
TIMe TIMe Electronic Textbook
5 Foundation of TIMe
Introduction .2
Overview .2

Areas of concern. .3
Descriptions .6
Abstractions in models .9
Model organisation .10

System reference models .13
Objects and properties. .16
Activity categories .18

Languages and notations. .21
Development steps and activities .23
Links and relationships .27
Descriptions and documents .29
Object models .32
The characteristics of objects .32
Active and passive objects .32
Anatomy of object models. .33

Property models .36
Functional properties and roles. .36
About roles .38
Describing functional properties .42

The relationship between objects and properties .44
The role-play principle. .44
Synthesizing a consistent object behaviour .44
Using environment roles .44
Synthesising design .45

List of figures .51
List of definitions .52

Foundation of TIMe
Foundation of TIMe 5 - 1 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Introduction
Overview

TIMe5
Introduction

This theme is about the basic concepts, principles and ideas on which TIMe is founded.
They are presented here to give an overview, and also an introduction to other themes;
in particular you should read parts of this theme before using Activities and Descriptions
actively. Here we present the foundation for the “I” in TIMe (The Integrated Method).

The idea is that this theme will present the key features underpinning the methodology.
It will start in textbook style, but will contain parts that are more of a reference nature.
It will serve as the domain description for TIMe.

The criteria for being included here is that the topic is central to TIMe and to integration,
and that it is used pervasively in the methodology.

Overview

The basic concepts and ideas are organised along the following dimensions:

• Areas of concern (p.5-3): how we organize descriptions in different areas of concern.

• Descriptions (p.5-6): how the descriptions in each area of concern are organised in
formal models and other descriptions.

• Abstractions in models (p.5-9): the main abstractions we use in models to understand
and describe systems for different purposes.

• System reference models (p.5-13): coarse architectures for each system abstraction
(introduced to give methodological advice).

• Objects and properties (p.5-16): how models are organised into object models and
property models and into specification and design. Also about how specifications are
used before, during and after design synthesis.

• Activity categories (p.5-18) the various categories of activities that operate on
descriptions.

• Development steps and activities (p.5-23): the dynamic aspect of how the models and
documents are developed and maintained. Flexible service evolution.

• Property models (p.5-36): how descriptions are related and relationships traced. For-
mal relationships, transformation and analysis, V&V.

• Descriptions and documents (p.5-29): how descriptions are put together and used in
documents.

• Object models (p.5-32): how object models are composed/decomposed and related
to each other by means of inheritance, instance-of, and other relationships. How
properties relate to the object models.

• Requirements (p.5-38): how we make projections and describe properties on the var-
ious abstraction levels, and how we use properties to construct and analyse object
models.

They will be described in the following chapters.
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 2

Areas of concern
Overview 5TIMe
Areas of concern

Rationale A major concern of most companies is to sell and deliver as many systems as possible.
However, if their focus is entirely on the short term profits of each particular system
delivery, they risk:

• that the overall quality is limited and gradually deteriorates;

• that the maintenance cost increases and eats up resources that could better be used
elsewhere;

• that high cost of adaptation and production of each individual system severely
reduces the profits.

To alleviate these problems it is necessary to have a longer planning horizon and to shift
focus from individual users and systems towards the more generic aspects of market
segments and system families. For this purpose we distinguish between three areas of
concern:

Figure 5-1: Areas of concern

Open figure

• Domains, which are the phenomena, concepts and processes that need to be sup-
ported (the problem) in a market segment irrespective of particular system solutions.
By gaining better understanding of the needs existing in a problem domain we are in
a better position to specify and design solutions that will provide real user value. We
are also in a better position to identify general concepts that will be reusable across
many systems.

• System families, which are generalised system or component types that can be
adapted (configured) and instantiated to fit into a suitable range of user environments.
They represent the product base from which a company can make a business out of

Domain

concrete
system

1

*

domain
descriptions

family
descriptions

instance
descriptions

System family

System instance

Marketing and
product planning

Development and
maintenance

Sales, engineer-
ing, production

DepartmentsDescriptionsAreas of concern

1

1

*

1

Foundation of TIMe 5 - 3 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Areas of concern
Overview

TIMe5

producing and selling instances. The idea is to focus development and maintenance
effort mainly on the families in order to: 1. reduce the cost and time needed to pro-
duce each particular instance; 2. reduce the cost and time needed to maintain and
evolve the product base.

• System instances, which are particular systems satisfying particular user environ-
ments. When a system family is defined, a system instance can be defined by
reference to a system family using relatively simple configuration statements to binds
the variability in the family. If there is no family however, it is necessary to define
each system instance completely in self a contained instance description.This can
only be recommended for one-of-a-kind developments.

In each area of concern the method recommends to make the descriptions indicated in
Figure 5-1 (p.5-3), which will be elaborated in the next chapter.

Responsi-
bilities

Responsibility for the different areas of concern will often rests with different depart-
ments within a company. Problem domain knowledge is essential for marketing and
high level product planning. System families are the main products of the system- and
development departments, while system instances are the main concern of the sales,
engineering and production departments. In many companies these departments have
difficulties communicating effectively with each other and this may lead to misunder-
standings that are very expensive. They often have problems introducing new staff too
because they lack a high level description of the problem domain and the systems they
make. TIMe seeks to overcome these problems by providing high level domain and sys-
tem models that can be shared across departments and thus provide a common ground
of communication.

Advantages TIMe offers the following advantages to the different departments:

• Market and product planning:

- A clear picture of the needs and a sound foundation for product planning achieved
through the domain descriptions.

- Precise communication with the development department (and the market) using
common domain descriptions and family descriptions that make sense for both
departments.

• Development and maintenance:

- Better understanding of the user needs achieved through domain models.

- Support to all development steps.

- A constructive approach to family designs where reuse and validation is an inte-
gral part.

- Automatic generation of implementations.

- Service flexibility and architectural modularity.

- Reduced maintenance cost and improved control through maintenance at the fam-
ily level.

• Sales, engineering and production:

- Ease of instance configuration using system families with well defined variability.
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 4

Areas of concern
Overview 5TIMe
- Clear feedback to development through precise specification of new features, and
the possibility for development to assess the impact of new features on the design.

More The various descriptions and the activities that produce them are elaborated in the Activ-
ities and descriptions theme.
Foundation of TIMe 5 - 5 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Descriptions
Overview

TIMe5
Descriptions

Rationale The essence of systems engineering is to understand needs and to design systems having
properties that satisfy the needs in a cost effective way. Without descriptions this is
impossible. Descriptions are indispensable in systems engineering and all other engi-
neering disciplines.

To a very large extent systems engineering is a matter of creating, understanding, ana-
lysing and transforming descriptions. Consequently, the selection of descriptions, their
organisation and languages, are central to any systems engineering methodology.

Which
descrip-
tions?

Within each area of concern the methodology recommends to make the models and
descriptions indicated in Figure 5-2 (p.5-6).

Figure 5-2: The main descriptions used in TIMe

Open figure

Domain Descriptions

System Family descriptions

Instance descriptions

State-
ment

Dictio-
nary

Auxiliary

Statement

Dictio-
nary

Auxiliary

Architecture
models

Framework
models

Concrete
system

Application
models

Implemen-
tation

Instance
models

System Family models

Domain
models

Implemen-
tations
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 6

Descriptions
Overview 5TIMe
These descriptions are necessary and sufficient to achieve central goals of TIMe:

The descriptions have been carefully selected. They are neither too few, nor too many.
There is little redundancy, as they describe different aspects and complement each other
in a complete, concise and readable documentation. TIMe keeps the amount of tempo-
rary (throw away) descriptions to a minimum, and emphasizes descriptions that end up
as final documentation. This does not prevent us from identifying partial descriptions
that are useful in their own right, such as requirements specifications, and to issue them
in separate documents when needed.

We distinguish between formal models, implementations and other descriptions. The
formal core of the methodology is the models which are expressed using the well
defined languages UML, MSC and SDL.

Domain Domain descriptions are organised in:

• Domain models which are collections of classes with attributes, relations and associ-
ated properties. They may be organised in several abstractions. Since the domain is
about general concepts and processes that are common to many systems, it is likely
that some parts of the domain models will be used within the family models. These
parts will often be quite stable, reusable and resilient to change.

• Domain statements which are concise statements about the domain, and is normally
expressed in prose.

• Domain dictionaries over common domain terminology. It is important that the ter-
minology used in other domain descriptions are harmonized with and defined in the
dictionary.

• Domain auxiliary descriptions, which are any other description used. Will often be
informal text and illustrations used to help reading the models.

Family Family descriptions are organised in:

• Family models which are object models and property models describing the family
on several levels of abstraction:

- Applications that describe what the user environment want the system to do (user
services).

- Frameworks that describe how applications are distributed and supported by an
infrastructure. Frameworks and applications together define the complete system
behaviour.

- Architectures that describe how frameworks and applications are realised in terms
of hardware and software nodes.

1. to improve common understanding and communication among the
people involved in all areas of concerns;

2. to achieve a controlled process towards quality results;.

3. to achieve flexibility in services and system designs;

4. to minimise cost and lead times and to increase reuse.
Foundation of TIMe 5 - 7 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Descriptions
Overview

TIMe5

• Family implementations which are implementations of family concepts. Here we

find the general parts of implementations that are stable over all instances.

• Family statements which are concise statements about the family: its main purposes,
its market and qualities.

• Family dictionaries which define the family specific terminology.

• Auxiliary descriptions which are any other description used, for instance test plans.

Instance Instance Descriptions are organised in:

• Instance models which define the particular system instance on all abstraction levels.
These may be self contained system models, but it is recommended to define
instances as configurations of families.

• Implementations which are the instance specific implementations, such as configura-
tion files.

• Auxiliary descriptions which are any other description of the instance, for instance a
test suite.

Textual
explana-
tions

Textual explanations may be attached to models as well as to other descriptions.
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 8

Abstractions in models
Overview 5TIMe
Abstractions in models

Rationale The concrete system that actually exists in the real world is composed from physical
parts and software that executes to provide services to its users. In order to implement
such systems we need detailed descriptions of their physical composition and their soft-
ware. This is what we consider implementations.

However, in order to understand how the system is constructed, and in particular to
understand what it does for the users, implementations are not adequate. They are far too
technical and detailed. Thus there is a conflict between the needs of the machine and the
needs of the human. To satisfy the human, we need abstractions that remove the techni-
cal detail of implementations and allow us to concentrate fully on the aspects that are
important for the human designer and user.

In order to bridge the conflicting needs of human interpretation on one hand and physi-
cal construction on the other, TIMe models the world using two main abstractions as
illustrated in Figure 5-3 (p.5-9):

Figure 5-3: The main model abstractions

Open figure

Abstract world models which emphasizes concepts and behaviour related to the user
needs. They serve to define the behaviour in an abstract form that can be understood,
communicated and analysed as much as possible without binding the implementation.
They will often be organised in a Framework with two main parts:

- an application that describe what the user environment want the system to do (user
services);

- an infrastructure that describe additional behaviour and supporting functionality
that needs consideration, e.g. in order to fully simulate its behaviour.

• Concrete world models describe the implementation architecture. This is a high level
description of the physical implementation expressed in a unified notation. The pur-
pose is to give a unified overview over the implementation and to document the
major implementation design decisions.

The implementations are composed from a variety of notations and languages for hard-
ware design and programming.

Application

Infrastructure

Architecture

Abstract world

Concrete world

WHAT

HOW

Framework
Foundation of TIMe 5 - 9 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Abstractions in models
Model organisation

TIMe5

In principle all model abstractions may be used in all areas of concern. The focus in the
domain is, however, mainly on the abstract world with emphasis on applications. This
does not rule out the possibility of including infrastructures and even concrete world
models in the domain where this is relevant.

Note that the main model abstractions is a rather coarse classification. There may more
abstractions in a practical project.

Language
dependency

To some extent the abstraction depends on the language used in descriptions too. But we
have tried to follow some general underlying principles in TIMe that make the method-
ology less dependent on particular language than one could expect. To some extent it is
possible to change language and still be able to use the principles of TIMe. For instance,
it has been possible to move from the SOON notation, through OMT to the forthcoming
UML notation.

Two
purposes

All this is detail however. The main point is that we use abstractions primarily to
improve human understanding and communication, and concrete systems to build the
physical systems.

Model organisation

As explained in Objects and properties, models have the facets illustrated in Figure 5-8
(p.5-17). In general there are object models and property models. Seen together they
define a context and a content. The context represents the entity being defined (e.g. a
system type) as a “black” box and details its environment, while the content details its
internal composition in terms of object structures and behaviour.

Figure 5-4: The facets of a type model

Open figure

A specification covers those aspects of a model that are relevant for its external repre-
sentation and use, while the design covers the internal composition and the internal
properties.

The distinction between specifications and designs is not so important in domain mod-
els, while in system family models it is important. This has been illustrated for
application, framework and architecture models in Figure 5-2 (p.5-6).

objects properties

context

content

specification

design
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 10

Abstractions in models
Model organisation 5TIMe
Specifications

A specification covers those aspects of a model that are relevant for its external repre-
sentation and use. The context part is often sufficient as a specification, but if parts of
the content are important it may be included in the specification. Specifications are asso-
ciated with the abstractions they belong to.

Specifica-
tions are
partial
models

TIMe emphasises that specifications are not special models, but integral parts of type
models. The reason is that we want to minimise the amount of descriptions that are
thrown away. In stead we want to make use of specifications throughout the lifetime of
a model:

1. first to express the required properties so they can be verified and validated;

2. then to synthesise the design in a way that satisfies the specification;

3. finally to describe its provided properties for later assessment, (re)use, validation and
evolution purposes.

Specifica-
tions vs.
design

System Family specifications contain the specification parts of application, framework
and Architecture models. These are related to the design parts, as indicated below.

Figure 5-5: Specification and design related

Open figure

Application
specification

Framework
specification

Specification part of models

Architecture
spec

Application
design

Framework
design

Design part of models

Architecture
design

Application
models

Framework
models

Architecture
models
Foundation of TIMe 5 - 11 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Abstractions in models
Model organisation

TIMe5

Specifications and designs are often developed in different phases. Specifications are
produced early and play a central role in quality and process control. Designs are pro-
duced later. Therefore, in a development project they are developed by separate steps as
illustrated in Figure 5-10 (p.5-24).

Require-
ments
specifica-
tion

In TIMe we consider a requirements specification as a document. It is normally pro-
duced early in a development project and used as a contract for the design work. It will
contain specifications and other items of relevance at that stage.

Specifications should be kept consistent with the properties provided by a design. We
foresee that specification are used:

• for marketing;

• for retrieval;

• for validation of applications;

• for evolution.

Qualities of
specifica-
tions

Important qualities of specifications are:

• precision and detail;

• unambiguity;

• traceability and verifiability;

• modularity that will support evolution and change.
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 12

System reference models
Model organisation 5TIMe
System reference models

Rationale Most people find that the most difficult part of systems engineering is to decide on archi-
tectural solutions for the systems. A well engineered architecture is clearly instrumental
to the profitability of a product. Therefore it is essential that a methodology provides
guidance and support to architectural solutions. Central competitive issues today are
flexibility, time to market and cost. We seek modular designs:

• where changes can be confined in modules with standard interfaces;

• new services can be introduced quickly and safely;

• parts may be reused in many places.

To achieve this the methodology provide system reference models at the abstract and the
concrete level. Another rationale is to identify parts that may have different require-
ments on development methods and often are developed by different teams.

Abstract
system

In the abstract system we make a distinction between application and infrastructure, see
Figure 5-6 (p.5-14).

The application part provides the user services and is the most interesting part from a
user point of view. Changing or adding services to the system means to modify the appli-
cation part. It consists of the following main sub-parts:

- Interface given objects that encapsulate the interface specific behaviour, e.g. the
behaviour of graphic user interfaces and protocol stacks. By isolating this part
from the rest it is possible to change the interfaces without affecting the other
parts.

- System given objects that encapsulate the system specific services and informa-
tion. These are particular for this system family and not common to all systems in
a problem domain.

- Domain given objects that encapsulate services and information that are common
to the entire problem domain. These objects are reused across system families.

The infrastructure part contains additional behaviour needed to fully understand and
analyse what the system does (the complete system behaviour). Here we find objects
that support distribution, system administration and other facilities not directly related
to user services.
Foundation of TIMe 5 - 13 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

System reference models
Model organisation

TIMe5

Figure 5-6: Reference models for abstract and concrete system

Open figure

Whenever practical the application and the infrastructure will be put together in an
application framework that serves to simplify the definition of new abstract systems.

Concrete
system

A Concrete system consists of:

• The implementation of the abstract system in software and hardware. Parts of this
software may be automatically derived using state-of-the-art tools. Software plays a
dual role. Firstly, as a description to be read and understood outside the system, and
secondly as an exact prescription of behaviour to be interpreted inside the system.

• The support software which normally is a layered structure containing operating sys-
tems, middelware for distribution support, SDL runtime systems, DBMS and
interface support.

• The hardware.

The role of the implementation architecture model is to define the overall architecture
of the concrete system and define how the abstract systems are mapped to (abstract sys-
tem) implementations.

Indepen-
dent parts

Note that the various parts of the system models are quite independent and may be mod-
ified with little impact on each other. It is, for instance, possible to change the
implementation platform without needing to modify the application. Thus an application

Domain
given

System
given

Interface
given

Infrastructure

Support software

Hardware

Platform

Domain
given

System
given

Interface
given

Infrastructure implementation

Application-implementation

Framework-implementation

concrete system

abstract system

Application

Framework
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 14

System reference models
Model organisation 5TIMe
may survive several platform generations and thereby provide better return of invest-
ment. Similarly a platform may support several applications. Adding or changing
services is mainly performed in the application, leaving other parts unchanged.

We will distinguish between a system and its descriptions. A system is part of the real
world and is able to perform behaviour, thus serving its users. Descriptions, on the other
hand, represent the system and enable us to understand, analyse and communicate about
it. Descriptions are also part of the real world, but they are distinct from the system and
cannot perform behaviour and serve users like the system does. What they can do is to
define the rules of behaviour.

Designers tend not to distinguish clearly between descriptions and systems. For them the
word “system” often means “system description”. For the users, however, the difference
is profound. From the designers point of view, evolution is mainly a matter of change
and adaptation of descriptions. From the market, or user, point of view, it is a matter of
change and adaptation of systems. Maintaining the relationship between systems and
descriptions is therefore essential for successful evolution.

It should be noted that any particular concrete system may be composed from more than
one application. TIMe supports the development of heterogeneous distributed systems
using a mixture of languages and methods.

Descriptions may be structured in many ways. Some will be easy to comprehend and
relate to the real system, while others may be hard. A compact description is no better
than a larger one, if it is harder to relate to reality.

Readability
through
structural
similarity

• In order to maximize our ability to understand and predict what will happen in real-
ity, we will emphasize that design descriptions are structured in a way that closely
reflects the system. This is particularly important for the behaviour part. We will seek
to achieve behaviour descriptions that are structurally similar to actual behaviour
(i.e. state oriented behaviour descriptions).

Our quest for structural similarity have caused us to adopt object orientation and state
orientation as the primary perspectives for system description.
Foundation of TIMe 5 - 15 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Objects and properties
Model organisation

TIMe5
Objects and properties

Object and
property
models

As can be seen from Figure 5-7 (p.5-16), we use two related model types:

Figure 5-7: Object and property models

Open figure

• Object models. These are models that describe how a system or component is com-
posed from objects, connections and relationships. They are constructive in the sense
that they describe how an entity is composed from parts, be it abstract or concrete.
This is the perspective of designers.

• Property models. These are models that state properties of a system or component
without prescribing a particular construction. They are not constructive, but used to
characterise an entity from the outside. There are many kinds of properties: behaviour
properties, performance properties, maintenance properties, etc. This is the perspec-
tive preferred by users and sales persons. It is also the main perspective in
specifications.

A central idea in TIMe is that every object (and system) is characterised by properties
that can be used:

1. to understand what the object does;

2. to check that it is suitable for the environment where it is used;

3. to synthesize the content design;

4. to verify that the content design satisfy the properties;

5. to retrieve the object from a library (given some required properties).

Application models

Infrastructure

Architecture models

object

prop-
erty

object

object

prop-
erty

prop-
erty

Framework models

Domain models

object prop-
erty
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 16

Objects and properties
Model organisation 5TIMe
Property models are not necessarily bound to object models, but object models shall nor-
mally be bound to property models.This holds for all object models: domain models,
application models, architecture models.

Purposes The purposes of separating property models from object models are:

• to facilitate reuse of property descriptions;

• to ensure consistency by describing properties shared among objects in one place;

• to support reuse of objects by using required properties to search for objects that pro-
vide the same (or equivalent) properties;

• to support V&V by matching provided and required properties;

• to facilitate property oriented product planning, marketing and system configuration.

There are many kinds of properties: behaviour properties, performance properties,
maintenance properties, etc. In TIMe, the property models will contain properties that
are relevant for the corresponding object models:

• Abstract properties are associated with the abstract object models. Since abstract
models focus on functionality (behaviour) these properties are often termed Func-
tional properties. They characterise the behaviour of objects, and the collaboration
between objects. They are mostly expressed in the style of Use Cases using the MSC
notation.

• Concrete world properties are associated with the concrete models and state proper-
ties relevant for the implementation. They are often termed Non-functional
properties and characterizes the implementation.

Context and
content

Object models consists of two main parts, illustrated in Figure 5-8 (p.5-17):

Figure 5-8: The facets of a type model

Open figure

• The context, where the object being defined is considered as a black box and the envi-
ronment is detailed. This serve to describe the environment and the interfaces as well
as other external relationships. By associating property models with the context it is
possible to specify the external properties the object provides as well as the properties
it require from its environment.

objects properties

context

content

specification

design
Foundation of TIMe 5 - 17 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Objects and properties
Activity categories

TIMe5

• The content, where the internal composition is defined in terms of component objects

and behaviour. This may involve a tree structured decomposition over several aggre-
gation levels. Property models associated with the content will specify properties of
internal objects and interfaces. Obviously the content properties shall satisfy the con-
text properties (in some sense).

The object-property dimension and the context-content dimension give every type
model four facets as indicated in Figure 5-8 (p.5-17).

Specifica-
tions

A specification covers those aspects of a model that are relevant for its external repre-
sentation and use. The context part is often sufficient as a specification, but if parts of
the content is important it may be included in the specification. Specifications are asso-
ciated with the abstractions they belong to:

• Application specifications are concerned with functional requirements directly relat-
ing to user needs, i.e. user services and interfaces.

• Framework specifications are concerned with the infrastructure functionality, e.g.
internal protocols, distribution support and system administration.

• Architecture specifications focus on (non-functional) requirements to the implemen-
tation, e.g. the choice of technology, the implementation principles, platform
requirements, performance requirements.

A design cycle start by making a specification where the context object model and the
context property models are defined. It then makes a design where the content object
model and the content property models are defined. In the specification, the emphasis is
on properties, while in design it is on objects. But the properties of the specification shall
be satisfied by the design.

Specifications serve three main purposes:

• before the content is designed, they serve to express the required properties, also
called requirements;

• during design they are used constructively to synthesize the content using a mixture
of transformation and composition with reuse;

• after the content is designed they serve to express the provided properties.

The specification serves as a data sheet for a designer looking for existing components
to (re)use in a design. They also serve to describe interfaces in a way that simplify val-
idation of interconnections.

Activity categories

Viewed from the development processes, activities can be classified in these categories:

1. Make activities (p.5-19). Activities that make or synthesise descriptions (models) for
the first time, possibly based on other descriptions, e.g. to make SDL process graphs
from requirements expressed using MSC. A variety of techniques are used: transfor-
mation, translation, composition, decomposition and reuse.
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 18

Objects and properties
Activity categories 5TIMe
2. Evolve activities (p.5-19). Activities which perform (incremental) development of
existing descriptions. They may either add new properties, e.g. add a new service to
existing Application models, or change existing properties, e.g. correct errors.

3. Harmonise activities (p.5-19). Activities which ensure that models/descriptions are
consistent with each other, e.g. to make the domain dictionary consistent with the
domain object models. The activity will ensure that certain relationships that should
hold between models/descriptions are satisfied. For instance that an object model sat-
isfies the properties specified in a property model, or that a content satisfies a context.

4. Analyse activities (p.5-20). Activities that analyse a model/description, e.g to verify
that a design satisfies given properties.

Make activities

The make activities can be subdivided according to the main facets of a model (see
Objects and properties) into:

- Make specification: creates the specification part for the first time. It will also be
concerned with identifying external types (e.g. SDL packages) used as
components.

- Make structure design: synthesises the design object structure with associated
properties for the first time. As part of this it identifies the component types used
in the structure. For those that must be developed from scratch the same basic
make activities are applied again. This activity follow guidelines that seeks to
ensure consistency with the specification.

- Make behaviour design: synthesises the behaviour of object types (e.g. the process
graph of an SDL process). This activity too, follows guidelines that seek to ensure
consistency with the specification.

It is here assumed that the content of a model is either a structure or a behaviour.

Evolve activities

After a description is made the first time, it may be evolved by adding, modifying or
removing features. This is performed by evolve activities. They are different from make
activities because the target description already exists when they are invoked. They must
consider the impact on the existing target and carry out modifications according to the
new requirements. They must also consider whether the result should be treated as a
revision to replace the previous target, or as a variant that shall co-exist with it.

TIMe emphasises flexibility in the design solutions in order to support an evolutionary
approach and service flexibility.

Harmonise activities

Harmonisation is the general term we will use for maintaining desired relationships
between descriptions. Harmonisation applies both to the descriptions within an area of
concern such as between the domain descriptions, and between different areas of con-
cern such as the between domain object model and the application object model. Within
Foundation of TIMe 5 - 19 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Objects and properties
Activity categories

TIMe5

the domain, for instance, we harmonise the terminology in the dictionary, the statement
and the models. It also applies to the different abstractions: we want the application
models and the implementations to be consistent.

Ideally, harmonisation should take place after each step in order to keep the descriptions
consistent at all times. In practice, however, we must accept some deviation from this
ideal. A central point in TIMe is that object descriptions and property descriptions rep-
resent two different perspectives on some entity (usually a type). This implies that, that
even if domain-, design- and implementation descriptions are not maintained so that
they are consistent, then the object and property descriptions within the same models
(e.g. the domain models) are consistent. It also implies that the activities producing these
will have a tighter interaction than the activities from different areas.

Constructive design methods that will ensure consistency between the required and pro-
vided properties will be emphasised. Still it will not be feasible to ensure that they are
consistent at all times.

An important aspect to harmonisation is traceability. As a minimum it shall be possible
to trace how each requirement is mapped to design.

Analyse activities

These are activities that derive properties from descriptions and compare descriptions.
They are typically used to verify and to validate descriptions on the different abstraction
levels. For instance to see if an object type is able to provide some required properties,
or to check that an application system is deadlock-free.

In general, analysis seeks to check that desired relationships hold between models/
descriptions.

Analysis and harmonisation is closely related to the various relationships that may be
defined between descriptions.
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 20

Languages and notations
Activity categories 5TIMe
Languages and notations

The main modelling languages are summarised in Figure 5-9 (p.5-21).

Figure 5-9: The languages used in TIMe models

Open figure

Domain Domain models will normally have most emphasis on the abstract world which will be
modelled using UML and MSC. SDL may be used in cases where the state transition
behaviour is important.

However there may be cases where concrete world models are appropriate, e.g. to
describe physical conditions, implementation principles or non-functional properties
that apply throughout the domain.

Object Model Property Model

Framework

Architecture

Implementation CHILL, C++,... not relevant

various

Object Model Property Model

Application,

Architecture

Implementation not relevant not relevant

various

Infrastructure

Object Model Property Model

Framework

Implementation
Architecture

Implementation

config

CHILL, C++,... not relevant

various

Domain

Family

Instance

UML
SDL

MSC,
text

UML
SDL

MSC,
text

MSC,
text

SDL
UML

UML

UML

UML

UML
Foundation of TIMe 5 - 21 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Languages and notations
Activity categories

TIMe5

Family Both abstract and concrete world models are relevant for families. Frameworks (appli-

cations and infrastructures) are primarily expressed in SDL, but OMT+- is used as a
supplement both for high level specifications and for parts where SDL is less suited, e.g.
database applications. For reactive systems, SDL-92 will be used as the main language.
However, SDL is best suited for the control part of reactive behaviour, and less well
suited for pure transformations (algorithms), data-oriented applications and user inter-
faces. As modern systems often need to integrate these other aspects, TIMe provides
support for these parts as well based on OMT+- or the forthcoming Unified Modelling
Language, UML.

Instance In the instance area of concern, the main thing is to configurate and to build a system
instance. This can be done both on the abstract level, using SDL, in the Implementation
Architecture, and in the implementation. The common practice in most companies is to
do this on the implementation level using configuration files and tools like Make. An
alternative is to use special configuration languages in this area.

Mixed
modelling

TIMe will allow systems to be described by a mixture of notations and languages in
order to cover all system aspects. It will for instance be possible to model control behav-
iour using SDL and data manipulation using OMT+- or UML.

This means that a concrete system well may be composed from parts that are modelled
and developed using different techniques. Each of these parts may then be considered a
system in its own right from a modelling point of view. Consequently, what we choose
to consider a system will depend on the circumstances, and need not always be the com-
plete system that will be delivered to customers.

What we choose to model as an SDL system may be just the parts where SDL is well
suited. Other parts may be modelled in OMT+- or eventually in UML. The practical
implications are that the SDL system concept will be less important. In stead the focus
should be on generic component types that may be put together and configurated as eas-
ily as possible into complete systems. In SDL terms this means to focus more on block
types and process types than on systems.

Another implication is that some way to define complete systems composed from inho-
mogeneous parts is needed. For this purpose UML will be used for high level
architectures.
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 22

Development steps and activities
Activity categories 5TIMe
Development steps and activities

Assuming that the models are the key to systems engineering, how are we going to use
them during the systems engineering processes?

Minimum
throw away

Bear in mind that we make descriptions for two main purposes:

• to foster learning and communication during the systems engineering processes;

• to document the results at the end.

It is not obvious that these two purposes can be served by the same set of descriptions.
Indeed, there are methodologies that emphasizes the first purpose and produce many
descriptions that only serve the process and not the final product. The models we use in
TIMe have been selected to serve both purposes. TIMe seeks to keep the amount of tem-
porary (throw away) descriptions to a minimum, and emphasizes descriptions that end
up as final documentation. This does not prevent us from identifying partial descriptions
that are useful in their own right, such as requirements specifications, and to issue them
in separate documents when needed.

In systems engineering projects, the various models and descriptions are developed
gradually in an order that help to illuminate critical issues and make decisions at the
right points during a systems engineering process. They end up to complement each
other in a complete and readable documentation.

Steps The descriptions within different areas of concern and on different abstraction levels are
developed in steps that help to reduce risk, and to improve quality and control. This
helps to give better control and also to use the skills of different people better and to run
activities in parallel.

Each object type model is developed in two main steps: first the specification step where
the specification part (interfaces and the required properties) is made, and then the syn-
thesis step where the design part is developed. The main development cycle is illustrated
in Figure 5-10 (p.5-24).
Foundation of TIMe 5 - 23 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Development steps and activities
Activity categories

TIMe5

Figure 5-10: The main development cycle

Open figure

This is of course a simplified illustration of the main steps. Considered over time we will
se that the descriptions evolve gradually, that there are many iterations and that changes
take place due to better insight, new requirements and new technology. We will also see
that there are other, smaller cycles. For instance: to add a new service or feature to an
existing product we need not modify the domain. To produce a customized instance we
only need to add a new instance configuration.

Not only
waterfall

Please do not jump to the conclusion that TIMe only supports the classical “waterfall”
model! It is up to the actual projects to determine whether they will adopt a waterfall
strategy, a prototyping strategy, use incremental development, cleanroom, or whatever.

What TIMe provides is a general description of the central activities including strategies
and rules, see Figure 5-11 (p.5-25). The activities are described in the Activity overview.

implementation

instance

system

domain

needs
configurationMarket

specification

application design

domain

family

instance needs
needs

needs

needs

satisfies needs

instance

framework design

architecture design

family needs

domain needs
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 24

Development steps and activities
Activity categories 5TIMe
Figure 5-11: The main activities in TIMe

Open figure

It is then up to each project to plan and carry out a process where they are performed in
a suitable order. Some typical process cases are presented in Process models. Processes
will invoke the activities and evolve the descriptions through a sequence om milestones
and intermediate steps as illustrated in Figure 5-12 (p.5-26).

Domain descriptions

System Family descriptions

Instance descriptions

State-
ment

Dictio-
nary

Auxiliary

State-
ment

 Dictio-
nary

Auxiliary

Concrete
system

Implementa-
tion

Instance
models

Domain
models

Specifi-
cations

Designs

Analysing

Analysing domain

Analysing requirements

Designing

Designing application

Designing framework

Designing architecture

Implementing

Instantiating

Configuring

Building

Testing

Application

Application

Framework

Framework

Architecture

Architecture

Implemen-
tations
Foundation of TIMe 5 - 25 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Development steps and activities
Activity categories

TIMe5

Figure 5-12: The methodology context

Open figure

Activities and processes are about HOW TO DO IT. Or more precisely: how to carry out
property oriented development projects. They provides the practical guide-lines needed
to achieve a controlled process starting with the initial needs and ideas and ending with
quality products ready to be installed at customer sites.

To read
more

For the activities needed to develop the results, see Activity overview. For general
development processes, see Process Models. For process examples, see Example.

Milestone

Action

"Activity "Descrip-
tions"

instantiates

Processes models describe
partial orderings of activities
with corresponding descrip-
tions and documents. Several
process alternatives are de-
scribed with corresponding
examples.

The methodology is centered
around general description
and activity types. No particu-
lar order is imposed here.

Strategies and rules help to
perform activities in a way
that leads to quality in de-
scriptions.

"Process models"

Milestone
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 26

Links and relationships
Activity categories 5TIMe
Links and relationships

Rationale It is clearly necessary to establish and maintain clear and traceable relationships
between the various descriptions and models. There are several reasons:

• Since each model or description is concerned with a limited area of concern and
abstraction, a complete documentation is made up of a set of interrelated models/
descriptions. In order to read and understand this complete documentation it must be
possible for a reader to navigate in the descriptions and to understand the relation-
ships as easily as possible.

• We need to trace the relationships from required properties to the design objects
where they are provided. There are at least, two reasons for this:

- quality assurance need to check that every requirement is satisfied;

- when a requirement is changed we need to analyse what impact it will have on the
design.

• We need to ensure consistency both between models and within models. This can be
achieved either correctively by comparing models or constructively by ensuring that
models are derived according to rules, e.g. by automatically translating from abstract
models to implementations.

Relation-
ships

Relationships between all the models and other descriptions shown in Figure 5-2 "The
main descriptions used in TIMe" (p.5-6) must be defined. There are:

• Domain to family relations:

- object to object;

- property to property.

• Family to instance relations:

- object to object;

- property to property.

• Family internal relations:

- application to framework relations,

- implementation relations,

- property to object relations,

- specification to design relations,

- validity of interfaces,

- dictionary, statement and model relationships.

• Domain internal relations:

- dictionary, statement and model relationships.

• Instance internal relations
Foundation of TIMe 5 - 27 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Links and relationships
Activity categories

TIMe5

The precise definition of relationships depend on the languages that are used. They will
be elaborated under the various description modules.
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 28

Descriptions and documents
Activity categories 5TIMe
Descriptions and documents

In the systems engineering literature and practice, the terms “documents”, “descrip-
tions” and “models” appear frequently. Do they mean the same, or is there a difference
in meaning? We will use the terms to mean two different, but related, things:

• Models and descriptions express some meaning within an area of concern. They may
use a formal language, like SDL, or informal text and drawings. The form does not
matter. The point is that models and descriptions are intended to mean something and
to be up to date on that.

• Documents are carriers of models, descriptions and other information. Documents
are often made for specific occasions and audiences, e.g. a contract, a review docu-
ment, a user manual. A document can contain only parts of a model or it may contain
several. Likewise may a model or description be contained in several documents.

Even though formal languages like SDL and MSC are used, textual explanations can
still be necessary. These may be integrated as annotations to models and descriptions,
or they may be combined with models when documents.

Figure 5-13: Model - Document relationship

Open figure

Why this distinction between models and documents? Because it enables us to distin-
guish between the information which is essentially needed to develop and understand
quality systems (the models and other descriptions), and the accidental form used to
present it on various occasions (the documents). The n:m relationship between models
and document indicates that documents and models should be maintained separately.

Normally, many documents are produced during a project. As a minimum, formal com-
munications and decision points in a project will be based on documents. The structure
and contents chosen for each particular document will depend on the occasion and the
audience that particular document is intended for. Most models, on the other hand, are
not intended for any particular occasion or audience. They express up to date informa-
tion about some area of concern. A domain model, for instance, has meaning in terms of
a domain and is stable as long as the domain remains the same.

Model

Document

contained-in
*

*

Foundation of TIMe 5 - 29 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Descriptions and documents
Activity categories

TIMe5

Some companies are very document oriented. The work proceed through a sequence of
documents and much of the effort is centered on document production. To a large extent
models and descriptions exist only as part of documents. Consequently, where to find
complete and up to date models and descriptions are not always obvious. This problem
may be amplified if different departments prefer to express essentially the same infor-
mation in different ways. As a result, much effort is spent on translating and repeating
information.

Figure 5-14: A document oriented organisation

Open figure

The cost associated with this repetition is probably the least problem. More serious is
the likelihood that the models seen by different people are inconsistent. Even more seri-
ous is the tendency to be preoccupied with document form rather than model content.
Another common problem is that textual specifications are structured according to doc-
ument standards and not according to the model of the system.

The other extreme is a purely model and description oriented organisation, where every-
thing is centered around models and descriptions. In practice there will be a mixture. The
question is how much emphasis there is on such models compared to documents. Are
models the main results on which communication, quality control and progress mea-
surements are based, or is it documents? Is one consistent and complete set of
interrelated models sought, or is the collection of more or less complete models found
around in various documents considered good enough?

MarketCustomer Develoment Production Customer

Models

Documents

M M M M
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 30

Descriptions and documents
Activity categories 5TIMe
Figure 5-15: A model oriented organisation

Open figure

TIMe recommends to be mainly model and description oriented, but recognizes that
documents are needed addition for external communication, formal reviews and con-
tracts, see Figure 5-15 (p.5-31). The basis for communication and common
understanding, is the models. It is therefore essential that all team members see the same
models. Since models are gradually developed and updated in the course of a project it
is also essential that the team members see the same versions.

MarketCustomer Development Production Customer

Common

Documents

M M

Domain
Family

Instance
Models
Foundation of TIMe 5 - 31 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Object models
The characteristics of objects

TIMe5
Object models

The characteristics of objects

Object have the following characteristics:

• Physical substance: we know that e.g. a subscriber is a physical object with indepen-
dent, sequential behaviour. There is no point in denying this fact by modelling a
subscriber as several objects. Likewise, physical channels will terminate on objects
and not functions.

• Concurrency: objects operate concurrently (independently). The mode of concur-
rency may either be true parallelism or some form of quasi-parallelism, e.g.
alternating.

• Closed behaviour: objects are complete units of sequential behaviour in the sense that
their action sequences are closed and fully defined.

• Signal interface: interaction with other objects take place by signal interchange, not
by direct data manipulation or action chaining.

• Data encapsulation: every data item belongs to some object, data should be distrib-
uted according to the need-to-know principle

Good objects have the following additional qualities:

• Achievement of information hiding, interaction hiding or operation hiding. Do not
use objects where no hiding is achieved! (the object should provide some function to
its environment, helping to simplify the environment)

• Clear and concise behaviour description in state oriented form.

• Application independence, making the object type reusable.

Active and passive objects

Classifica-
tion

We generally classify objects appearing in object models in two categories depending
on their purpose in the model:

1. Passive objects. The purpose of passive objects is to represent something we need to
know about. Descriptions of passive objects will abstract from physical details of the
entities they represent and model only what we need to know about them. The behav-
iour of passive objects will normally be very different from the actual behaviour of
the objects they represent. A passive object representing a person has a simple behav-
iour concerned with updating of attributes and relationships (data), while the real
person itself has an extremely complex behaviour.

2. Active objects. The purpose of active objects is to take care of transformations and
control we need to perform. They are justified more by what they do than by what
they represent. Their behaviour is often detailed and related to physical processes. A
call handling process in a telephone system, is one example. It interacts with physical
users and controls physical connections.
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 32

Object models
Anatomy of object models 5TIMe
Note that this classification is according to how we want to describe objects, and not
necessarily depending on real object properties. The same physical object may well be
described both as a passive and an active object. An access point in the Access Control
system, for instance, is a passive object in the validation database, and at the same time
an active object controlling user access to the system. In a way the passive objects are
like property descriptions of the active.

Relation-
ship

Passive and active objects are related as illustrated in Figure 5-16 (p.5-33). We will nor-
mally describe active and passive objects in separate but related descriptions.

Figure 5-16: Passive objects may describe active objects and be contained in active objects

Open figure

The relationship between passive objects and the objects they describe, i.e. the meaning,
is quite important and central to the correctness of a system. TIMe will seek to take care
of this relationship and use it constructively during synthesis and correctively in V&V.

Object Modelling has traditionally been used only for passive objects to be handled by
information systems. TIMe will also cover active objects performing general functions.

Traditional data models are object models describing passive objects.

Anatomy of object models

Object models are made where we need a constructive description at a given level of
abstraction.

User

AccessPoint

Validation

User

AccessPoint AccessZone

entry
control

has-access-to

��������	
���� ���������	
����

contains

de
sc

rib
es

de
sc

rib
es
Foundation of TIMe 5 - 33 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Object models
Anatomy of object models

TIMe5

Figure 5-17: General organisation of object models

Open figure

Object models can be organised in many ways. TIMe assumes that object models are
organised as illustrated in Figure 5-17 (p.5-34) to have two main parts:

• Context. The context describes the object type as a black box in an environment.
Interfaces, associations and object roles in the environment are detailed. Property
models associated with the context will specify the external properties (to be) pro-
vided from the object and properties that the object require from actors in the
environment.

• Content. In the case the type is an aggregate of objects, the content is a structure of
component objects. Each component may be further decomposed in the same way as
the type being defined. There is no limits on the number of decomposition levels.
In the case the type is a single object, the content is a behaviour definition stating the
state transition behaviour of the object type.

In the family area the emphasis will be on object type models. A type may be defined in
two ways:

1. By explicit and local definition of the content. This is what is illustrated in Figure 5-
17 (p.5-34).

2. By inheritance from a super-type, possibly adding and/or redefining some
components.

For each component, two similar options apply: it may either be defined, as illustrated
in Figure 5-17 (p.5-34),by explicit local definition, or by instantiating an object type
defined elsewhere.

������

content structure

Consists of
orhas behaviour

or

content behaviour content structure

has behaviour Consists of

content behaviour

or

������
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 34

Object models
Anatomy of object models 5TIMe
If we represent and entire object model, like the one in Figure 5-17 (p.5-34), by a trian-
gle, we may illustrate these various ways that type models may be used as in Figure 5-
18 (p.5-35). It illustrates that a type may be used in three “dimensions”: in sub-types, in
components and in system instances.

Figure 5-18: Relationships between object models

Open figure

For each type model, property models will be associated with the context and the con-
tent, see Property models (p.5-36).

Depending on the abstraction and the problem, we will use either OMT/UML or SDL
for object modelling. These languages are based on object oriented principles support-
ing types, inheritance and instantiation and can be used to make object models according
to the principles explained above.

To read
more

The principles for object modelling are further explained in Object modelling.

Family (type)

instance of

inherits

inherits

instance of

Instance models

Use in sub-types

Use in composition

models

Use in system instances

instance ofinstance of
Foundation of TIMe 5 - 35 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Property models
Functional properties and roles

TIMe5
Property models

Functional properties and roles

What Functional properties characterise the behaviour of abstract systems. In TIMe, abstract
systems are modelled in Application models and Framework models. Figure 5-19 (p.5-
37) illustrate how functional properties are related to Application systems.

Categories of functional properties

Functional properties are classified in the following categories:

• (p.5-37), which are properties that can be expressed independently of particular
objects, services or interfaces.

• Service properties (p.5-37), which are properties related to specific services. Impor-
tant aspects are the Service roles (p.5-40) that objects shall play to perform the
service and the interaction behaviour between these roles. These service roles are
played by the domain given and the system given objects, as indicated in Figure 5-19
(p.5-37)

• Interfaces properties (p.5-38), which are properties related to specific interfaces.
Important aspects are the Interface roles (p.5-41) that objects on both sides of the
interface shall play and the collaboration between those. Interface roles are played by
interface given objects.

• Data properties (p.5-38). These express what can be said about the data a system con-
tains in terms of what they mean for the environment.

Figure 5-19 (p.5-37) illustrates how the properties relate to the different parts of an
application system. Note that interface and service properties involve at least two
objects where some are in the environment and some in the content. Also note that prop-
erties may be related by layering.
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 36

Property models
Functional properties and roles 5TIMe
Figure 5-19: Functional properties related to application systems

Open figure

General properties

An important class of general properties is safety properties, which state what should
never happen, typically:

• deadlocks;

• unspecified receptions;

• livelocks.

Service properties

It is well known that users tend to think in terms of services and interfaces. Therefore it
is customary to characterise systems using a service oriented perspective. This is best
explained in contrast to the object oriented perspective as illustrated in Figure 5-20 (p.5-

Domain given

System given

Interface given

General Properties

Interface
given

Domain
given

Subject
entities

Other
systems

Conrolled
processes

System
given

Interface
given

Domain
given

System
given

SystemEnvironment

Service needing Service providing

Interface
role

domain
service

role

system
service

role

Interface
role

system
service

role

domain
service

role
service

service

Application
system contect

Functional
properties
Foundation of TIMe 5 - 37 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Property models
About roles

TIMe5

39). Many services will naturally involve several objects. A normal call in a telephone
system involves at least two objects: the initiating subscriber and the terminating sub-
scriber. There is no point in one without the other. The service perspective allows us to
see the two in combination, but only to see fragments of each object. In the object per-
spective we are able to see the complete object, but only fragments of each service.

Interfaces properties

Services are controlled via interfaces, and interfaces may have properties of their own.
These properties (protocols) must be followed by both sides of the interface, as illus-
trated in Figure 5-20 (p.5-39). Objects may have several interfaces, and the same
interface may apply to several objects. Indeed, standard interfaces is a key to achieve
architectural flexibility. There may well be mutual dependencies between interfaces.
The behaviour a user experiences on a given panel depends on the access rights the user
has been granted through the operator terminal. Such dependencies will be visible as
non-deterministic choices at the observed interface, but the exact nature of the influence
will be hidden.

Data properties

The data stored in a system or object is central to its purpose. In a specification the inter-
esting thing is what the system (or object) knows about the environment. In other words:
what are the associations between (passive objects in) the system and the environment.

About roles

Why roles?

We can now make two important observations:

1. Service and interface properties will span several objects. They are composed from
(sub)properties of different objects. An important advantage of the property perspec-
tive is the possibility to combine and describe properties of different objects that
belong together in one place. This will be utilized to describe service and interface
properties in one place such that they may be used to characterise all object types
using the interface.

2. Object properties are composed from sub-properties belonging to different services
and interfaces. However, composition of properties into objects is not as simple and
well defined as composition of objects into systems. The reason is that objects encap-
sulate behaviour and have interfaces, whereas object properties are likely to be
fragments of behaviour without interfaces.

Require-
ments

We have two requirements to functional property models:

1. It should be possible to express property models without referring to specific objects
(or rather types). The reasons for this is:

- that we sometimes need to specify properties without knowing the objects(types)
they shall be associated with;
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 38

Property models
About roles 5TIMe
- that we may want several different objects to share the same properties (e.g. a
common interface).

2. It should be possible to compose the properties of an object from parts described in
different property model.

Roles The notion of roles will help to satisfy both these requirements. We will use roles to rep-
resent objects (anonymously) in property models, and we may compose the properties
of an object from roles described in different property models. The ovals in Figure 5-19
(p.5-37) and Figure 5-20 (p.5-39) represent roles.

Figure 5-20: Service and interface properties related to objects

Open figure

Several strands of thought pointed towards roles as a useful idea:

• That so much seem to depend on the point of view. Every object will have a relative
view on other objects in its environment. Even system quality is relative. System
quality can be formulated as the ability to play interface roles.

• That roles often are attached to associations (or relationships), e.g. the father - daugh-
ter roles. Such roles are important to describe and to understand.

• That there is some symmetry among the roles to be played at two sides of an
interface.

• That it should be possible to characterise object behaviour in a purely external way,
removing all irrelevant internal detail.

• That it should be possible to use such external characterizations to simplify validation
of interconnections. A kind of plug-and-socket check that is (relatively) easy to per-
form, so that we can routinely ascertain that objects are only instantiated in
environments where they will work properly.

Object 1 Object 2 Object 3 Object n

Service 1

Service 2

Interface 1

Interface 2

Properties

roleF roleG

roleA

roleD

roleB

roleEroleC

roleH roleI

• • •

• • •
Foundation of TIMe 5 - 39 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Property models
About roles

TIMe5

• That validation effort, like development effort, should be modularized. It should be

possible to focus validation and verification effort on types in a manner that simpli-
fies validation of instances.

Categories of roles

The word “role” is used quite frequently in everyday life. The meaning is mostly infor-
mal, but will often be synonymous with a function or a relationship.

In a play, like Peer Gynt by Ibsen, we find roles such as Peer and Mor Aase. In the the-
atre, during a performance we find actors playing Peer and Mor Aase. The roles, as
described by Ibsen, specify required properties of the actors without specifying what
other properties they may have. If the actors are good, they provide the properties in a
way that make us believe that Peer and Mor Aase are real. After the play is over, the
actors will do something else and provide other properties. This notion of a role can be
formalized as the properties of an object appearing in the context of a service (or func-
tion), the play.

Another notion of role comes from the relationship between objects. A person has the
role of father in relation to his daughter, husband in relation to his wife and owner in
relation to his car. This notion of role can be formalized as properties of an object
appearing in relation to another object. It is typical for this kind of roles that they are
related in pairs. The role of daughter is complemented by the role of father. It is also typ-
ical that the role correspond to required properties the actor should provide in that
relationship. An object may well play many roles, but they should not be mixed. (Some
reactions are bound to surface if a person mixes the role of husband with the role of
father, for instance).

In general, every object provide some roles at its interfaces, and require complementary
roles from the objects at the other side of the interface.

We will use two main categories of roles:

• Service roles (p.5-40), which are the observable behaviour of an object in a given
service;

• Interface roles (p.5-41), which are the observable behaviour of an object at a given
interface;

• Environment roles (p.5-41), which are the observable behaviour expected from an
object in the environment of another object. Environment roles may be composed
from interface roles and service roles.

Service roles

Service roles are the parts that objects play in a given service (or function) In a basic
telephone call for instance, there is an initiating subscriber role, and a terminating sub-
scriber role. These roles must be played by different objects in the same call (service
invocation), but an object may well play both roles in different calls. Service roles are
often dynamically assigned so that objects take on one service role at the time (but not
always).
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 40

Property models
About roles 5TIMe
Interface roles

Interface roles allows us to describe and study (required and provided) properties at a
particular interface, such as a user interface, and to discard the other interfaces. Using
interface roles, we may describe and analyse the properties of each interface separately.
In that way we obtain an external view structured according to the interfaces, e.g. the
users view and the operators view. Interface roles are statically associated with the inter-
faces of an object (or system).

An object will often be able to perform several service roles and some of these may be
accessible from the same interface as indicated in Figure 5-21 (p.5-41).

Figure 5-21: Service roles, interface roles and MSC

Open figure

A service may also span several interfaces. Service roles may in special cases, be iden-
tical to interface roles, but more often several service roles will be visible in the same
interface.

In relation to a given object structure, service roles observe the structure from “above”,
while interface roles observe it from “the side” through interfaces.

Environment roles

Each object type defines roles for entities in its environment, either explicitly or
implicitly.

In TIMe we recommend to define the environment of each object type in the context part
of the object model, and here we shall describe all the objects that are in the environment
and somehow are related to instances of the type being defined.

Entities in the type environment are not real objects but rather anonymous objects that
will become real objects when the type is instantiated. We consider these as environment
roles.

Object

interface
service

service role
service MSC

interface role
interface MSC
Foundation of TIMe 5 - 41 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Property models
About roles

TIMe5

For each instance of the type, every environment role shall be assigned to an actor, i.e.
an object in the instance environment playing the role. For a system to be consistent, the
play of all these roles must be valid. (Exactly what this means will be elaborated later.)

Thus, attached to an object type there are environment roles describing properties
required from other objects. Due to symmetry, these implicitly describe properties pro-
vided by the object type as well see Figure 5-22 (p.5-42).

Figure 5-22: PBX Example: SubServer

Open figure

Roles are projections

Interfaces and service roles are related to object designs by projection. These projections
are similar to the well known geometrical projections in that they show everything that
is visible from a given angle, and hides the rest. As in geometry we use projections in
two ways:

• we synthesize new objects from projections, like a carpenter builds a house from a
set of blueprints;

• we make projections of existing objects, in order to document and analyse their
properties.

Both ways will be part of TIMe.

Instead of projections as geometrical views, we look at the observable behaviour of
objects. When making such projections we can perform some consistency checks which
are explained in Risk index.

To read
more

For more about roles, see The relationship between objects and properties (p.5-44).

To read more about property modelling in general, see Property Modelling.

The subserver type defines four roles to be played by other objects
in the environment of its instances. Implicitly its instances must be
able to play the inverse of these roles.

Calling

FirstCalled

SecondCalled

Type
SubServer

OwnSub

Calling

FirstCalled

SecondCalled

OwnSub

@(*)

@(*)

@(*)@(1)
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 42

Property models
Describing functional properties 5TIMe
Describing functional properties

We shall use MSC as the main language to describe role behaviours.

Interface properties and service properties are described using:

• object diagrams describing the roles involved;

• signal lists for the connections;

• textual explanations;

• MSC for the interaction behaviour;

• data models for any data involved if needed.

As interfaces and services often will be layered, the property descriptions will be layered
too.
Foundation of TIMe 5 - 43 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The relationship between objects and properties
The role-play principle

TIMe5
The relationship between objects and properties

It is not obvious that a property description is consistent with an object design. There-
fore, our first issue is to understand the relationship between object design descriptions
and property descriptions. We are seeking principles that helps to:

1. synthesize a consistent object design from specifications;

2. extract and describe properties in a way faithful to the design;

3. check consistency between object models and property models;

4. perform verification and validation based on described properties (assuming that this
will be simpler than to use derived properties).

The notion of roles is a key to all this.

The role-play principle

Through the environment roles of a type (defined in the context part of the type model)
we formalise the requirements that instances of the type have on their environment.

When we use instances of the type in composition, see Figure 5-18 (p.5-35), actual
objects in their (instance) environment will be assigned the environment roles, and will
have to play these roles as expected. Otherwise the composition will not be valid. Con-
versely, each of these actor objects assign roles the other way. In that way each object
in a composition will assign environment roles to other objects and be assigned roles
from them.

This role-play principle is symmetric. The validation of an interface is to check that both
sides play the roles they mutually require from each other. It follows from these consid-
erations that the notions of roles and plays are closely connected to the notion of
validation and thus to system quality. If we are able to formalize these notions, we might
find better ways to achieve quality control. This is one of the ideas we will pursue in
TIMe.

Synthesizing a consistent object behaviour

The notion of Risk index can also be used constructively. Whenever we design a new
process type we should ensure that it has a low risk index in all its roles.

Using environment roles

Environment roles may be used in several ways:

• to check the internal consistency of a behaviour. This can be done for a type indepen-
dently of any particular application;

• to verify that the behaviour of an instance satisfies the requirements of the environ-
ment. This is done by checking offered roles against required roles (plug, socket);
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 44

The relationship between objects and properties
Synthesising design 5TIMe
• to represent behaviour in a way that simplify validation of interfaces;

• to derive (synthesize) object behaviours that are correct by construction.

We summaries with the following rule:

Role
behaviour

• Define the behaviour of each role in the system and in the environment. Use the roles
as basis for behaviour synthesis and validation.

Synthesising design

Two basic techniques are used to synthesise a design:

1. Transformation. A source description is transformed to a target description according
to well defined rules. One example is to generate code from an SDL design.

2. Composition. The content is decomposed into parts (top down) and/or composed
from parts (bottom up) using a mixture of manual and automated techniques. The
method seeks to reuse existing types as much as possible, and to make new types that
might be needed reusable. Thus, design with reuse and design for reuse is part of the
method. Design with reuse involves:

- searching for existing types having some desired properties;

- adapting the properties to fit the particular application.

Composition

The content design is either a behaviour, or a (component) structure. In the case of a
structure, each component type is synthesised using the same principle as for the enclos-
ing type: first specify the context with properties and then synthesise the content. In this
way, the make activities are invoked recursively, see Objects and Properties and Object
models.

How should we proceed to synthesize the system structure from the requirements? We
recommend the following core rules:

1. Mirror the environment behaviour. The system structure should contain a concurrent
actor for each concurrent role the environment requires from the system

2. Mirror the environment knowledge. The system structure should contain a data
object for each entity or relation the system needs to know about. Allocate these data
objects to the concurrent actor objects needing the knowledge, or to separate objects
when the knowledge needs to be shared.

A precondition for the first rule is that we know the concurrent roles required by the
environment. In other words: we are looking for environment roles that are to be com-
posed in parallel. What kind of roles are that?

“Parallel composition will be the main rule for fragments on interfaces between differ-
ent object pairs”.
Foundation of TIMe 5 - 45 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The relationship between objects and properties
Synthesising design

TIMe5

Therefore we need to identify the objects in the environment and the corresponding
environment roles in order to see the concurrency required. Since our goal is to design
a structure of objects and interfaces that will satisfy the requirements of the environ-
ment, it is hardly surprising that we have to start by identifying objects in the
environment. By defining a type for each of them, we find the environment roles that the
system shall play.

The following approach may be used when making a design structure.

If we have expressed the functional requirements entirely in terms of service role mod-
els, the first step will be to compose the service roles into environment roles.

We will use a PBX to illustrate the approach. In a PBX we usually identified a number
of service roles called A-party, B-party, C-party, NormalCall, ConferenceCall, Trans-
ferCall, and so on.

Without any knowledge of the object structure, we cannot tell whether these roles should
be composed in sequence or in parallel. When we know the objects, however, we may
analyse the concurrency and determine how the roles shall be composed. For environ-
ment roles, such as the SubServer, we have this knowledge.

We therefore start with the environment and the environment roles it imposes on the sys-
tem, see Figure 5-23 (p.5-47)

Make design structure

1. Identify the objects in the environment, and describe the correspond-
ing types with association roles.

2. For each association role directly interacting with an environment
object through a static one-to-one connection, assign an actor object in
the system.

3. Define the corresponding object types and their association roles.

4. If possible, assign the association roles remaining to be bound to
objects already defined, otherwise introduce new objects.

5. Introduce switched communication where n-to-m communication is
needed.

6. Continue until all roles have been bound to actors.

7. Validate that every role is properly played in the system using the role
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 46

The relationship between objects and properties
Synthesising design 5TIMe
Figure 5-23: Environment roles to be played by the PBX system

Open figure

Each subscriber, being an instance of the TYPE Sub, demands that the system is able to
play the role SubServer to serve their needs. We assume that corresponding roles, OpS-
erver and TrunkServer, have been defined for the Op and the Trunk types. Since the
subscribers are concurrent objects, their initiatives will be independent. The correspond-
ing roles must therefore be composed in parallel. Since the sequence following each
initiative is largely independent of other initiatives, the parallel composition is best
achieved by concurrent objects as illustrated in Figure 5-23 (p.5-47). At this point we
may note the following:

The environment roles defined for the environment types are explicit representations of
the needs of the environment!

The task of the designer is to find objects in the system that will satisfy these needs.
When the needs are represented in the form of environment roles, this task is simplified
a great deal. By using the environment mirroring principle, we easily get the first ideas
about the object structure in the system. As a first step we identify an object for each of
the statically assigned, concurrent roles in Figure 5-23 (p.5-47), see Figure 5-24 (p.5-
48).

Subscriber(n):Sub

Operator(m):Op

ExtLine(k):Trunk

PBXSystem

(n):SubServer

(m):OpServer

(k):TrunkServer

(*):Calling

(*):FirstCalled

(*):SecondCalled

(*):Calling

(*):FirstCalled

(*):SecondCalled

(*):Calling

(*):FirstCalled

(*):SecondCalled
Foundation of TIMe 5 - 47 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The relationship between objects and properties
Synthesising design

TIMe5

Figure 5-24: First object structure

Open figure

Our next step is to find actors for the remaining interface roles: Calling, FirstCalled and
SecondCalled. Our first choice is always to look for actors among the existing objects.
If they are not suitable actors, we introduce new objects. In this case it is specified that
the actors shall represent instances of Sub, Op or Trunk observing the same role behav-
iour. We already have such objects both in the environment and in the system. In the
environment we have direct instances of the specified actor types, and in the system we
have the SS, OS and TS objects which may represent the same types. Using the internal
representatives allows us to maintain a single, non-switched, channel towards each
object in the environment. This will be our first choice, as indicated in Figure 5-25 (p.5-
49).

Subscriber(n):Sub

Operator(m):Op

ExtLine(k):Trunk

PBXSystem

SS(n): <@Sub-
Server

OS(m):<@Op-
Server

TS(k):<@Trunk-
Server

(*):Calling

(*):FirstCalled

(*):SecondCalled

(*):Calling

(*):FirstCalled

(*):SecondCalled

(*):Calling

(*):FirstCalled

(*):SecondCalled
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 48

The relationship between objects and properties
Synthesising design 5TIMe
Figure 5-25: Second object structure

Open figure

These objects will not be totally independent and need to be coordinated. How can we
know that? It follows clearly from the interface roles. The implications are the
following:

• There must be communication paths in the system enabling each object playing Sub-
Server to communicate with each of the possible actors of Calling, FirstCalled and
SecondCalled.

• The roles FirstCalled and SecondCalled are dynamically assigned to actors.

• As a consequence we need switched communication paths in the system (This is
hardly surprising, since we are designing a switching system, but the reader should
note that we are able to deduce this formally from the static role structure without
knowing anything about PBXs!)

In order to design the types for the internal objects in the system, we apply the mirror
principle again. Let us consider one of the SS objects. From the Subscriber, the SS object
gets the SubServer role statically assigned. This role implies that the roles Calling, First-
Called and SecondCalled are played by other objects in the system. These objects will
in turn require corresponding roles to be played by the SS object, as illustrated in Figure
5-26 (p.5-50).

Subscriber(n):
Sub

Operator(m)
:Op

ExtLine(k):
Trunk

PBXSystem

SS(n):
<@SubServer, Calling, First-

Called, SecondCalled

OS(m):
<@OpServer, Calling, First-

Called, SecondCalled

TS(k):
<@TrunkServer, Calling, First-

Called, SecondCalled

Router
Foundation of TIMe 5 - 49 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The relationship between objects and properties
Synthesising design

TIMe5

Figure 5-26: Roles that may be assigned to an SS object

Open figure

Our next step is to define a type that will play these roles.We may do this in two ways:

• Reuse. The required roles are used as keys in a library search to find existing types
with the ability to play the roles.

• New design. The role behaviours are used to compose a new type.

Both ways we must be aware of the how the roles should be composed (in sequence or
in parallel). Analysing the initiatives, we see that the Calling role behaviours are trig-
gered by a call initiative from the “own” subscriber, whereas the termination initiatives
may come from either the “own” subscriber or some other object. The FirstCalled and
SecondCalled role behaviours are triggered by initiatives taken by other system objects,
whereas the termination may come from either those objects or the “own” subscriber.
Consequently a combination of sequential and parallel composition is needed. It is not
obvious which solution will be best in this case:

• having one sequential behaviour taking care of the parallel composition by branches
(interleaving);

• having one object, e.g. a SDL service, for each role.

If the second alternative is chosen, the dependencies must be taken care of by means of
signals and/or shared data.

Subscriber:Sub

<@Calling

<@FirstCalled

<@SecondCalled

SS:

{SS, OS, TS}

<@Calling

<@FirstCalled

<@SecondCalled

{SS, OS, TS}

{SS, OS, TS}
<@Calling

OR

<@SubServer
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 50

List of figures
Synthesising design 5TIMe
List of figures

Areas of concern . 3

The main descriptions used in TIMe . 6

The main model abstractions . 9

The facets of a type model . 10

Specification and design related . 11

Reference models for abstract and concrete system . 13

Object and property models . 16

The facets of a type model . 17

The languages used in TIMe models . 21

The main development cycle . 23

The main activities in TIMe. 24

The methodology context . 25

Model - Document relationship . 29

A document oriented organisation . 30

A model oriented organisation. 30

Passive objects may describe active objects and be contained in active objects . . . 33

General organisation of object models. 33

Relationships between object models . 35

Functional properties related to application systems . 36

Service and interface properties related to objects . 39

Service roles, interface roles and MSC . 41

PBX Example: SubServer . 42

Environment roles to be played by the PBX system . 46

First object structure . 47

Second object structure . 48

Roles that may be assigned to an SS object . 49
Foundation of TIMe 5 - 51 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Synthesising design

TIMe5
List of definitions

Abstraction. 52
Abstract system . 52
Active object . 53
Concrete system . 53
Context . 53
Description. 53
Document . 53
Domain. 54
Domain auxiliary descriptions . 54
Domain descriptions . 54
Domain dictionary . 54
Domain model . 54
Domain statement . 55
Family descriptions . 55
Functional property . 55
Implementation . 55
Instance descriptions . 55
Non-functional property. 56
Object model . 56
Passive object. 56
Property . 57
Property model. 57
Specification . 57
Synthesis . 57
System . 58
System family . 58
System instance . 58

Abstraction

(Collins): Having no reference to material objects or specific examples.

(Coad,Yourdan): The principle of ignoring those aspects of a subject that are not rele-
vant to the current purpose in order to concentrate more fully on those that are.

Abstract system

An abstract system is a system which exists in a conceptual, abstract world.

Abstract systems are composed from abstract components.
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 52

List of definitions
Synthesising design 5TIMe
Active object

The purpose of active objects is to take care of transformations and control the need to
perform. They are justified more by what they do than by what they represent. Their
behaviour is often detailed and related to physical processes. A call handling process in
a telephone system, is one example. It interacts with physical users and controls physical
connections.

Concrete system

A concrete system is a real system which is part of the physical world.

In TIMe, concrete systems are composed from physical parts and software that execute
to provide services to its users.

Context

The context of an object model consists of the entity being modelled, considered as a
black box, and its environment, where the environment consists of other entities that are
known to or that interact with the entity being modelled. This serves to describe the envi-
ronment and the interfaces as well as other external relationships.

The environment of a type consists of conceptual entities, called roles, relations and con-
nections. The environment of an instance consists of actual entities playing the roles.

By associating property models with the context it is possible to specify the external
properties that the object provides, as well as the properties it requires from its
environment.

Description

A description is a statement or account that describes. It is a symbolic representation that
enablse communication and reasoning about some subject. Descriptions may be
expressed on a variety of media using a variety of languages and notations.

In TIMe, descriptions are contrasted with documents, which are considered as the phys-
ical carriers of descriptions.

Document

A document is a piece of paper, a booklet, etc.; providing information esp. of an official
nature. In TIMe Documents are physical carriers of information. This information may
be local to that document, or it may be fetched from descriptions and models (whole or
partial models). Documents are often made for specific occasions and audiences, e.g. a
contract, a review document, a user manual.

A description or model may appear in several documents, therefore the descriptions or
models should be maintained separately from the documents.
Foundation of TIMe 5 - 53 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Synthesising design

TIMe5

A document may be seen as a “snapshot” at a particular point in time. As such it need
not be maintained, although it may be.

Domain

The (problem/application) domain models a part of the real world having similar needs
and terminology, and where a system instance may be a (partial) solution to some need
(the problem). It is not specific to a particular system or system family, but rather to a
market segment. It covers common phenomena, concepts and processes that need to be
supported to solve the problem, irrespective of particular system solutions.

Note that the domain is like a type; it is a generalised concept covering the common fea-
tures of many domain instances. Hence the Domain is not a set of occurrences, but a
general pattern for one occurrence.

Domain auxiliary descriptions

Domain Auxiliary descriptions will often be informal text and illustrations used to help
reading the other Domain Descriptions.

Domain descriptions

A domain description describes a (problem/application) domain.

In TIMe domain descriptions are organised in:

• domain models;

• domain statements;

• domain dictionaries;

• domain auxiliary.

Domain dictionary

A Domain Dictionary is dictionary over common domain terminology.

Domain model

A Domain Model is a formal definition of a Domain expressed in terms of Object Mod-
els and Property Models (collections of classes with attributes and relations and
associated properties). To fully define a Domain it is possible to use Domain Models on
several abstraction levels.

In TIMe, Domain Models are expressed using OMT/UML, MSC and (possibly) SDL.
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 54

List of definitions
Synthesising design 5TIMe
Domain statement

A Domain Statement is a concise statement about a Domain, and is normally expressed
in prose.

Family descriptions

A system family description describes a system family.

In TIMe, family descriptions are organised in:

• family models;

• family implementations;

• family statements;

• family dictionaries;

• auxiliary descriptions.

Functional property

A functional property is a property which is measurable in an abstract system.

Functional properties characterise the behaviour of abstract systems, and can be mea-
sured by observing the abstract system.

Implementation

Implementations are detailed and precise descriptions of the hardware and the software
that a concrete system is made of. They define the physical construction of systems in a
system family. The software part will be expressed in programming languages such as
C++ or Pascal, while the hardware part will be expressed in a mixture of hardware
description languages such as circuit diagrams, cabinet layout diagrams or VHDL.

Instance descriptions

An instance description describes a system instance.

In TIMe, system instance descriptions are organised in:

• Instance models that formally define the system instance, usually by configuration of
some family;

• Implementations which are the instance specific implementations, such as configura-
tion files;

• Auxiliary descriptions that provide supplementary documentation, for instance a test
suite.
Foundation of TIMe 5 - 55 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Synthesising design

TIMe5

Non-functional property

A non-functional property is a property which is not measurable in an abstract system.

Non-functional properties can be related to the handling of abstract systems, for instance
that they are flexible. More often they are related to the concrete system, and express
physical properties such as size, weight and temperature.

Performance, real-time responses and reliability are considered to be non-functional
properties in TIMe, since they cannot be measured in the abstract systems.

Object model

An object model defines static object structures in terms of objects, classes (types), asso-
ciations and connections, and dynamic object behaviour in terms of signals and state
transitions.

These are models that describe how a system or component is composed from objects,
connections and relationships, and how each object behaves.

The term object model is a bit misleading, as object models normally describe general
types (sometimes called classes) and object sets rather than individual objects. A type is
a concept. According to the classical notion of a concept, it is characterised by:

• extension, the collection of phenomena that the concept covers;

• intention, a collection of properties that in some way characterise the phenomena in
the extension of the concept;

• designation, the collection of names by which the concept is known.

Representing concepts by types and phenomena by instances of these types follows this
pattern: the instances belong to the extension, the type definition gives the intention and
the type name represents the designation. The term object model as we use it in TIMe
covers objects as well as types.

Object models are constructive in the sense that they describe how an entity is composed
from parts, be it abstract or concrete.

In TIMe, every object model should have associated property models.

Passive object

The purpose of passive objects is to represent something we need to know about.
Descriptions of passive objects will abstract from physical details of the entities they
represent and model only what we need to know about them. The behaviour of passive
objects will normally be very different from the actual behaviour of the objects they rep-
resent. A passive object representing a person has a simple behaviour concerned with
updating of attributes and relationships (data), while the real person itself has an
extremely complex behaviour.
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 56

List of definitions
Synthesising design 5TIMe
Property

A property is a quality or characteristic attribute, such as the strength or density of a
material.

In TIMe we speak of functional/abstract properties and non-functional/concrete proper-
ties associated with objects.

Properties are not components that can be used to build systems. They are measures we
use to characterise and evaluate systems by. Let us compare to a brick: the brick itself is
an object we can use to build something with (e.g. a fireplace), its physical measures are
properties we may use to select the particular type of brick and to plan the fireplace, but
not to build with. Thus, properties are not components to be used in constructions, but
means to understand, select and plan constructions.

Property model

A property model is a model that states properties of a system, a component or a single
object without prescribing a particular construction. Property models are not construc-
tive, but used to characterise an entity from the outside. There are many kinds of
properties: behaviour properties, performance properties, maintenance properties, etc.
This is the perspective preferred by users and sales persons. It is also the main perspec-
tive in specifications.

In TIMe properties will be expressed mainly using text and MSCs.

Specification

A specification covers those aspects of a model that are relevant for its external repre-
sentation and use. The context part is often sufficient as a specification, but if parts of
the content are important it may be included in the specification. Specifications are asso-
ciated with the abstractions they belong to.

Synthesis

In TIMe, synthesis is an activity that produces a design from a specification.

Two basic techniques are used to synthesize a design:

1. Transformation. A source description is transformed to a target description according
to well defined rules. One example is to generate code from an SDL design.

2. Composition. The content is decomposed into parts (top down) and/or composed
from parts (bottom up) using a mixture of manual and automated techniques. TIMe
seeks to reuse existing types as much as possible, and to make new types that might
be needed reusable. Thus, design with reuse and design for reuse is part of TIMe.
Design with reuse involves:

- searching for existing types having some desired properties;

- adapting the properties to fit the particular application.
Foundation of TIMe 5 - 57 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Synthesising design

TIMe5

System

A system is a part of the world that a person or group of persons during some time inter-
val and for some purpose choose to regard as a whole. A system consists of interrelated
components, each component being characterised by properties that are selected as
being relevant to the purpose.

System family

The System family contains generalised system and component concepts that can be
adapted (configurated) and instantiated to fit into a suitable range of user environments.
They represent the product base from which a company can make a business out of pro-
ducing and selling system instances.

The idea is to focus development and maintenance effort mainly on the families in order
to:

1. reduce the cost and time needed to produce each particular instance

2. reduce the cost and time needed to maintain and evolve the product base.

In TIMe, system families are formally defined as (collections of) types or classes. Where
practical, system types/classes will be defined from which complete system instances
may be generated. In addition the system family contains the component types/classes
that are used to compose the system types/classes.

System instance

A system instance is a (real) system which can perfom behaviour and provide services.

The system instance area of concern contains system instances produced from system
families.
Foundation of TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-165 - 58

	Introduction
	Overview

	Areas of concern
	Figure 5-1: Areas of concern

	Descriptions
	Figure 5-2: The main descriptions used in TIMe

	Abstractions in models
	Figure 5-3: The main model abstractions
	Model organisation
	Figure 5-4: The facets of a type model
	Specifications
	Figure 5-5: Specification and design related

	System reference models
	Figure 5-6: Reference models for abstract and concrete system

	Objects and properties
	Figure 5-7: Object and property models
	Figure 5-8: The facets of a type model
	Activity categories
	Make activities
	Evolve activities
	Harmonise activities
	Analyse activities

	Languages and notations
	Figure 5-9: The languages used in TIMe models

	Development steps and activities
	Figure 5-10: The main development cycle
	Figure 5-11: The main activities in TIMe
	Figure 5-12: The methodology context

	Links and relationships
	Descriptions and documents
	Figure 5-13: Model - Document relationship
	Figure 5-14: A document oriented organisation
	Figure 5-15: A model oriented organisation

	Object models
	The characteristics of objects
	Active and passive objects
	Figure 5-16: Passive objects may describe active objects and be contained in active objects

	Anatomy of object models
	Figure 5-17: General organisation of object models
	Figure 5-18: Relationships between object models

	Property models
	Functional properties and roles
	Categories of functional properties
	Figure 5-19: Functional properties related to application systems
	General properties
	Service properties
	Interfaces properties
	Data properties

	About roles
	Why roles?
	Figure 5-20: Service and interface properties related to objects
	Categories of roles
	Service roles
	Interface roles
	Figure 5-21: Service roles, interface roles and MSC
	Environment roles
	Figure 5-22: PBX Example: SubServer
	Roles are projections

	Describing functional properties

	The relationship between objects and properties
	The role-play principle
	Synthesizing a consistent object behaviour
	Using environment roles
	Synthesising design
	Composition
	Make design structure
	Figure 5-23: Environment roles to be played by the PBX system
	Figure 5-24: First object structure
	Figure 5-25: Second object structure
	Figure 5-26: Roles that may be assigned to an SS object

	List of figures
	List of definitions
	Abstraction
	Abstract system
	Active object
	Concrete system
	Context
	Description
	Document
	Domain
	Domain auxiliary descriptions
	Domain descriptions
	Domain dictionary
	Domain model
	Domain statement
	Family descriptions
	Functional property
	Implementation
	Instance descriptions
	Non-functional property
	Object model
	Passive object
	Property
	Property model
	Specification
	Synthesis
	System
	System family
	System instance

