SDL-2010: Background, Rationale, and Survey

Rick Reed

TSE, The Laurels, Victoria Road, Windermere, LA23 2DL,United Kingdom.

rickreed@tseng.co.uk

Abstract. This invited paper concerns a revised version of the ITU-T
Specification and Description Language standard, which is scheduled to
be consented for approval by ITU-T during 2011. In this document and
ongoing ITU-T work, the revised version is called SDL-2010. The current
standardized (or in ITU-T terminology Recommended) version at the
time of initially writing this paper (April 2011) was called SDL-2000.
The paper gives some historical background on the development of the
language. The paper includes rationale for the update of the language
and the revised organization of the language standard. After the history,
there is a description of the new organization followed by some details
of the changed feature set of a revised version SDL-2010 compared with
SDL-2000. The paper concludes with a snapshot of the status of the
SDL-2010 standard.

The purpose of this paper is to provide an overview introduction to the
revision of the ITU-T Specification and Description Language called SDL-2010.1

The Specification and Description Language has a long history as a pub-
lished standard going back to 1976 [1], but other than corrections and some
re-organization of material in 2002 [2], the language standard has remained sta-
ble since the publication of SDL-2000 in 1999 [3]. Considering that previously
the language had been revised in 1980, 1984, 1988, 1992 and an addendum to the
1992 version in 1996 [4-8], this is the longest period of stability in the evolution
of the language, as can be seen in Fig. 1. As explained in Sect. 1.1, this stabil-
ity is to some extent due to changed market circumstances in the last decade.
One incentive for a revised version of the language is to remove some differ-
ences between the language standard and implementations provided by tools:
in particular some of the aspects of data introduced in SDL-2000 that have
not been implemented (see Sect. 1.2), nesting of diagrams (see Sect. 1.3), and
features without SDL-2000 semantics from the United Modeling Language (see
Sect. 1.4). The resulting feature set is outlined in Sect. 1.5.

The organization of the standard documents is described in Sect. 2, followed
by more detailed description in Sect. 3 of some features added or deleted. Finally
the paper closes with the status at the time of writing in sect.4.

! The content of this paper is not entirely new because it reports work that has been
in progress for some time in the domain of ITU-T standardization, but although
some material has been made available as ITU-T temporary documents and some
material presented at SAM-2010, it has not been widely published.

1976 (| 1980 1992 !
CCITT | | CCITT ITU 2000 2011 {3
Orange| | Yellow ‘White’ ITU ITU i

Book Book Book ;
SDL-76 SDL-80 SDL-84 SDL-88 SDL-92 SDL-2000 SDL-2010

Fig. 1. Specification and Description Language publication dates

1 Background for the development of SDL-2010

SDL-2000 was completed in 1999 with versions of the ITU-T Recommendations
7.100, Z.105, Z.107 and Z.109. The main document was Z.100 [3] with Z.105 and
Z.107 [9,10] covering use of ASN.1 [11] with the SDL-2000, and Z.109 [12] cov-
ering use with the Unified Modeling Language (UML)[13]. A revised Common
Interchange Format for SDL-2000 in ITU-T Recommendation Z.106 [14] supple-
mented these in the year 2000. Since then there have been some minor updates
to these Recommendations. The text was reorganized in 2002 so that Z.100 [2]
describes the graphical language, and the parts of the textual (SDL/PR phrase
representation) that are alternatives to graphical representation (SDL/GR) were
moved to the interchange format in Z.106[15]. At the same time a number of
corrections and a few minor changes were made. In 2003 an Amendment [16]
was issued to incorporate two new Annexes B and C that concern backwards
compatibility and conformance to the standard. In 2007 Z.100 was republished
incorporating all agreed amendments [17]. The changes have been minor: either
re-organization or correction of flaws in the 1999 version, so that essentially
SDL-2000 has not changed and has remained stable.

1.1 Status of SDL-2000

When SDL-2000 was being developed, right up until the ITU-T meeting at which
it was approved there were two sizable software organizations that were promis-
ing to produce tools to support SDL-2000 in 2000 or 2001: Telelogic and Verilog.
A merger of these two organizations in Telelogic was announced before the end
of 1999, so that some competition was removed in the tool market. Although
these commercial tools already supported some of the features of SDL-2000 by
2000, it is now unlikely that there will ever be a tool that approaches full sup-
port of SDL-2000 in its final form [15,17-19]. Even the tool that best supported
SDL-92, Cinderella, reached a position by 2007 when it would probably never
offer full SDL-2000 support, because it has a smaller (at least in value terms)
share of the ITU Specification and Description Language tool market and had
to offer compatibility with Telelogic as the market leader at that time. Cin-
derella collaborated with Humboldt University that previously had not entered
into the commercial tool market. The Humboldt SDL-tool implemented many
of the features of SDL-2000 on a trial basis to test the feasibility of various

ideas - indeed some features such as nested packages were implemented specifi-
cally to support feature requests promoted by Humboldt for OMG related work.
In 2003 SOLINET announced the SAFIRE tool set, claiming that it is based
on 7.100. In late 2004 PragmaDev, which previously supported a dialect called
SDL-RT announced support also of Z.100. All four organizations (Cinderella,
PragmaDev, SOLINET/SAFIRE, Telelogic) had commercial tools available in
May 2006, though SOLINET/SAFIRE had ceased to be involved in ITU or SDL-
Forum activities and the future of the language. By November 2008 all Telelogic
products and services had become part of the IBM Rational Software portfolio,
and the main tool vendors were IBM, PragmaDev and Cinderella (probably in
order of market value at that time). At the time of writing all three of these
vendors still offered Specification and Description Language tools.

Since 1999 the general market perception has developed. In 1999, part of the
rationale for developing Z.109 as a UML profile for the ITU Specification and
Description Language was because UML was perceived as a major competitor to
the ITU language. Within the telecommunications industry some organizations
were divided internally between those that favoured the ITU Specification and
Description Language and fans of UML. A decade later the perspective is quite
different, because the issue is not seen as whether to use UML or SDL-2000 (and
other ITU languages), but how to use these together. In retrospect it would
be easy to say this was always the way it was seen - but to be truthful this
was not the case especially in 1997 and 1998 when SDL-2000 was being for-
mulated. However, it is now clear that the state machine specification part of
UML 2.1.2 is not really a complete language in itself, because of the semantic
and syntactic variations that are allowed, and that to make its use practical an
(implicit or explicit) profile for UML has to be used. The revised Z.109 profile
of 2007 [20] is geared to the needs of the telecommunications industry by map-
ping UML 2.1.2 [13] onto the more precise (and therefore more practical) Z.100
semantics and (where UML 2.1.2 gives notation options or no specific notation
or no notation) binding to the Z.100 syntax.

It is not by accident that the situation has been reached today where UML
and ITU System Design Languages are seen as complementary rather than com-
peting. Between 1999 and 2004 there was a significant involvement of I'TU System
Design Language experts in the ongoing development of UML, in particular for
UML 2.0. The ITU languages have the good features of being well-defined and
having action semantics that ensure specific behaviours. UML is good at object
modelling and has proven to be a success at providing a framework for using
different languages together - a feature that the ITU languages (for historical
reasons) lack. Rather than defining new precise action languages for UML, or
adding a framework scheme and object modelling to the ITU System Design Lan-
guages, the sensible way forward from a telecommunications system engineering
point of view is to combine these features of both approaches.

It was therefore not a surprise to see the industry use tools that combine
UML with the SDIL-2000 semantic engine. This was the perspective of several

major telecommunications manufacturers, and therefore the general direction of
industry.

However, the situation with SDL-2000 after over a decade is unsatisfactory
for all parties. Despite the 1996-1999 intention to ensure the language standard
and tool support should be closely aligned (of course, ideally the same), this has
not been the reality right through to the start of 2011. The language available
to users is effectively SDL-92 with the 1996 addendum plus some of the features
of SDL-2000 (which features depending on which tool is used) and often using
legacy syntax for data. It was to ensure users are still able to produce SDL-
models that are valid according to the standard that Annex B was added to
7.100 for SDL-2000, which allows the legacy syntax supported by tools.

Not only was SDL-2000 not fully supported, but also as UML and other
languages such as the ITU-T User Requirements Notation [21], become more
commonly used, there have been changing expectations of the facilities offered
by the Specification and Description Language. Some, such as UML-like syntax,
do not seem to be required. Others, that are not included in SDL-2000 such as
timer supervised states, seem to be desirable.

1.2 The data issue

A data model that provides data with both sets of values (as in ASN.1) and
operations is essential for any language that is to provide executable models
or implementations. SDL-2000 made a major change to the way that data was
defined: the algebraic axiom approach was removed from the user language,
leaving just a constructive data approach (as in most programming languages).
At the same time object data types were added. Leaving aside whether reference
(object) data is actually needed and the “modernized” syntax in SDL-2010,
whether SDL-2000 data is the best approach is reconsidered.

An SDL-2000 user is faced with the option of using either ASN.1 or SDL-2000
to define data types. If ASN.1 is used SDL-2000 provides a built-in set of op-
erators. Similarly the built-in SDL-2000 data types provide a set of defined
operators. The only real advantage of the SDL-2000 data types over ASN.1 is
an arguably nicer syntax. The language could be made simpler by removing the
SDL-2000 data types, but this would not be acceptable for legacy reasons.

Tools that produce target code for SDL-2000 are usually proprietary products
of larger companies. Commercial tools usually implement ASN.12 and SDL-2000
data in one of two ways: providing translation to another programming language
(usually C or C++), or producing code for a virtual machine and providing an
emulator for that machine (written in some other language like Java or C).
The advantage of either of these approaches is that they are target machine
independent. However, there remains the issue of interfacing code from SDL-2000
with other code, especially device and message handlers and possibly the Real
Time Operating System (RTOS).

2 Whether ASN.1 compilation is done in a separate tool or not is a tool issue, not a
language issue.

An alternative is to open up the language to external data types. In fact
this was envisaged in SDL-92, with the external data syntax, but (as seen
from MSC [22] and UML experience) it is difficult to define a language that can
use the declarations and expression syntax in a plug-compatible way. Moreover,
Z.121 [23] now provides an MSC to SDL-2000 data binding. Also from the user
viewpoint the meaning of an expression in SDL-2000 would depend on the actual
data language used, which may not be clear from context. As with MSC, there are
requirements on any data language used, so that data is compatible with essential
features such as timers. Despite these issues, from a user point of view using a
data expression notation from another language can be a practical approach
(as evidence see SDL-RT). The plan therefore for SDL-2010 was to first ensure
SDL-2000 data is supported, and then define a way of providing a binding to
other language syntaxes such as Java, C (or C++) or the data language of
SDL-RT.

1.3 Diagram structure

It has been agreed for some time that although the Specification and Description
Language has both a graphical (SDL/GR) and textual (SDL/PR) presentation
form coupled by a common abstract grammar, the primary presentation form is
graphical, and the textual form is used mainly as an interchange format. Specifi-
cations in the language therefore usually consist of a number of diagrams. While
in SDL-2000 it is permitted that diagrams for inner components are drawn nested
inside the diagrams for the enclosing component, in practice this is not done for
two reasons: in general the resulting diagram would be too large, and full tool
support is not provided. Even though tools support the printing of such nested
diagrams to some extent, diagrams are usually generated separately, and for
any reasonable size of system the nested diagrams become too extensive to han-
dle, read or comprehend. Instead inner diagrams are referenced from enclosing
diagrams, so that each diagram is a reasonable size. Tools support this approach.

On the other hand, the semantics of the language is defined in terms of a
single hierarchical model in the abstract syntax, in which the referenced dia-
gram replaces each reference (after eliminating any duplicates). In SDL-2000
the change from references to the hierarchy is theoretically done by transforma-
tions to a nested concrete syntax and then this concrete syntax is mapped to
the abstract syntax. In SDL-2010 the change from references to the hierarchy is
done by mapping referenced diagrams directly to the abstract grammar. In the
concrete syntax the nested graphical form (which is not generally tool supported
for diagrams in any case) is no longer part of the language. This is a worthwhile
simplification, because the concrete grammar does not have to describe both
forms and intermediate transformation. To some extent, moving SDL/PR to
7.106 in 2002 enabled this change.

1.4 Features without formal semantics

Some features (such as comments, paging, create lines, multiple type references)
do not add to the semantics of an application model, but are provided to allow
annotation to be presented for the benefit of engineers. While these features
should be checked for consistency, tools otherwise ignore them. In SDL-2010
these features are separated from the extended finite state machine parts of the
language.

In particular, the Association feature was added in SDL-2000, to allow UML-
like associations to be shown between types (or “classes” in UML terminology).
This had no semantic meaning in SDL-2000, and is arguably now better covered
by using UML tools and applying the UML profile in Z.109.

1.5 Feature deletion, retention and extension

So where does this leave SDL-20007

As for previous versions (SDL-88, SDL-92) the language definition has had
several years of stability, and it was appropriate to consider what change should
be made for the new version. First scheduled for consent in 2008, the revision
was initially named SDL-2008. This date was not achieved. At the September
2009 ITU-T meeting it was renamed SDL-2010, the expected year for consent
at that time. Though still not completed in December 2010, it was then decided
(reaffirmed April 2011) not to change the name again: work had progressed
sufficiently for completion in 2011 to seem certain.

As for previous revisions, one objective was to simplify the language. A new
objective was to have a clearly defined basic SDL: the SDL-Task Force (a small
consortium outside ITU-T) was ostensibly set up with this objective, but that
organization had by October 2005 effectively ceased to exist, and the target
of this group was not an SDL-2000 subset. In addition extension proposals for
the language had come from many sources such as the SDL-RT, the SDL-Task
Force, and industry users. There were also ideas considered previously but not
incorporated into SDL-2000 and a few ideas to support UML profiling. There
were some additions made in SDL-2000 compared to the previous SDL-92 version
that had not been widely implemented, such as object data, the UML class
symbol for types and UML-like associations. Some features, such as exception
handing had been implemented in just one tool. These largely unimplemented
features were considered for deletion.

Because SDL-2000 is a richer language than SDL-92 it was agreed there was
no point in retaining features that have not been widely supported or used. On
the other hand, features that are widely used should not be deleted, even if a
better alternative exists or is proposed, because it has been found this kind of
change leads to significant legacy problems.

A pragmatic approach has been taken: some features are being deleted and
some potentially useful ones (based on the participating expert contributions
tempered by user and tool vendor feedback) were added. The way Recommen-
dations are approved at ITU-T has changed since 1999, so that significant com-
ments can now be made and handled in a more open way during the approval

stage. One criterion for feature retention or addition is compatibility with UML.
There are two reasons for this: UML is a coherent framework for binding ITU-T
languages together so SDL-2010 needs to be consistent with the UML model,
and secondly the language provides the needed precise action semantics to UML.
The creation of a UML profile for the telecommunications action language in
Z.109 (06/07) [20] for SDL-2000 was obviously a key determinant for this com-
patibility, and generated a few necessary or highly desirable changes to Z.100.

The current draft has been prepared on the assumption that exception han-
dling® is deleted (while keeping the timers on remote procedures). Object data
is for the time being removed, but further study is in progress. Esoteric features
(such as name class) are removed. In addition the Association feature and the use
of UML class symbols for types are removed. An overview of the set of features
of SDL-2010 is given in Sect. 3.

The net result is (as for previous versions) SDL-2010 contains both existing
language features implemented in tools, and additional language features that
(if and when supported) will enhance the language. The composite state feature
does not exactly fit into either of these categories. In SDL-2000 composite states
replaced the service concept of SDL-92; but is both a more powerful concept
than service and more compatible with UML, though currently lacking tool
support. For SDL-2010, returning to the SDL-92 service was not an option, be-
cause UML compatibility would be diminished, and deleting the feature was not
an option either, because the SDL-92 service maps to an aggregate composite
state. Moreover, the way an SDL-2000 state machine behaves is defined in terms
of the way an instance of a composite state type behaves, and in SDL-2010 this
underlying model is clarified and strengthened in the revised description of state
machines.

2 Organization of the SDL-2010 language standard

This section outlines the organization of the SDL-2010 standard.

In SDL-2000 there was already a successful clear separation of abstract
grammar, concrete grammar and shorthands (further considered in Sect. 2.1).
SDL-2010 takes a further step by separating concerns as described in Sect. 2.2
into documents for the core language (see Sect. 2.3), full coverage of the ab-
stract grammar (see Sect. 2.4), shorthand notation (see Sect. 2.5) and data (see
Sect. 2.6) into separate documents, while retaining the separate document for
ASN.1 use (see Sect. 2.7) and the common interchange format (see Sect. 2.8).

2.1 Shorthand transformation models

Since SDL-88 and in SDL-92 and SDL-2000, transformation models have been
used to define a number of language features, where a given concrete syntax is

3 Exceptions are still raised by certain constructs (such as indexing OutOfRange),
but cause the further behaviour of the system to be undefined because they are not
handled.

transformed into another concrete syntax. These features are called “shorthand”
productions. While these features are often so useful and practical that they
are essential, they are not essential in a theoretical sense, as the transformed
concrete syntax can (usually) be used instead of the shorthand version. In fact the
abstract syntax and language semantics are (or at least should be) defined only
for concrete syntax that cannot be transformed. It is this canonical syntax that
is mapped to abstract ayntax. The semantics and (as far as possible) constraints
are expressed in terms of the abstract syntax.

An objective in SDIL-2010 is to keep the core of the language as small as
possible (and therefore easier to understand), and as far as possible separate the
description of the transformation models from the core parts of the language.
This is reflected in a reorganization of the SDL-2010 standard compared with
SDL-2000 (see below).

2.2 Reorganization of the documents for the language standard

SDL-2010 is reorganized so that core features are defined within the Z.101 part
of the language definition, with the remaining (retained) more complex language
features described in subsequent parts (Z.102, Z.103, Z.104, Z.105 and Z106). In
the new organization Z.100 is re-utilized to provide an overview of the set of
Recommendations.

Anyone who has been tracking the language for a number of years will be
aware that this structure for the language definition is not new: the 1988 version
(SDL-88) defined “Basic SDL” and then a number of additional features that
extended “Basic SDL”. This structure does not invalidate tools and applications
that use the “full” language, while providing an identifiable subset. Some of the
proposed benefits of having a clearly defined subset were:

— It makes it easier to teach and learn the basics of the language;

— It makes it easier to produce and maintain tools that can handle such a
subset;

If all tools that claim to support the standard have to support this subset,
it gives a level of guaranteed portability.

— Such a subset would characterize essential “SDLness”.

Getting agreement on what should and should not be in such a subset is
not an easy task. There will be many different opinions backed up by different
experiences and value judgements. Work already existed, such as studies at ETSI,
which could lead a consensus result, so it was argued the potential benefits
(some of which are outlined above) would justify the effort. Eventually it was
agreed there were insufficient participants really interested in formally defining
a subset, so that explicit definition of such a subset was not a specific objective
for SD1.-2010.

The objective of the reorganization has been separation of concerns. The es-
sential behaviour of a system defined using SDL-2010 depends on the extended
finite state machine model of Rec. Z.101 (coupled with the behaviour of expres-
sions of Rec. Z.104). The other Recommendations Z.102, Z.103, Z.104, Z.105

and Z.106 provide language features that (respectively): make the language more
comprehensive, make the language easier and more practical to use, provide the
full data model and action language, enable ASN.1 to be used, and define the
interchange format. A summary of the distribution of features over the main
Recommendations Z.101 to Z.104 is given in Table. 1.

2.3 Basic SDL-2010 - Z.101

Recommendation Z.101 contains the part of the Specification and Description
Language Recommendations for SDL-2010, that covers core features such as
agent (block, process) type diagrams containing agent instance structures with
channels, diagrams for extended finite state machines and the associated seman-
tics for these basic features. A state machine is a composition of states of an
agent: that is, a composite state, which is an instance of a state type. For that
reason, state types and composite states are part of the basic language.

Most of the abstract grammar of SDL-2000 is covered by Basic SDL-2010.
The abstract grammar that is not covered is for specialization (also known as
inheritance) of types, the additional types of stimulus for an input (priority input,
enabling condition, continuous signal, remote procedures and remote variables),
synonyms and the generic definition features. These and macros are covered in
7.102.

The example given in Fig. 2 illustrates Basic SDL-2010 use, but is not in-
tended to be useful as it specifies a kind of write only memory,

In Basic SDIL-2010 the system model is based on type definitions: agent in-
stances are type based instances and the state machine of an agent is a type
based state. The page structure is part of the concrete syntax, but in Basic
SDL-2010 each diagram contains only one page. Multiple pages and agent dia-
grams (instead of type based agent instances) are shorthand notations. The key
contents of Basic SDL-2010 are:

— Lexical rules including revised frame use and page numbers;

— Revised framework, package use and referenced definitions;

— Agent (system, block , process) types and state types;

— Typebased agents, procedures, channels and signals;

— State transition graphs with start and state nodes with inputs and saves;

— Transitions: each to a nextstate, join;stop or return node;

— Task (assignment), create (agent), procedure call, output (signal), and deci-
sion actions;

— Timers and key data features.

Each diagram is restricted to one page, and there are no agent diagrams (only
agent types and typebased agents).

In the example an <sdl| specification> is a <system specification>, which is
a <typebased agent definition> that in turn is a <typebased system definition>
associated with a <package use area>. The system symbol references the system
type Syst defined in package Pkg. In package diagram Pkg, the system type

Feature

7.101
Basic

7.102
Comprehen.

7.103
Shorthand

7.104
Data

Lexical rule, frame use, page
numbers

>

UCS Chars.

Framework, packages,
referenced definitions

Agent types, state types

Typebased agents, procedures

Channels, interfaces, signals

State transition graphs:
start, state with input/save

el i e e s

Transitions to;
nextstate, join, stop, return

Actions; tasks, create,
proc. call, output, decision

>

Timers, Data (overview)

Macros

Substate entry/exit points

Aggregate states (fork/join)

Type context parameters

Specialization/inheritance

Virtuality

Remote procedures/variables

X[| | PR PR A

Spontaneous transitions,
continuous signals,
priority inputs

=

Statement lists in tasks

Generic systems:
select, transition option

Various syntax alternatives

Comment symbol, create line

Text extension symbol

Multiple page diagrams

Statement lists in tasks

Agent diagrams

State graph in agent (type)

Implicit channels, optional names

* state/input/save, implicit input

ksl ki Kl e et el e

Predefined data package

Textual procedure/operator body

Data encoding (see text)

| pA| >

Table 1. Features in Z.101, Z.103, Z.103 and Z.104

PACKAGE Pkg 1(1)
USE Pkg

SYSTEM SYSTEM
Syst
wom:Syst
/*system specification */

/* package diagram */

STATE TYPE Cst 1(1)
SYSTEM TYPE Syst 1(1)
SIGNAL sj [s] S 2 s
—>|
[S] “ s0
ct cs:Cst
c
/* system type diagram */ /* state type diagram */

Fig. 2. System wom in Basic SDL-2010

symbol references the system type Syst . In the system type diagram Syst, the
state symbol represents the state machine based on the (composite) state type
Cst. In Basic SDL-2010 an agent type (system, block or process) never contains
a state graph, but only contains other (typebased) agents and (if the agent type
has a state machine) a typebased state machine. In this case the (composite)
state type of the state machine is referenced locally by the state type symbol
containing Cst. The referenced state type Cst gives the state graph.

In SDL-2000, the transformations (from agent diagrams to agent references
using implicit agent types, and from a state graph at the agent level to refer-
ence an implicit state type for the state machine of the agent containing for
the graph) were hidden within the general description of agents. In SDL-2010
the more concise, usual forms are not defined in Basic SDL-2010. Instead the
transformations are given in Z.103 and result in Basic SDL-2010.

2.4 Comprehensive SDL-2010 - Z.102

Recommendation Z.102 contains a part of the Specification and Description Lan-
guage Recommendations for SDL-2010 that extends the semantics and syntax
of the Basic language in Rec. Z.101 to cover the full abstract grammar and
the corresponding canonical concrete notation. This includes features such as

type inheritance, continuous signals, enabling conditions, and aggregate states.
Other features of Comprehensive SDL-2000 are important to complete the lan-
guage: virtual types, parameterized types with context parameters, remote pro-
cedures/variables, generic systems (select, optional transition), macros and Uni-
code handling. Features without full abstract grammar are:

Inheritance (specialization) which allows one type to be a specialized sub-
type of another type, so that it inherits properties, structure and the way
instances behave from the parent super-type while additional properties,
structure and actions can also be added. There is an optional parent identifier
defined in the abstract syntax to link the specialized type to the parent type.
However, the abstract grammar part given by the Semantics description of
a specialized type definition is still largely in terms of combining the content
of the super-type with the content of the specialized definition described by
reference to concrete syntax items and is mostly unrevised from SDL-2000
(and probably SDIL-92).

Virtuality where a type marked as virtual defined within an enclosing type
is inherited in any sub-type of the enclosing type, and as a virtual type is
allowed to be redefined in the sub-type. The redefined type can be marked
either redefined in which case it is virtual and is allowed to be redefined in
a sub-type of the sub-type, or marked finalized in which case redefinition
is not allowed. Virtuality is currently handled at the concrete syntax level:
there (currently) is no associated abstract syntax.

Context parameters are another feature handled at the concrete syntax level.
In this case a copy is made of the body of the base type with context param-
eters and the actual parameters are substituted for the formal parameters
rather like macro parameter substitution, but with type checking on the ac-
tual parameters. With all the parameters bound, the resulting body is used
to define a type.

Remote procedures/variables are defined in terms of an implicit signal ex-
change between the caller and the owner of the procedure/variable with the
caller waiting in an implicit state for a response. For simplicity, these are de-
scribed in terms of models that use Basic SDL-2010 concrete grammar, but
in principle they could (with some effort) be redefined in terms of abstract
grammar.

Select and optional transition provide concrete syntax for including/exclud-
ing parts of diagrams based on the value of a <simple expression>: Boolean in
the case of select used in agent structure diagrams, and typically Boolean
or Integer for a <transition option area> of a state graph. It is possible
to statically evaluate a <simple expression> during the <sdl specification>
analysis and the resulting SDL-specification is determined from the selected
parts. Consequently there is no abstract grammar for this feature.

Macros and Unicode handling are both carried out on the system model
before the full validity and meaning of the resulting system is considered.
They are therefore not the same as shorthand notations. The handling of
Unicode is a lexical issue resulting in unique tokens for each name. Macros

can be defined anywhere, have global scope and are expanded before other
analysis results: the division of the <sdl specification> into diagrams and
and/or files is (in theory) ignored, so there is no abstract grammar.

2.5 Shorthand notation and annotation in SDL-2010 - Z.103

Recommendation Z.103 contains the part of the Specification and Description
Language Recommendations for SDL-2010 that adds shorthand notations (such
as asterisk state) that make the language easier to use and more concise, and
various annotations that make models easier to understand (such as comments
or create lines), but do not add to the formal semantics of the models. Mod-
els transform shorthand notations from the concrete syntax of Rec. Z.103 into
concrete syntax of Rec. Z.102 or Rec. Z.101. The key additional features are:

Agent diagram (has an implied agent type)

Agent with state graph (has an implied state type)
Asterisk input/save, implicit transition

Signallist, interface as stimulus/on channel
Asterisk state, multiple state appearance

Multiple diagram pages

Various syntax alternatives

Create lines, comment area, text extension

The example given in Fig. 3 is a redefinition of the wom system using the
features of Shorthand SDL-2010. Compared with Fig. 2 only one diagram is now
required, because the types are implied.

SYSTEM wom 1(1)

-
s

/* system diagram */

Fig. 3. System wom in Shorthand SDL-2010

2.6 Data and action language in SDL-2010 - Z.104

Recommendation Z.104 contains the part of the Specification and Description
Language Recommendations for SDL-2010 that adds the data and action lan-
guage used to define data types and expressions. In SDL-2010 it is allowed to use
different concrete data notations, such as the SDL-2000 data notation or C with
bindings to the abstract grammar and the Predefined data package. The under-
lying data model is fundamental to behaviour and provides sorts of data such as
Boolean and Integer that are used in other language features. For that reason
this underlying model and an overview of predefined data sorts and constructs
is given in Z.100 annex D.

The SDL-2000 Z.104 [18], which concerns the encoding of data, was initially
incorporated into Z.104 for SDI.-2010. A key feature is applying encoding rules
for ASN.1 and it has therefore been decided to move this material to Z.105.

2.7 SDL-2010 combined with ASN.1 modules - Z.105

Recommendation Z.105 provides a mapping for ASN.1 modules to features de-
fined in rest of the Specification and Description Language Recommendations for
SDL-2010, so that the ASN.1 modules define data items that can be used with
the rest of SDL-2010. This is unchanged from SDL-2000 except the data type
definitions are moved to Z.104 for SDL-2010. However, since the publication
of Z.104 [18] in 2004, there has been a standardized why of invoking encod-
ing/decoding rules, which is described in paper [24]. An ASN.1 CHOICE in an
ASN.1 module can be imported as an interface. For example, if an ASN.1 module
named MyASN1 contains a CHOICE named MyMessages, this can be imported
using the package use area:

USE MyASNI1/INTERFACE MyMessages;

attached to the system diagram. If MyMessages is defined in MyASN1 as:

MyASN1
DEFINITIONS AUTOMATIC TAGS ::=
BEGIN
-- definitions including
MyMessages ::= CHOICE {
connect Destination,
sendInfo Information,
disconnect ConnectionRef}
-- the data types mentioned above such as Destination
-- and Information visible here.
END
this implies the SDL-2010 interface:
interface MyMessages {
signal connect (Destination) ,
sendInfo (Information)
disconnect (ConnectionRef); }

The user therefore has a simple and direct way of defining in ASN.1 the
signals to be used in the SDL-2010 model. The channel that carries the signals
of the interface can be defined with interface MyMessages as a <signal list>
associated with the channel. The set of encoding rules used on the channel are
specified after the channel name with (for example, for Packed Encoding Rules)
encoding PER.

2.8 Common Interchange Format for SDL-2010 - Z.106

Recommendation Z.106 provides alternative textual syntax for the graphical syn-
tax items defined in Z.101 to Z.105 that can be used as a Common Interchange
Format (CIF) between SDL-2010 tools. The basic level of CIF provides only
a textual equivalent of graphical items. The full CIF is intended for the inter-
change of graphical SDL-2010 specifications (SDL/GR) so that the drawings are
recognizably the same.

2.9 Formal definition (Annex F to Z.100)

The initial plan is that no formal definition be provided for SDL-2010, due to a
lack of resources to modify the existing model or generate a new one. Instead the
published Z.100 Annex F for SDL-2000 is referenced. It is therefore noted that
this is out of date, but in combination with the obsolete 2007 version of Z.100 (for
SDL-2000) [17] it provides a more formal definition for SDL-2000 than currently
available for SDL-2010. Most of SDL-2010 is intended to be unchanged from
SDL-2000, therefore Annex F to Z.100 with [17] provides more detail than Z.100
to Z.106 for most SDL-2010 features. If there is an inconsistency between Annex
F to Z.100 for SDL-2000 and other parts of Z.100 to Z.106 for SDL-2010, it is
either because there is an error in Z.100 to Z.106 or because there is a specific
change to SDL-2010 compared with SDL-2000. If a change from SDL-2000 is
not documented in Z.100 to Z.106, further study is needed to determine if the
inconsistency is an error or intended.

If work is done to replace the formal definition, alternatives are to update the
existing model or completely replace it with a new one, in which case a different
approach (such as metamodelling) might be considered.

3 Changed, new and deleted features

A number of changes in SDL-2010 compared to SDL-2000 are the result of
reviewing and rewriting to divide the text into several Recommendations. Some
changes, such as removing nested diagrams, resulted in both deletion and a
rewrite of retained text. Changes, such as making pages part of the diagram
syntax, required additional syntax rules as well as modifying existing rules. The
items described here only cover changes that are significant new or deleted items.
For example, although the text on statement lists has had a major revision, there
was no intention to change the language — only to improve Recommendation text,
therefore this change is not described here.

3.1 Synonym as a “read only variable”

A <synonym definition> represents a Variable-definition in the context in which
the synonym definition appears with special property that the variable is read-
only. The <synonym name> represents the Variable-name. Writing to the vari-
able is not possible, because <synonym> is not allowed where assignments could
take place. The concrete syntax is not changed and synonyms can be used as in
SDL-2000. The revised semantics better matches implementation by means of a
variable containing the synonym value, which can easily be changed if the value
is changed.

3.2 Lower bound of agent instance sets

It is allowed to specify a Lower-bound on agent instance sets as in Fig. 4, which

by default is zero matching SDL-2000. If the same Natural is used for the initial,

maximum and lower bound, the set is fixed, which was not possible to specify

in SDL-2000. A Stop-node in an instance set that is already at the Lower-bound
causes the exception Out0fRange to be raised, but the number of active instances

can be found from the integer built-in expression active(this) or active(ais)

where ais is an agent instance set. The new syntax is:

<number of instances>::=([<initial number>][,[<maximum number>][,<lower bound>]])

block b — 1(1)
2 initial
=73 maximum
! 1 lower bound
cin [s] p(2,3,1) Tou [:] couf

Fig. 4. Process instance set with a lower bound

3.3 Input and Save via gate

In SDL-2010 when a signal is placed in an input port, it is stored with the
identity of the gate on which it arrived at the destination agent. This allows the
transition taken to be determined by the gate as well as the signal identity. The
example in Fig. 5 is used to illustrate the feature. Assume an instance of signal
s is the next signal in the input queue.

In state s0, if s arrived via g1 the next state is s1. If s did not arrive via g1
the next state is s2. Only one input or save can contain s via gl for the
same state. Only one input or save can contain s (without a gate).

PROCESS TYPE Viaduct 2(7)

Fig. 5. PROCESS TYPE Viaduct using the input via gate feature

In state s1, if s arrived via g2 the next state is s2. If s did not arrive via g2,
the signal remains in the input queue (if these are the only transitions from
s1, until a signal s arrives via g2).

In state s2, if s arrived via g3 the signal remains in the input queue. If s did
not arrive via g3, the next state is s3.

If there is no explicit input or save for s without a gate, there is still an
implicit input for s without a gate back to the same state. In a process (rather
than a process type) diagram, the name of a channel to the process is used for
the via. In the implicit process type for the process, this is transformed to the
implicit gate connected to the channel.

3.4 Multiple priority levels of input

In SDL-2000 inputs can be with or without priority, but there are no levels of
input priority. Priority inputs of a state are considered for enabling signals in the
input port for consumption before other inputs without priority. In SDL-2010
there are multiple levels of priority and inputs with highest priority are con-
sidered first. If there are no signals for a priority level, inputs with the next

priority are considered until either a signal is enabled or all priority inputs have
been considered, after which inputs without priority are considered. Priority is
specified by a Priority-name given as a Natural value, but note that zero is the
highest priority, one is lower and the highest number given has the lowest pri-
ority. The reason is to be consistent with the existing SDL-2000 Priority-name
for Continuous-signal where zero is taken first. However, if the <priority name>
is omitted this implies a number one greater than the highest number explicitly
given: that is, the lowest priority. A priority input without a gate, takes prece-
dence over a lower priority input with a gate or an input with a gate without
priority. The new syntax is:

<priority input list>::=<priority stimulus>{,<priority stimulus>}*

<priority stimulus>::=<stimulus>[<priority clause>]

<priority clause>::= priority [<priority name>]

st

X Y
pr(i)c(a)rity 2 < pr(i‘{))rity1 < 2(z

K<
H OO O

Fig. 6. Multiple levels of input priority

For the example in Fig. 6 assume the signals X, Y, Z and N each with one
parameter saved in x, y, z and n respectively. Assume state st1 is reached with
the input port containing in order of arrival signals N, Y, Z and X. Assume the
connectors Tx, Ty, Tz and Tn connect to transitions that terminate in state st1.
The input for Z has an implied Priority-name of 3. The signal Y is enabled and
consumed because this input has the highest priority and Ty is taken. When st1
is reached again signal X is enabled if no Y signals have arrived in the meantime,
and on next occasion signal Z (assuming no X or Y signals have arrived). Signal
N is only enabled if there are no signals X, Y or Z in the input port when in state
st1. If the inputs for two or more signals have the same input priority, the signal
that arrived first is consumed.

3.5 Timer supervised states

SDL-2010 is extended to cover timer supervised states. If state has a <state
timer area> (see syntax below), the State-node has a State-timer. The timer
is set entering the state and reset entering a Transition, except for an empty

Transition to the state (for example from an implicit transition). If the timer
expires while in the state, the timer signal is immediately consumed: it is a higher
priority input than any other input. The Transition for the <transition area> of
the <state timer area> is taken. The syntax is:
<state timer area>::=<plain input symbol> contains <state timer>
is followed by <transition area>

<state timer> ::= state timer <time expression> | set <set clause>

A <state timer> with state timer <time expression> as in Fig. 7 uses an
implicit timer for the state, whereas set <set clause> uses a defined timer which
can have a default duration. If the state is a composite state, the timer expiration
is treated in the same way as a signal causing an exit from the composite state.

>i >S:::,zivt':f;er
© ©

Fig. 7. Timer supervised state with an implicit timer

3.6 Deleted features

As mentioned above, nested diagrams are no longer part of the standardized
concrete syntax. Instead each diagram is referenced from the parent. Associated
with this change, <specification area> that was an optional graphical depiction
of the relationships between <system specification> and <package>s is deleted.
These features were not supported by tools in a consistent way, or as defined in
the Recommendations.

SDL-2000 included UML-like concrete syntax for type references and also
UML-like associations. These were not well supported and added nothing to the
semantics of the language: they just made the language Recommendation more
complex and difficult to understand.

Since SDL-92 there has been a mechanism called nameclass for defining a
generator for a set of names of literals or operators of a data type. This is used to
define the literals for the Integer data type, character strings for the Charstring
data type, and similarly for the literals of Bitstring, Real, Duration and Time.
The nameclass feature is used with spelling, which provides the character string
that corresponds to the spelling of the nameclass literal. While these are essential

for the Predefined data types, there is no need to provide them as a feature
of the user language. These have therefore been moved to Annex A of Z.104 to
be used only (like axioms) for the definition of the Predefined data types. It is
therefore no longer expected that tools support these features.

For the time being object data types are no longer part of the language.
However, similar data types are widely used in other languages and the purpose
of including them in SDL-2000 was to provide the advantages of reference com-
puting. The further study plan for SDL-2010 is to reconsider how object data
types are incorporated into the language, leading to a revision of Z.104 and/or
the drafting of an additional Recommendation. One key issue is to minimize
(preferably eliminate) dynamic binding of data types.

4 Conclusion

The status of SDL-2010 as this paper was initially being written in April 2011 was
that a reasonable draft existed for Z.100 to Z.105, so that it was not unrealistic to
expect a final draft to be consented for initiation of the ITU-T approval process
at the start of September 2011. By the time this paper was presented in July
2011, improved drafts were available, to be circulated for review and comment
up to and including the ITU-T meeting starting in the last week of August 2011.

On the other hand, as this paper was being revised for publication there
were still issues in the existing drafts to be corrected and further discussed. The
concept of support for specifying channel delay values was accepted, but the
text needed to be finalized. Work has started on a further Recommendation,
probably to be approved in 2012, to include in SDL-2010 ref and own variables
and parameters that are associated with a reference to a value. Also, work has
not really started on revising Z.106. So there was still work to do, and the reader
is advised to check if the September 2011 date was met, or whether there is a
further delay until 2012.

Another concern is tool support. There has been little innovation in tools for
the language in the last few years. This is probably because the major source of
income for tool providers has been the telecommunications industry, and despite
the rapid growth of the Internet, companies such a Nortel, Nokia, Sony Ericsson
and Motorola have had trading difficulties. No matter how good SDL-2010 is,
if there is a lack of funds for tool development SDL-2010 is likely to remain
theoretically interesting, but only implemented to the same subset as SDL-2000.
The good news is that this subset is probably a bigger percentage of SDL-2010
than it was of SDL-2000, as I estimate more has been deleted than added in the
revision.

Finally, if you read this paper, and would like to participate in the language
review process, contact the author. This applies even if September 2012 has
already passed, because there is a review period during the ITU-T approval
process, and there is a defined maintenance procedure subsequent to publication
by ITU-T. It is expected that the language will evolve further to meet user needs.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

CCITT Orange Book, Volume VI.4, Programming Languages for Stored-
Programme Control Exchanges, ISBN 92-61-00421-0, pp. 3-23, ITU, Geneva, 1977.
ITU-T — International Telecommunication Union: Recommendation Z.100 (08/02):
Specification and Description Language (SDL) , Geneva, Switzerland (August
2002); http://www.itu.int/rec/T-REC-Z.100-200208-S /en

ITU-T - International Telecommunication Union: Recommendation Z.100 (11/99):
Specification and Description Language (SDL) , Geneva, Switzerland (November
1999); http://www.itu.int /rec/ T-REC-Z.100-199911-S /en

CCITT Yellow Book, Volume VI Fascicle VI.7, Functional Specification and De-
scription Language (SDL). Man Machine Language (MML), Recommendations
7.101 — Z.104 and Z.311 — Z.341, ITU, Geneva, 1981. I don’t have a copy of this —
a more accurate reference is needed

CCITT Red Book, Recommendations Z. 100 to Z. 104: Specification and Descrip-
tion Language, ITU, Geneva, 1985. I don’t have a copy of this — a more accurate
reference is needed

ITU-T - International Telecommunication Union: Recommendation Z.100 (11/88):
Specification and Description Language (SDL) , Geneva, Switzerland (November
1999); http://www.itu.int/rec/T-REC-Z.100-198811-S /en

ITU-T — International Telecommunication Union: Recommendation Z.100 (03/93):
CCITT Specification and Description Language (SDL), Geneva, Switzerland
(March 1993); http://www.itu.int /rec/T-REC-Z.100-199303-S/en

ITU-T — International Telecommunication Union: Recommendation Z.100 Ad-
dendum 1 (10/96): Corrections to Recommendation Z.100, CCITT Specifica-
tion and Description Language (SDL) , Geneva, Switzerland (March 1993);
http://www.itu.int /rec/ T-REC-Z.100-199610-S!Add1/en

ITU-T — International Telecommunication Union: Recommendation Z.105 (11/99):
SDL combined with ASN.1 modules (SDL/ASN.1), Geneva, Switzerland (Novem-
ber 1999); http://www.itu.int/rec/T-REC-Z.105-199911-S /en

ITU-T - International Telecommunication Union: Recommendation Z.107
(11/99): SDL with embedded ASN.1, Geneva, Switzerland (November 1999);
http://www.itu.int/rec/T-REC-Z.107-199911-W /en

ITU-T - International Telecommunication Union: Recommendation X.680-
X.695 (11/08): Information Technology - Abstract Syntax Notation One
(ASN.1) & ASN.1 encoding rules, Geneva, Switzerland (November 1999);
http://www.itu.int /rec/T-REC-X.680-X.693-200811-P /en

ITU-T - International Telecommunication Union: Recommendation Z.109
(11/99): SDL combined with UML, Geneva, Switzerland (November 1999);
http://www.itu.int/rec/T-REC-Z.107-199911-S /en

Object Management Group: Unified Modeling Language,
http://www.omg.org/spec/UML/ and http://www.omg.org/spec/UML/2.1.2
ITU-T - International Telecommunication Union: Recommendation Z.106 (11/00):
Common interchange format for SDL, Geneva, Switzerland (November 2000);
http://www.itu.int /rec/ T-REC-Z.106-200011-S /en

ITU-T — International Telecommunication Union: Recommendation Z.106 (08/02):
Common interchange format for SDL, Geneva, Switzerland (August 2002);
http://www.itu.int /rec/T-REC-Z.106-200208-1/en

ITU-T - International Telecommunication Union: Z.100 (2002) Amendment 1
(10/03): Backwards compatibility and compliance, Geneva, Switzerland (Octo-
ber 2003); http://www.itu.int /rec/T-REC-Z.100-200310-S!Amd1/en

17.

18.

19.

20.

21.

22.

23.

24.

ITU-T — International Telecommunication Union: Recommendation Z.100 (11/07):
Specification and Description Language (SDL) , Geneva, Switzerland (November
2007); http://www.itu.int /rec/ T-REC-Z.100-200711-I/en

ITU-T - International Telecommunication Union: Recommendation Z.104
(10/04): Encoding of SDL data, Geneva, Switzerland (October 2004);
http://www.itu.int /rec/T-REC-Z.104-200410-1/en

ITU-T — International Telecommunication Union: Recommendation Z.105 (07/03):
SDL combined with ASN.1 modules (SDL/ASN.1), Geneva, Switzerland (July
2003); http://www.itu.int/rec/ T-REC-Z.105-200307-1/en

ITU-T - International Telecommunication Union: Recommendation Z.109
(06/07): SDL-2000 combined with UML, Geneva, Switzerland (June 2007);
http://www.itu.int /rec/T-REC-Z.107-200706-1/en

ITU-T - International Telecommunication Union: Recommendation Z.151 (11/08),
User Requirements Notation (URN) — Language definition, Geneva, Switzerland
(November 2008); http://www.itu.int/rec/T-REC-Z.151/en

ITU-T - International Telecommunication Union: Recommendation Z.120
(02/11), Message Sequence Chart (MSC), Geneva, Switzerland (February 2011);
http://www.itu.int /rec/T-REC-Z.120/en

ITU-T - International Telecommunication Union: Recommendation Z.121 (02/03),
Specification and Description Language (SDL) data binding to Message Sequence
Charts (MSC), Geneva, Switzerland (February 2011); http://www.itu.int/rec/T-
REC-Z.121/en

Reed, R.: Data encoding for SDL in ITU-T Rec. Z.104, In Systems Analysis and
Modeling - SAM2004, pp.80-95, LNCS 3319, Springer

