart name which gets the test case name which may
include used parameters.

Instances, Messages, and Control Flow Instances and communication by
message exchange and procedure invocation are the basic parts of MSCs. Ac-
cording to the approach mentioned before instances are used as ports and Point
of Control and Observations (PCOs) respectively where the corrsponding com-
ponent is mentioned, too. Instance name is used as port name and instance kind
without denominator is used as corresponding component name.

The instance definition itself provides no further information but attached
elements are considered to belong to the port or component respectively. Hence,
attached messages and procedure invocations belong to the given port and all
others to the component why all elements are put into the same component
test case(s). The used port type like message, procedure, or mixed may be
given in the instance name but is only necessary if semantics checks will be done
without further available configuration information or because of consistency for
test designer. The concrete port definitions are given by the separate static
information in the configuration file as also done for the component definition.

If no architecture information beside ports and SUT is given a heuristic can
be used or only a mtc is assumed. It is indicated which ports belong to the SUT
and message interchange where no SUT instance is involved indicates use of a
PTC as far as the MTC sends no message to itself. For instance, in case of con-
current TTCN synchronisation between components is done via synchronisation
coordination messages. Furthermore, test cases are focussed on communication
with the SUT why SUT instances are mostly involved in message interchange.
However, usage of such heuristics is up to tool vendors because they have no
influence to the translation itself.

A MSC message and procedure consists of a relation between an output and
input event from and to an environment or instance. These can be matched to
send and receive operations in TTCN-3. Output message events can only be
matched to send and output procedure events to call, reply, or raise opera-
tions whereas input message events can be matched to receive, trigger, and
check and input procedure events to getcall, getreply, and catch operations.
It is possible to provide a TTCN-3 statement attached to an event by a com-
ment to force its conversion to a specific communication operation. The default

9

conversion converts to send and receive respectively for messages and call and
reply for procedures if a statement is missing. Value assignments and optional
parameters can also be provided in comments to a communication event. One-
to-many connections are not supported until now by MSC and therefore, are not
considered here.

Procedure calls in TTCN-3 have a blocking characteristic to state whether
test case execution is blocked or not until the call has returned by a response
or exception. Thus, MSC asynchronous and synchronizing calls are mapped to
TTCN-3 non-blocking and blocking calls.

The message and procedure names represent either the used type (message
type or procedure) or template (message or signature template). In case of a tem-
plate without parameters no parameter list is given. Otherwise, the parameter
list is used to provide the necessary parameters. TTCN-3 templates and their
arguments provide easier usage of communciation operations because there are
no further information necessary. Inline templates for matching receiving events
can be used, too. Thus, test cases get more understandable and maintainable.

Ordering and Synchronisation To specify and implement test case genera-
tion from MSC the specification of the underlying event ordering is fundamental.
Using MSC event ordering implies generation of test cases for each possible trace
through a chart. However, intention of using sequence diagrams by test designer
directly is control of generated test cases and thus, a limited MSC event or-
dering gets used. In the following only non-concurrent TTCN is mentioned to
keep explanation simpler. Concurrent TTCN differs mainly in generation of test
cases for each component which can be easily adopted by considering involved
instances only [16].

Event ordering in MSC is defined by

– total ordering on instance axis,
– partial ordering between instances,
– a general ordering mechanism,
– and coregions.

Total ordering on instance axis is also used because event order on a port has to
be ordered totally by default. If another behaviour is wished the ordering has to
be modified explicitly by using corresponding elements. Partial ordering between
instances can enable several permitted traces of a chart which prevents exact
test case design because of unwished traces. Thus, partial ordering is limited
by synchronisation points, send events are executed as early as possible, and
graphical order is used to decide about used trace if necessary. Graphical order
means ordering is given by the order from left to right and top to bottom in the
MSC until the end or a synchronisation point.

Synchronisation points are used to provide a well defined point where all
send and receive events have been executed wherefore event execution before is
forced and no event after can be moved before a synchronisation point. Due to
the limitation of the partial ordering between instances and the preference of the

10

graphical order the general ordering mechanism is not necessary but can be used
for additional, more precise, and explicit order information. Coregions are used
to override explicitly any ordering by all permutations of the involved events
which is done by the interleave statement in TTCN-3. If the above mentioned
rules for ordering can be widen by automatic detection of interleave cases like
reception of two consecutive events at the SUT an interleave statement shall
be used for it.

Synchronisation can be forced by using conditions and is assumed around all
inline expressions and actions. MSC references are synchronised per component.
Since synchronise conditions and local synchronise rules like described before are
used, no global synchronisation and global references are available.

Miscellaneous Translation of environment, actions, conditions, timers, and
dynamic instances gets described.

Environment and Gates Support of external message exchange can be de-
signed similar to the normal message exchange by handling the environment like
another instance. Gates require no special translation rules because they are only
used for better organisation of charts.

Actions An action describes an internal activity of an instance and hence, it
can be used to insert comments and TTCN-3 statements directly into test cases
depending on an instance.

Conditions Conditions are only used for synchronisation which requires co-
ordination messages if concurrent TTCN is used.

Timers and Time Constraints Timers can be started and stopped according
their position in the MSC and only plotted and global timers are considered.
Timer time out can be catched by using the default behaviour statement of
TTCN where the test case verdict can be set to fail and a log message can be
written. There is no stop after the verdict to allow ending in a defined state.

Instance Creation and Termination Dynamic instances are mapped like
static instances but are created and started only during test case execution and
not at the begin of a test case like it is done for MTC and SUT. However,
dynamic instances make only sense if a new component is used. Information for
connecting and translation of ports to each other can be taken from exchanged
messaged. Instance termination is mapped to the stop component operation but
can only be inserted if no other port of the component is in use.

11

ISAP1
SUT

syminres ISAP2

ICONreq

ICONind

ICONresp

ICONconf

IDATreq(0)

IDATind(0)

Synchronisation

IDATreq(55)

IDATind(55)

IDISreq

IDISind

msc Example1 testcase Example1() runs on syminres {
ISAP1.send(ICONreq)
ISAP2. receive (ICONind)
ISAP2.send(ICONresp)
ISAP1. receive (ICONconf)
ISAP1.send(IDATreq (0))
ISAP2. receive (IDATind (0))
ISAP1.send(IDATreq (55))
ISAP2. receive (IDATind (55))
ISAP2.send(IDISreq)
ISAP1. receive (IDISind)

}

(a) MSC (b) TTCN-3

Figure 4. MSC to TTCN-3 Base Translation

4.4 Structural Concepts

Conversion of coregions, references, instance decomposition, and inline expres-
sions, which are all summarised as structural concepts in MSC, are detailed
now.

Coregions Coregions are used to override explicitly the total ordering of an
instance axis by unordered events. In sense of a test case description best trans-
lation is done by using all permutations of the involved events which is done by
the interleave statement in TTCN-3, as well. This was mentioned earlier in
4.3.

Usage of coregions is limited on message exchange among components and
between SUT and a component. Overlapping of coregions on different instance
axes for the same component has to be prevented. The first event must be always
a receive event. In case of non-concurrent TTCN coregions are only used on SUT
axes.

MSC References MSC references provide usage to import other charts which
easies decomposition and reuse. However, test cases cannot be decomposed into
other test cases and therefore, references are converted to function calls. Never-
theless, test case decomposition is done by HMSCs which is described in sub-
section 4.5. To allow correct behaviour of function calls by references they have

12

to be synchronised per test component. Several function calls can be provided
in one reference by usage of the seq operator for references.

The sequential MSC reference expression seq is used to call several functions
in sequential order. The alternative and optional expression alt and opt is used
to generate a test case for each possible alternative. Loop expressions are conver-
ted according done for MSC inline expressions in HMSCs (see subsection 4.5).

Instance Decomposition Instance decomposition is used to replace an in-
stance axis by a detailed chart. The instance axis can be seen as the environ-
ment from the detailed chart. Therefore, instance decomposition has only to be
resolved during conversion wherefore no further special conversion concept is
required.

Inline Expressions In order to structure charts inline expressions are provided
which allow alternatives, loops, and parallel execution.

An appropriate translation requires synchronisation before and after each
inline expression to prevent cases of interleave which cannot be solved easily. In
addition, handling concurrent TTCN-3 gets better. From MSC point of view
events before and after an inline expression may influence the expression be-
haviour but for test case design this behaviour is not wished because it makes
test case design more complicated by loosing control about the number of gener-
ated test cases. To provide a good translation to TTCN-3 alternative and loop
statements synchronisation is required, as well. Especially, good support of loop
expressions by using TTCN loop statements is also wished.

The inline expressions alternative, option, exception, and loop are detailed
below. Inline expression parallel will not be mentioned because there is no ap-
propriate translation available.

Alternative The alternative expression is directly mapped to the alternative
behaviour statement of TTCN-3. Therefore, the first element of each alternative
part has to be a reception statement according the specification of the alt state-
ment. For each alternative of an alternative expression containing a send event
as first event another test case containing this alternative is generated. In worst
case an own test case gets generated for each alternative. Of course, all events
in alternatives are restricted by the alt statement semantic (see Figure 5).

Optional The optional expression can be seen as a special case of the alternative
expression with an additional empty alternative part. The empty alternative part
gets realised by an else guarded empty alternative part.

Exception The exception expression is a special case of the alternative expres-
sion where the last alternative part is the remainder of the MSC.

13

ISAP1
SUT

syminres ISAP2

ICONreq

ICONind

ICONresp

ICONconf

IDATreq

IDATind

IDISind

ICONreq

ICONind

ICONresp

ICONconf

IDATreq

IDATind

alt

IDISreq

IDISind

msc Inline Alternative 4 testcase Inline_Alternative4 () runs on syminres {
ISAP1.send(ICONreq)
ISAP2. receive (ICONind)
ISAP2.send(ICONresp)
ISAP1. receive (ICONconf)
ISAP2.send(IDISreq)
ISAP1.send(IDATreq)
alt {

[] ISAP2. receive (IDATind)
{
}

[] ISAP1. receive (IDISind)
{

ISAP1.send(ICONreq)
ISAP2. receive (ICONind)
ISAP2.send(ICONresp)
ISAP1. receive (ICONconf)
ISAP1.send(IDATreq)
ISAP2. receive (IDATind)

}

}

ISAP2.send(IDISreq)
ISAP1. receive (IDISind)

}

(a) MSC (b) TTCN-3

Figure 5. MSC to TTCN-3 Alternative Translation

Loop The loop expression can be converted onto the for and while loop state-
ments of TTCN-3 whereby infinite loops are best mapped to while loops and
finite loops to for loops. In contrary to the alternative expression there is no
special first event necessary. Instead, loop operations require an abortion cri-
teria if lower and upper boundary are not equal. Equal boundaries impose exact
number of loop passes where no abortion criteria is required. The abortion cri-
teria from MSC point of view is the next receive event after the loop expression.
Therefore, a receive message has to be given after each loop expression. The
receive message gets checked inside the loop and concrete message consumption
is done after loop execution (see Figure 6).

4.5 High-Level Message Sequence Charts

HMSC are thought to describe possible combinations of MSCs. As mentioned
earlier UML activity diagrams are comparable with HMSCs. If they are seen as
a kind of test suite decomposition they can be used to specify test case execution
order. Therefore, HMSCs are used to describe test case execution in the module
control part of TTCN-3.

14

ISAP1
SUT

syminres ISAP2

ICONreq

ICONind

ICONresp

ICONconf

IDATreq

IDATind

IDATreq

loop <1,3>

IDATind

msc Inline Loop 1 testcase Inline_Loop1() runs on syminres {
ISAP1.send(ICONreq)
ISAP2. receive (ICONind)
ISAP2.send(ICONresp)
ISAP1. receive (ICONconf)
ISAP1.send(IDATreq)
var integer iterator__1 := 0;
for (iterator__1 := 0; iterator__1 < 3;

iterator__1 := iterator__1 + 1) {
alt {

[] ISAP2. receive (IDATind)
{

ISAP1.send(IDATreq)
}

[iterator__1 >= 1] ISAP2.receive(IDATind)
{

goto iterator__1_label
}

}
}
label iterator__1_label;

}

(a) MSC (b) TTCN-3

Figure 6. MSC to TTCN-3 Loop Translation 1

MSC references including reference expression in HMSCs are converted to
corresponding test case execution calls and conditions and parallel frames are
ignored. Each execution trace of a HMSC gets collected in an own function
and all functions are called in the control part. No backward loops are allowed
and there are only reference expression loops with same finite lower and upper
boundary allowed because data concept is not introduced into UML and thus,
not considered here. Alternative and optional expressions lead to several traces
only. Exception expressions are used to stop further trace execution if the test
case fails. An example is given in Figure 7.

5 Conclusions

The work presented in this paper describes a translation of MSC elements to
TTCN-3 statements in order to use UML sequence charts to define test cases
and test case execution order in TTCN-3.

Usage of comments for introducing direct TTCN-3 statements is used espe-
cially for TTCN-3 defaults. One-to-many connections are not supported until
now by MSC and therefore, are not considered. Apart from translation chart
elements the ordering semantics of events had to be defined which differs from
the original semantics of MSC to be adequate for test specification. For instance,
default synchronisation points were introduced for references and inline expres-
sions.

Procedural communication is represented by flow control concept and mapped
to call and getreply statements. However, alternative handling of reception
events by usage of alternative statement in a blocked call or a getreply state-
ment is not supported until now. Data and time concepts of MSC-2000 have not

15

loop <10,10> ConnectionFailure

exc ConnectionSuccess

connected

TransmissionSuccess

ConnectionRelease

TransmissionFailure

disconnected

hmsc Translation Example module {

function testExecution1 () {
verdicttype verdict ;
integer i ;

for (i :=10; i>0; i:=i−1)
execute ConnectionFailure ();

verdict = execute ConnectionSuccess();
if (verdict == false)
return ;

execute TransmissionSuccess ();
execute ConnectionRelease();

}

function testExecution2 () {
verdicttype verdict ;
integer i ;

for (i :=10; i>0; i:=i−1)
execute ConnectionFailure ();

verdict = execute ConnectionSuccess();
if (verdict == false)
return ;

execute TransmissionFailure ();
}

control {
testExecution1 ();
testExecution2 ();

}
}

(a) HMSC (b) TTCN-3

Figure 7. MSC to TTCN-3 Translation of HMSCs

been considered because they are not used in UML 2.0, until now. Nevertheless,
in context of TIMEDTTCN-3 it has been shown that is possible to translate
real-time information contained in MSC to TIMEDTTCN-3 [10,11]. Data sup-
port was not considered but can be easily used to enhance expressiveness and
integration into TTCN-3.

A prototype was implemented to demonstrate feasibility. A first version was
demonstrated on the TTCN-3 launching event in October 2000 at European
Telecommunications Standards Institute (ETSI). The used examples are con-
verted with it. The prototype shares code with the IDL to TTCN-3 converter
prototype also developed by the author.

In further work the prototype should support HMSC and concurrent TTCN
which have been explained but not implemented until now. A discussion of con-
current TTCN-2 and MSC can be found in [8]. Usage of TTCN-3 as data
language has also to be considered. There is a prototype enhancement available
which supports the time concept as described by TIMEDTTCN-3 [11]. Industrial
interest on the prototype has been shown.

References

1. ISO/IEC: Information Technology — Open Systems Interconnection — Con-
formance Testing Methodology and Framework — Part 3: The Tree and Tabular

16

Combined Notation (second edition). International Standard 9646-3, ISO, In-
ternational Organisation for Standardisation and IEC, International Electrotech-
nical Commission (1998)

2. OMG: Unified Modeling Language Specification. OMG Formal Document
formal/03-03-01, OMG, Object Management Group (2003) Version 1.5.

3. OMG: Unified Modeling Language 2.0: Superstructure. OMG Final Adopted
Specification ptc/03-08-02, OMG, Object Management Group (2003)

4. Jeckle, M., Rupp, C., Hahn, J., Zengler, B., Queins, S.: UML 2 glasklar. 1 edn.
Hanser (2004)

5. ETSI: Methods for Testing and Specification (MTS) — The Testing and Test
Control Notation version 3 — Part 1: TTCN-3 Core Language. European Stand-
ard ETSI ES 201 873-1 v2.2.1, ETSI, European Telecommunications Standards
Institute, Sophia-Antipolis, France (2002)

6. ITU-T: Recommendation: Message Sequence Chart (MSC). International
Standard Z.120 (11/99) with Corrigendum 1, ITU-T, International Telecom-
munication Union — Telecommunication Standardisation Sector SG 10 (2001)

7. Koch, B., Grabowski, J., Hogrefe, D., Schmitt, M.: Autolink – A Tool for Auto-
matic Test Generation from SDL Specifications. In: IEEE International Work-
shop on Industrial Strength Formal Specification Techniques (WIFT’98), Boca
Raton, Florida (1998)

8. Koch, B.: Test-purpose-based Test Generation for Distributed Test Architec-
tures. doctoral thesis, Medizinische Universität zu Lübeck, Germany (2001)

9. Schmitt, M.: Automatic Test Generation Based on Formal Specifications —
Practical Procedures for Efficient State Space Exploration and Improved Rep-
resentation of Test Cases. doctoral thesis, Georg-August-Universität Göttingen,
Germany (2003)

10. Dai, Z., Grabowski, J., Neukirchen, H.: TIMEDTTCN-3 – A Real-Time Exten-
sion for TTCN-3. In Schieferdecker, I., König, H., Wolisz, A., eds.: Proceedings
of the IFIP TC6/WG6.1 14thInternational Conference on Testing of Communic-
ating Systems, (TestCom 2002), Berlin, Germany, The International Federation
for Information Processing, IFIP, Kluwer Academic Publishers (2002) 407–424

11. Dai, Z., Grabowski, J., Neukirchen, H.: TIMEDTTCN-3 Based Graphical Real-
Time Test Specification. In Hogrefe, D., Wiles, A., eds.: Proceedings of the IFIP
TC6/WG6.1 15thInternational Conference on Testing of Communicating Sys-
tems, (TestCom 2003), Sophia-Antipolis, France. Volume 2644 of Lecture Notes
in Computer Science, (LNCS)., The International Federation for Information
Processing, IFIP, Springer Verlag (2003) 110–127

12. Schieferdecker, I., Grabowski, J.: The Graphical Format of TTCN-3 in the con-
text of MSC and UML. In Sherratt, E., ed.: Proceedings of the 3th International
Workshop on SDL and MSC (SAM 2002), Telecommunications and beyond: The
Broader Applicability of SDL and MSC, Aberystwyth, UK, June 24.-26., 2002.
Revised Papers. Volume 2599 of Lecture Notes in Computer Science, (LNCS).,
Springer Verlag (2003) 233–252

13. Schieferdecker, I., Dai, Z., Grabowski, J., Rennoch, A.: The UML 2.0 Testing
Profile and its Relation to TTCN-3. In Hogrefe, D., Wiles, A., eds.: Proceedings
of the IFIP TC6/WG6.1 15thInternational Conference on Testing of Commu-
nicating Systems, (TestCom 2003), Sophia-Antipolis, France. Volume 2644 of
Lecture Notes in Computer Science, (LNCS)., The International Federation for
Information Processing, IFIP, Springer Verlag (2003) 79–94

17

14. ETSI: Methods for Testing and Specification (MTS) — The Testing and Test
Control Notation version 3 — Part 3: TTCN-3 Graphical Presentation Format
(GFT). Technical Report ETSI TR 101 873-3 v.1.1.2, ETSI, European Telecom-
munications Standards Institute, Sophia-Antipolis, France (2002)

15. Ebner, M., Yin, A., Li, M.: Definition and Utilisation of OMG IDL to TTCN-3
Mappings. In Schieferdecker, I., König, H., Wolisz, A., eds.: Proceedings of the
IFIP TC6/WG6.1 14thInternational Conference on Testing of Communicating
Systems, (TestCom 2002), Berlin, Germany, The International Federation for
Information Processing, IFIP, Kluwer Academic Publishers (2002) 443–458

16. Grabowski, J., Koch, B., Schmitt, M., Hogrefe, D.: SDL and MSC Based Test
Generation for Distributed Test Architectures. In R, D., v. Bochmann, G.,
Lahav, Y., eds.: SDL ’99 The next Millenium – Proceedings of the Nineth SDL
Forum, Montreal, Canada, Elsevier (1999)

	TTCN-3 Test Case Generation from Message Sequence Charts
	Michael Ebner

