
TIMe TIMe Electronic Textbook
9 Example: Initial
development
Introduction .2
Analysing from scratch .4
Analysing Domain .4
Analysing Requirements .18
Application Specification .21
Application design .35
Architecture modelling. .58

Application Evolution .67
Documentation .68
Domain Descriptions .68
Family and Application descriptions .68
Architectural Descriptions .68

List of figures .69

Example 1: Initial development
Example: Initial development 9 - 1 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Introduction TIMe9
Introduction

What By reading this theme it is possible to learn TIMe “by example”. We follow a company
that develops and produces access control systems according to the TIMe Process
models.

In order to navigate freely among the examples and their corresponding methodological
base, the reader should consult the generic project diagram.

The
company

For many years, the Sesam Sesam company had great success with their door locks and
system keys. Their selling point was the highly flexible way that keys and locks could
be coded to give user groups different access rights in a building complex.

But even their system had two main drawbacks:

1. Lost keys. Whenever a key was lost, they had to change the locks to prevent unau-
thorised persons to gain access. The cost for new keys where not high, but the cost
for changing the locks and the security risk involved was too high.

2. Code limitations. Although the system was very flexible, it was based on fully
mechanical locks and keys with inherent limitations in the coding that could be
achieved.

To overcome these problems, and to stay in front of competition, the Sesam Sesam peo-
ple were continuously looking for improvement opportunities. They saw that electronics
and computers were rapidly becoming attractive alternatives as the prices went down
and the reliability up. They also heard rumors of competitors looking at the new tech-
nology, and decided to start planning a new product family. Being a very systematic and
mature company they adopted TIMe as their methodology, and started off using the
Developing from scratch processes of TIMe.

They set up a team consisting of senior people from development, marketing and pro-
duction, and a steering committee that involved the top management (since this was a
key strategic issue for the company).

Figure 9-1: Developing from scratch

Analysing
from scratch

Analysing in-
crement

Designing
from scratch

Designing in-
crement

Implementing
from scratch

Implementing
increment

System
specified

System de-
signed

Implement-
ed

Family de-
veloped

Some idea
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 2

Introduction 9TIMe
The first task was Analysing from scratch (p.9-4), which contains an internal milestone
where the technical feasibility and the business potential can be evaluated. If the evalu-
ation turned out to be favourable, they would continue with Specifying from scratch to
develop specifications and then Designing from scratch and Implementing from scratch.
Each of these would result in a milestone with Documentation (p.9-68).

The development process is intimately connected to the production of a set of descrip-
tions. The relation between the different descriptions and the various milestones
representing the progress of time is found in the map of descriptions and milestones. The
figure contains both references to the strategies and activities associated with a certain
description and it gives examples of the various descriptions taken from this initial
development.
Example: Initial development 9 - 3 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Analysing Domain

TIMe9
Analysing from scratch

This activity involves the activities in:

• Analysing Domain (p.9-4).

• Analysing Requirements (p.9-18).

• Application Specification (p.9-21).

and the resulting descriptions are found in Domain Descriptions (p.9-68).

Analysing Domain

For the domain analysis of the Access Control System we use the strategy for domain
analysis which involves:

1. Make Domain Statement (See also activity) (p.9-4)

2. Make Dictionary (see also activity) (p.9-5)

3. In parallel:

- Make Domain Object Model (see also activity) (p.9-6)

- Make Domain Property Model (see also activity) (p.9-7)

4. Harmonise Domain Descriptions (p.9-13)

Our first step is to identify and understand the most important concepts of the domain.
At first we are less interested in the interrelationships than the pure concepts of the sub-
ject. This is done by making a Domain Statement and a dictionary.

Make Domain Statement (See also activity)

The Domain Statement may in the first round be made for the Domain, without any con-
sideration of a system. An extract of the Domain Statement can be seen in Figure 9-2
"Domain Statement V1" (p.9-5). The complete Domain Statement made according to
the guidelines can be found in Domain statement V2.
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 4

Analysing from scratch
Analysing Domain 9TIMe
Figure 9-2: Domain Statement V1

Open figure

Make Dictionary (see also activity)

If we just consider the concepts of the domain statement and not consider any system,
we get the first version of the dictionary, see Figure 9-3 "Domain specific Dictionary"
(p.9-6).

Area of concern

Access control has to do with controlling the access of users to
access zones. Only a user with known identity and correct
access right shall be allowed to enter into an access zone. Other
users shall be denied access.

Stakeholders

Users of the system, those responsible for the security of the
access zones.

Services

The user will enter an access zone through an access point.

The authentication of a user shall be established by some
means for secret personal identification (code). The authorisa-
tion is based upon the user identity and access rights associated
with the user.

A supervisor will have the ability to insert new users in the
system.

Users shall be able to change their secret code.

Helpers

We assume some central means to establish access rights
automatically.
Example: Initial development 9 - 5 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Analysing Domain

TIMe9

Figure 9-3: Domain specific Dictionary

Open figure

The first dictionary will always be very sketchy and we shall accept to maintain the dic-
tionary throughout the project.

Make Domain Object Model (see also activity)

The next step is to make the Domain Object Model - this includes to describe the main
concepts as classes, their relations, connections, attributes, aggregation, localisation and
possible generalisation hierarchies.

The starting point is the domain statement (Figure 9-2 (p.9-5)) and the dictionary (Figure
9-3 (p.9-6)).

Domain Object Model, classes, relations and connections

The most general object model of a Domain is an object model with the identified
classes and their relations as in Figure 9-4 "The access control domain" (p.9-6). These
classes come about by studying the Domain Statement and the Dictionary.

Figure 9-4: The access control domain

Open figure

Access point A point of access into an access zone.
Access zone A physical or logical zone guarded by a set of access

points.
Authentication To establish the identity of a user.
Authorisation To establish the right of a user to enter an access

zone.
Authorizer The entitity which determines authentication and

authorisation.
PIN A personal identification means.
User A person with known identity with

authorisation to enter specific access zones.
User name A user name.
Access Granting The role of granting (or not granting) a user access.

may enter
bounded by

AccessZone

AccessPoint User

may enter
through*

1..*

*

1

11
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 6

Analysing from scratch
Analysing Domain 9TIMe
This is a Domain Object Model of the access control domain, expressed in the UML
notation. We recognise the main concepts in the dictionary as classes in the diagram.
Relations help to understand the Domain. We know that the User and AccessPoint
objects will be active objects, while AccessZone objects are passive. This is indicated
by the communication connection between AccessPoint and User. It may later turn out
that there are more active objects.

Domain Model, attributes

We then identify the necessary attributes, see Figure 9-5 "Attribute specification" (p.9-
7). These may either be obvious from the domain or they may come as a result of
required properties.

Figure 9-5: Attribute specification

Open figure

Domain Object Model, generalisation/specialisation

At this point in the development, we find no reason to define generalization relations.
Informally we may consider access points of different specializations such as unidirec-
tional access points and bidirectional access points. Furthermore we may consider
different specializations of what security is needed. Some access points may only
require a proper physical identification such as a card, while other access points may
require the presentation of a secret personal code.

Such considerations are currently deferred.

Domain Object Model, aggregation, localisation

We conclude that for this example there is no need for aggregation or localisation at this
point.

Make Domain Property Model (see also activity)

We have identified the User as a concept in the domain. We know that the User will
require four functions, involving access points and possibly other objects:

• User Access (p.9-8)

• PIN changing (p.9-9)

• New User (p.9-10)

User

Name: string
Number: Integer
Level: Integer

Access Zone

Name: string
Level: Integer

Access Point

Name: string
Number: Integer
Access: key type
Example: Initial development 9 - 7 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Analysing Domain

TIMe9

For these we make mscs describing the most important cases of interaction.

User Access

The handling of the user access is at the very core of our concerns. From the domain
statement (Figure 9-2 (p.9-5)) we read that users either get access to an access zone or
they do not. This can be expressed through a simple MSC-96 model of the service.

Figure 9-6: User Access

Open figure

From Figure 9-6 "User Access" (p.9-8) we cannot determine which entities are involved
in the service, but from Figure 9-7 "MSC User_accepted" (p.9-8) we define that the user
communicates with a Access Granting role to determine his desired access to the access
zone.

Figure 9-7: MSC User_accepted

Open figure

The other alternative is not more complicated.

msc UserAccess

User_accepted User_not_accepted

AccessGrantingUser

PIN

OK

MSC User_accepted
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 8

Analysing from scratch
Analysing Domain 9TIMe
Figure 9-8: MSC User_not_accepted

Open figure

The reason why we introduce an Access Granting role and not just let AccessPoint do
the access granting is that this is not obvious from the domain descriptions. We only
know that the User uses the access points in order to get access, but it may be so that
access points are just interface objects and that the real validation of users is done by
some other objects not identified yet.

PIN changing

One of the scenarios when the PIN code is changed is described in Figure 9-9 "MSC
User changing PINwith success" (p.9-10).

User

PIN

NOK

MSC User_not_accepted

AccessGranting
Example: Initial development 9 - 9 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Analysing Domain

TIMe9

Figure 9-9: MSC User changing PINwith success

Open figure

Note that PINChanging in is not a class in the Domain Object Model, but a functional
role.

The reader should note that our property model of a PIN Change only shows one suc-
cessful scenario. The unsuccessful ones are not described. This is currently deferred, but
we shall return to the problem of incompleteness and impreciseness shortly.

New User

There is definitely also a need to allow new users access to the zones. We have in the
domain statement Figure 9-2 "Domain Statement V1" (p.9-5) made clear that only the
supervisors can enter new users into the system.

PINChangingUser

ChangePIN

EnterOldPIN

MSC PIN_Change_OK

OldPIN

EnterNewPIN

NewPIN

OK
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 10

Analysing from scratch
Analysing Domain 9TIMe
Figure 9-10: New User

Open figure

We have now introduced another role Authorizer to show that we do not expect the
supervisor to take personal care of the access of all users. There is some automatic
means which controls the access. This may be an electronic device or it may in principle
be a human being. Nevertheless there is a system of access rights which is exercised by
some active objects.

More services?

We have described three different services. It is obvious that more services are conceiv-
able and most probably necessary. We may have the need to delete users from the
system and we may want to define more diverse access points. For the sake of simplicity
we shall keep to these three services in our initial development.

Role model

We have introduced some (functional) roles which describe in an abstract fashion the
counterparts of the user when exercising the services. The roles are not necessarily inde-
pendent of each other. We define an UML model which describe the relations between
the roles.

msc New_User

New User Supervisor Authorizer

request PIN give PIN

PIN
Example: Initial development 9 - 11 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Analysing Domain

TIMe9

Figure 9-11: Role object model

Open figure

We define here that the Access Granting and PIN Changing roles are actually special-
izations of the more general Authorizer which we introduced in our New User service.

Casting

Having defined a tentative object model Figure 9-4 "The access control domain" (p.9-
6) and a property model with role Figure 9-11 "Role object model" (p.9-12), we have the
need to define the relations between the objects (classes) and the roles. In the domain
this may not be entirely clear what objects should play what roles. The casting may be
deferred to later stages in the development or contain unknown relations.

It is also the case that when trying to define the casting, new insight is achieved concern-
ing the domain as such. In our case we saw the need to introduce an Authorizer object
into the domain object model.

Figure 9-12: Casting Access Control

Open figure

AccessGranting PINChanging

Supervisor

Authorizer

User

New User

control

data in Authoriz-
er

User

AccessZone

User

represented by

play

AuthorizerAuthorizer plays
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 12

Analysing from scratch
Analysing Domain 9TIMe
We also see from Figure 9-12 "Casting Access Control" (p.9-12) that not all objects
actually play roles since roles are normally played by active objects. The access zones
are not active objects, but rather represented by passive data in other objects such as in
the Authorizer.

Harmonise Domain Descriptions

When describing the domain we have approached the task from different perspectives.
We have had the informal prose perspective, we have had the more rigid dictionary per-
spective; we have had the object model perspective and the property model perspective.
The perspective have not been entirely independent as we have used the insight of the
domain statement and dictionary in our work with object and property models.

Still the different perspectives are independent enough to produce new insight which
must be carried over to all the other descriptions for consistency. This is especially true
when we try actively to tie the descriptions together as we do with the casting.

Our casting Figure 9-12 "Casting Access Control" (p.9-12) results in an understanding
which must be carried over to the object model.

Furthermore it is a matter of taste to what level of completeness, detail and precision the
domain descriptions should be brought. It is reasonable to take at least one more itera-
tion on all descriptions after the first round of sketching the domain.

Harmonize Domain Statement (see also activity)

We want to make the domain statement more complete and we make sure that we actu-
ally consider all the aspects laid down by the strategy for making domain statements.
Example: Initial development 9 - 13 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Analysing Domain

TIMe9

Figure 9-13: Domain Statement V2

Open figure

Harmonize Domain Dictionary (see also activity)

Here we recognize that we have introduced a number of new concepts during our work
with the services and the role model. These concepts must be carried back to the
dictionary.

Excecutive summary and area of concern

Access control has to do with controlling the access of users to access
zones. Only a user with known identity and correct access right shall be
allowed to enter into an access zone. Other users shall be denied access.

Stake holders

In addition to users, there will implicitly be owners of the access zones.
The rules for which users are granted an identity are laid down by these
owners, but this issue is considered to be outside the domain.

Passive Objects and associations

Access zones are passive objects. Their associations with other objects
are completely given by the domain object model.

Active objects and connections

Users and access points are active objects. The connections are given by
the domain object model. There are also supervisors (operators) who
have the responsibility to determine the access rights of users to the
access zones.

Services

1. Users with known identify shall be allowed access, while others shall
be denied access.

2. Users shall be able to change their personal identification.

3. Only supervisors shall have the capability to insert new users into the
system.
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 14

Analysing from scratch
Analysing Domain 9TIMe
Figure 9-14: Harmonised Domain specific Dictionary

Open figure

Harmonize Object model (see also activity)

We saw in Casting (p.9-12) that a better understanding of the domain could be achieved
through introducing Authorizer as a concept in the domain. This insight may come early
as a part of the domain analysis or it may come later as a result of more specific family
and system analysis.

In our case the insight was achieved as a result of trying to perform casting in the domain
analysis.

Figure 9-15: Domain model of Access Control V2

Open figure

In Figure 9-15 "Domain model of Access Control V2" (p.9-15) we see that the introduc-
tion of Authorizer has also triggered the redefinition of some of the relations.

Access Granting The role of granting (or not granting) a user access.
Access point A point of access into an access zone.
Access zone A physical or logical zone guarded by a set of access

points.
Authentication To establish the identity of a user.
Authorisation To establish the right of a user to enter an access

zone.
Authorizer The entity which determines authentication and

authorisation.
Authorizer Also: the role of storing PINs
PIN Changing The role of changing the PIN of a user
PIN A personal identification means.
Supervisor A person who controls the authorizer
User A person with known identity with

authorisation to enter specific access zones.
User name A user name.

1

1

1

*

*

**

* m
ay enter

Configures

AccessZone

User

bounded

may enter
through

Authorizer

has knowledge

AccessPoint

1

1

Example: Initial development 9 - 15 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Analysing Domain

TIMe9

Harmonize Property model (see also activity)

Property models are of course also affected by the changing of the object model, but here
we shall focus on the strategy to make a property model more precise and more detailed.
The need to make a property model of the domain more precise and detailed may come
from external sources determined to understand the model, but failing to do so. It may
also be the case that questions are asked about the model which it is not capable of giving
an adequate answer to.

Here we merely refer to the through walkthrough of the PIN Change service as an exam-
ple of how to develop property models. The reader should also consult the strategy for
domain property modelling.

Here we show what the result of the process of making PIN change more precise and
more detailed

Figure 9-16: Change PIN (MSC-96)

Open figure

In Figure 9-16 "Change PIN (MSC-96)" (p.9-16) we see that in addition to the success-
ful cases we have introduced non-successful cases. Furthermore we have taken a stand
on who should determine the PIN-code. That the PIN is to be changed does not mean
that the user is allowed to choose his own PIN as it may be selected by the system (the

User PIN Changing

msc PIN_Change

OldPINOK

Idle

exc OldPIN_NOK

GiveNewPIN

ValidateOldPIN
subst GiveOldPIN by GiveNewPIN

exc NewPIN_NOK

ChangePIN

ValidateOldPIN
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 16

Analysing from scratch
Analysing Domain 9TIMe
PINChanging role). Here we show that the new PIN is actually given. We have made
the service more detailed by requiring that the given new PIN should also be validated.
We give no indication of what the validation should include.

Summarizing domain descriptions

In Figure 9-17 "Domain Descriptions of Access Control" (p.9-17) we give an overview
of the domain descriptions which the interactive reader can use for his exploration of the
description. There are more descriptions connected through the map than given here in
the textual file itself.

Figure 9-17: Domain Descriptions of Access Control

Open figure

Domain Object Models

Classes V1
Classes V2
Attributes

Domain Property Models

role
structure

Text

Domain Statement

Domain Dictionary
Harmonized Dictio-

nary

User Access

msc User Access
Roles

 PIN change narrowed
PIN change in Hoare

PIN Change

msc PIN Change V1
msc PIN Change V2

Text New User

New User

msc New User

casting

Cast

Services
Example: Initial development 9 - 17 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Analysing Requirements

TIMe9

Analysing Requirements

We have not identified the Access Control system in the Figure 9-15 "Domain model of
Access Control V2" (p.9-15). It says a lot about the Domain, but nothing directly about
the system. Indirectly, however, it tells us what kind of entities and relationships the sys-
tem should handle.

The System and its Application Context

We make System contexts and object models in order to evaluate different solutions,
while properties are handled in the Application Specification (p.9-21) activity.

Introducing the system implies that we have to decide on the border of the system: what
is part of the system and what is part of the environment. Do we know all the real users
of the system. In this case this is rather simple. AccessPoints are parts of the system,
while AccessZones and Users are part of the environment. We have already specified
that the User from the domain model represents all possible users, also them without any
PIN, but we have not specified what happens if such a user tries to access an access zone.
The Access Zones are in the environment and the system performs Entry Control and
Exit Control for the Access Zones. (Each Access Point will be served by a Local Station
in the system.)

We have to decide on the main technology to be used. This includes a decision on which
kind of “keys” the users should use. Ordinary keys are abandoned, fingerprints is not
mature technology, “køfri”-technology is considered to be too expensive, so we end up
with plastic cards. We also constrain ourselves to make access system, where the access
zones are rooms entered through doors.

Making system family statement (see also activity)

We document the decisions by refining the existing Domain Statement with system spe-
cific elements, see Figure 9-18 "Problem Statement, with system specific elements"
(p.9-19).This is based upon the domain specific Domain Statement, but includes the fact
that a system is introduced. The system specific concepts are emphasized, that is oper-
ator, card, door. In the domain analysis we just specified that access points may be
blocked and that they report their status - now we introduce the Operator as the special
user of the system that takes care of part of the blocking and get the status. It may still
be so that some kind of blocking is done automatically and that the status also may be
interesting for other persons than the Operator.
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 18

Analysing from scratch
Analysing Requirements 9TIMe
Figure 9-18: Problem Statement, with system specific elements

Open figure

Introducing a system also raises a few questions. Examples are:

• What will the physical interfaces be and what are the protocols to be used?

• What are the design constraints, e.g. requirements to fault tolerance, security,
modifiability?

• Should the system keep track of where the Users are, i.e. know in which Access Zone
each User is at any time? We decide to answer no!

• Should the system count the Users that pass each Access Point? If yes, should we
ensure that the User really passes through? The answer is no!

• Will there be different kinds of Access Points? It is reasonable to believe that bidirec-
tional doors are different from unidirectional doors and that the authentication and
authorisation requirements will depend on the direction. The answer is yes.

Relation to domain

The main purpose of the access control system is to control the access
of users to access zones. Only a user with known identity and correct
access right shall be allowed to enter into an access zone. Other users
shall be denied access.

Services

• New User: The Operator shall be able to enter new users.

• User Access: The authentication of a user shall be established by
means of a magnetic strip card holding a card code and a secret per-
sonal identification number, PIN, entered by the user. The
authorisation is performed by the system on the basis of the user
identity and access rights associated with the user.

• Change PIN: It should be possible by the user to change his PIN.

Interfaces and environment

When a user is authenticated and authorised the access zone may be
entered through a door. The environment not controlled by the system
is considered as a special zone which every user may enter. Therefore,
a door is seen as a connection between two access zones. Some doors
may only be passed in one direction while other doors may be passed
in both directions.

It should be taken into consideration that one access point can control
the access to a set of access zones and that acccess to one access zone
can be controlled by a set of access points.
Example: Initial development 9 - 19 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Analysing Requirements

TIMe9

• How should the access rights be represented? By giving each Access Zone an access

level and each User an access capability? Or by explicitly listing which Access Zones
are open to each User? We decide to use the latter approach!

System family dictionary (see also activity)

The dictionary is updated to become a dictionary, where the system specific entities are
included, that is all concepts that are introduced with the introduction of the system are
defined in the dictionary, see Figure 9-19 "Dictionary, with system specific concepts
included" (p.9-20)

Figure 9-19: Dictionary, with system specific concepts included

Open figure

Access Granting The role of granting (or not granting) a user access.

Access point A point of access into an access zone.

Access zone A physical or logical zone guarded by a set of access points.

Authentication To establish the identity of a user.

Authorisation To establish the right of a user to enter an access zone.

Authorizer The entitity which determines authentication
andauthorisation.

Authorizer Also: the role of storing PINs

Card A personal identification means. Typically a plastic card.

Card id A unique identification of a card stored in machine-readable
form on the card. We distinguish between user and supervi-
sor cards.

Door A controlled passage from one access zone to another.

Operator A person with known identity and authorisation to change
the status of the system. (See also supervisor)

PIN Changing The role of changing the PIN of a user

PIN A personal identification number. This number should be
kept secret by the user and typed in on enering the access
zone.

Supervisor A person who controls the authorizer

User A person with known identity with authorisation to enter
specific access zones.
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 20

Analysing from scratch
Application Specification 9TIMe
Non-functional Requirements

In addition to the functional requirements laid down in the service descriptions, there are
general requirements to the performance of the system which cannot easily be described
in languages like SDL and MSC. We call them non-functional requirements and Figure
9-20 "Non-functional requirements of AC system" (p.9-21) shows the non-functional
requirements for the access control system we want to make.

Figure 9-20: Non-functional requirements of AC system

Open figure

Application Specification

(See also activity).

When to leave the general and abstract domain and property models and when to dig into
the details of the system, is very much dependent upon the possibilities and resources of
the project and the company. A general statement is that projects start digging into
details far too early. On the other hand the project should not wander around in descrip-
tions which are not adequate for the questions which are at hand. There is no reason to
keep using informal UML diagrams when SDL is called for.

The application specification consists of five parts:

1. Make a context diagram (p.9-22)

2. Specifying the domain given objects (p.9-23)

3. Specifying the system given objects (p.9-28)

4. Specifying the interface given objects (p.9-28)

Modifiability. The system shall be modifiable to accommo-
date other services than to open doors. One possible service
will be an automatic teller (minibank).

Size. The system shall be flexible with respect to the number
of access zones and access points. It shall be able to serve
from one to 100 zones each having from one to 100 access
points. The total number of access points in a system is lim-
ited to 1000 and the total number of users to 10 000.

Processing capacity. The system shall be able to serve six
users a minute at each Access Point up to a total continuous
peak load of 600 users a minute. Higher input rates shall not
lead to loss or corruption of data, only to longer delays.

Error handling. A single error shall not affect the (normal)
operation of more than 10 access points.

Security. The authentication and authorisation information
shall be secured against unintended access.
Example: Initial development 9 - 21 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application Specification

TIMe9

5. Specifying the services (p.9-29)

Make a context diagram

When the system and its environment has been identified we classify the entities in the
environment in two main categories:

• The entities stemming from the Domain analysis: In this case: Users, Access Zones

• The entities that are introduced in connection with the introduction of the system: In
this case: Doors, Cards and Operators.

For each of these we ask ourselves if they are users of the system, if they are processes
that are controlled by the system, if there are other systems, or if they are just known
entities.:

• Known Entities: Cards, AccessZones

• Other Systems: None

• Controlled Processes: The actual doors and panels are controlled processes, and the
corresponding parts of the system are controlling these.

• Users: Users and Operators are different kinds of users: they both use the actual sys-
tem. Users are Domain Specific, while Operators are System Specific Users. There
are no entities in the Environment that are just influenced by the system without
being in direct contact with it, unless we include the owners of the Access Zones that
may be paid by users entering a zone.

• The notion of User includes all possible persons that may try to enter some Access
Zone, either with a valid card, but a bad PIN code, or with a non-valid card, and even
persons with no card at all. This is important when the robustness of the system shall
be designed - it will not just be well-behaved users that will try to use the system. This
is in the Object Model represented by User having one or Zero cards.

The system context is depicted in Figure 9-21 "The access system context" (p.9-23).
Here we see the system itself and the system environment. Not everything in the envi-
ronment is shown, only the parts that are related to the system.
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 22

Analysing from scratch
Application Specification 9TIMe
Figure 9-21: The access system context

Open figure

Specifying the domain given objects

When the environment of the system and the main technological solution has been cho-
sen, we do the same as for Domain Analysis, that is refining the object model taking into
account objects and classes coming from the fact that the system is introduced.

We make a new Object Model that incorporates the Doors and the Cards and their rela-
tions to the already identified types. This is described in Figure 9-22 "The access control
domain, system specific" (p.9-24).

may accept
1

0..1
*

1

*

1

1

Access Zone

may use

User

Card

controls access to

owns

may enter

Operator

Door

ACsystem

*

1

0..1
Example: Initial development 9 - 23 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application Specification

TIMe9

Figure 9-22: The access control domain, system specific

Open figure

From the diagram we can see that a User may enter several Access Zones and that each
Access Zone may accept several Users.

Analyse each class

In order to understand each concept type better and describe precisely the constraints on
related entities, we make explicit class definitions with constraints on their environ-
ment.. For each of the class we also consider the property models involving the class and
determine if the property models have implications for relations, connections and
attributes associated with the class.

The concept of User and its relation to the environment is described in Figure 9-23 "The
class definition of User" (p.9-25).

1

*

1
1*

1

1

1

controls

m
ay enter

controls

owner

Card

Door

accessed through

may

AccessZone

AccessPoint User

Authorizer

has knowl-

owns

*

*

1..*

1

0..1

1

Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 24

Analysing from scratch
Application Specification 9TIMe
Figure 9-23: The class definition of User

Open figure

The attributes of the User are defined to be a name and a number. In our Domain each
User shall own a Card and have the right to enter at least one Access Zone. From the
type environment it is clear that an instance of User:

• shall own exactly one Card, (Users with no card cannot be known to the system, but
having a card is not the same as to be allowed access)

• may enter one or more Access Zones,

• may use zero or one Access Point (at one time).

The concept of Access Zone and its environment is described in Figure 9-24 "The class
definition of Access Zone" (p.9-25)

Figure 9-24: The class definition of Access Zone

Open figure

The concept of Access Point and its environment is described in Figure 9-25 "The class
Access Point with environment" (p.9-26)

owns

may enter

may use

Card

may

User

Name
Number

AccessPoint

AccessZone

0..1

1

* 1

1*

1 *

may enterAccess Zone

controls

Door

Name
Number
Level

may accept

accessed through

AccessPoint

Authorizer

has know-

ledge about
User*

1,*

1

1

1

1,2
1

1

* *
Example: Initial development 9 - 25 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application Specification

TIMe9

Figure 9-25: The class Access Point with environment

Open figure

Generalisation/specialisation hierarchies

Will all the Access Points be similar? No, the requirements for authentication and autho-
risation will vary depending on the relative access restrictions on the Entry Zone
compared to the Exit Zone. In some cases, no authentication and authorisation is needed
at all. It is sufficient that the User operates a simple push key to open the door. In other
cases the User must enter the card and, in addition, enter a PIN. Finally, there will be
access points where the PIN is not required, only the card.

Two Access Points may control a single Door in the case when the Door is bidirectional.
Will the difference between Doors have any consequences for the Access Points? We
do not know that yet, but it is reasonable to believe that some extra coordination will be
needed when two Access Points control the same Door.

From this we gather that there will be different types of Doors and Access Points. Thus,
to complete our object models we should define all the subclasses.

This results in the specialisation hierarchies in Figure 9-26 "Classification of Doors"
(p.9-26) for Doors,

Figure 9-26: Classification of Doors

Open figure

and in Figure 9-27 "Classification of Access Points" (p.9-27) for AccessPoints.

may enter

Access Point

User

Door
Name
Number
Access

Authorizer controls

may

AccessZone

accessed through

controls

*

*

*1 1

1

11,2

1
1,*

Unidirectional Door

Bidirectional Door

Door
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 26

Analysing from scratch
Application Specification 9TIMe
Figure 9-27: Classification of Access Points

Open figure

In Figure 9-28 "AccessControl System V1" (p.9-27) we define the Access Control sys-
tem containing objects to match the domain specific concepts AccessPoint, Authorizer
and Console

Figure 9-28: AccessControl System V1

Open figure

We may also continue to peek into the structure of the Access Point which is shown in
Figure 9-29 "AccessPoint V1" (p.9-28) .

Simple AP

Card and PIN AP

Access Point Card Only AP

ap(100):
AccessPoint

cons(5):
Console

Authorizer

AccessPoint Console

Panel

[(validity)]

[(outp)]

[code] [code]

[(inp)]

use SignalLib

[(inp)]

[(outp)]

[(validity)]

system AccessControl

[isOpen,

isClosed
[unlock,

lock]

�

��
Example: Initial development 9 - 27 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application Specification

TIMe9

Figure 9-29: AccessPoint V1

Open figure

Specifying the system given objects

From Figure 9-29 "AccessPoint V1" (p.9-28) we see that a system specific concept
Panel has emerged. It represents the interface between the user and the access point con-
troller. The access point Controller is also a new concept. It represent some calculating
capacity assumed part of the access point.

We do not want to go into the details of these processes at this stage.

Specifying the interface given objects

We have already in Specifying the system given objects (p.9-28) introduced the inter-
face object Panel which is the low level interface between the user and the access
control system. From the context diagram in Figure 9-21 "The access system context"
(p.9-23) we may perform the general “mirroring” and achieve the first version of the
access control system structure in SDL

In Figure 9-28 "AccessControl System V1" (p.9-27) we see that the supervisor (opera-
tor) is mirrored by a Console and the User mirrored by the AccessPoint. Furthermore we
assume that the Authorizer concept will find its counterpart inside the system.

We assume a Panel as a low level interface both in the Console and in the AccessPoint.
This is why the definition of Panel appears external to the AccessPoint.

block type AccessPoint 1(1)

Door

[(validity)]

[code] [opened,
closed]

[open,
close]

[(inp)]

[(outp)]

[(validity)]

[Code]

P1

signal opened,closed ; /* Door -> Controller */
signal open, close ; /* Controller -> Door */
/* signallists (inp), (out) and (validity) defined in
enclosing block. This holds also for signal ’Code’ */

CE

CU

D

Controller

panl:
Panel

[isOpen,
isClosed

[unlock,
lock]

DO

� � �

�
�

Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 28

Analysing from scratch
Application Specification 9TIMe
Specifying the services

Having worked with the object models for a while developing our conceptual under-
standing of the structure of the access control systems, we return to property modelling
before we have reached the full definition of the object model. We want to use the prop-
erty descriptions of the services to reach the behavior descriptions in the object model.

The following services have been described in the domain model and now we shall
refine them in the context of an access control system.

• Domain model: User Access (p.9-8)

• Domain model: PIN changing (p.9-9)

• Domain model: New User (p.9-10)

These models are refined in

• Application model: User Access (p.9-30)

• Application model: PIN Change (p.9-31)

• Application model: New User (p.9-32)

and they all use MSCs which we classify as Auxiliary MSCs (p.9-32).

Having worked on the object model, in order to associate the roles of the domain prop-
erty model with the objects of the object model, we need to perform casting.

Figure 9-30: System specific casting

Open figure

AccessGranting

PINChanging

Supervisor

Authorizer

User

New User

Environment

AC system

plays

plays

AccessPoint
Console

Authorizer
Example: Initial development 9 - 29 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application Specification

TIMe9

The casting gives little insight into the actions of the new objects which are contained
inside the AC system, but it defines the casting (play) relation. We may now define
property MSC diagrams of the services where the AC system becomes one instance.
This description can be called a (“black box”) specification. The corresponding domain
service model is used for inspiration.

User Access

Figure 9-31: UserAccess V1

Open figure

The MSC-96 diagram in Figure 9-31 "UserAccess V1" (p.9-30) represents the service
interaction overview. The details are hidden inside the referenced MSCs EstablishAc-
cess and OpenDoor which are found in Figure 9-34 "EstablishAccess V1" (p.9-33) and
Figure 9-35 "OpenDoor" (p.9-34).

We also notice that the instance AC System is decomposed. When the decomposition is
followed, we enter a more detailed specification of the services which is the subject of
the more detailed application design activity.

msc UserAccess

User

AC System
decomposed as

AC_UserAccess

Idle

EstablishAccess
subst msg(txt) by msg(“Illegal PIN”)

opt

OpenDoor

PIN OK

Idle

“Please enter”
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 30

Analysing from scratch
Application Specification 9TIMe
PIN Change

Figure 9-32: PIN_Change V1

Open_figure

The PIN Change service shown in Figure 9-32 "PIN_Change V1" (p.9-31) also include
references to auxiliary MSCs found in Figure 9-34 "EstablishAccess V1" (p.9-33) and
Figure 9-36 "GivePIN" (p.9-34).

User

msc PIN_Change

PIN OK

Idle

opt

exc “Wrong PIN”

EstablishAccess
subst msg(txt) by msg(“Illegal PIN”)

Idle

GivePIN /*new PIN*/

GivePIN /*new PIN again*/

AC System
decomposed as

AC_PIN_Change

“Give PIN again”

“Give new PIN”
Example: Initial development 9 - 31 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application Specification

TIMe9

New User

Figure 9-33: NewUser V1

Open figure

The service New User shown in Figure 9-33 "NewUser V1" (p.9-32) utilize the MSC
substitution mechanism to modify the EstablishAccess MSC referenced such that the
User is replaced by the Supervisor. The auxiliary MSCs are found in Figure 9-34 "Estab-
lishAccess V1" (p.9-33) and Figure 9-36 "GivePIN" (p.9-34).

Auxiliary MSCs

Since certain behavior patterns (interaction patterns) are common among the services,
we present these common patterns in a section by itself.

Supervisor

msc NewUser

PIN OK

alt

EstablishAccess
subst User by Supervisor

subst msg(txt) by msg(“Not Supervisor”)

Idle

GivePIN /*new PIN*/
subst User by Supervisor

New User

“Sorry”

CardId

Card(Cid,PIN)

Idle

AC System
decomposed as
AC_NewUser

Idle
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 32

Analysing from scratch
Application Specification 9TIMe
Figure 9-34: EstablishAccess V1

Open figure

User

ACSystem
decomposed as

AC_EstablishAccess

msc EstablishAccess

loop
<0,3> “TryAgain”

GivePIN

GivePIN

CardId

CardOut

Idle

Idle

alt msg(txt)

PIN OK
Example: Initial development 9 - 33 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application Specification

TIMe9

Figure 9-35: OpenDoor

Open figure

Figure 9-36: GivePIN

Open figure

User AC System

msc OpenDoor

door

Opened
Push door

PIN OK

Idle

Alarm

door

“Error”

alt
Lockdoor

door

alt Closed

Lockdoor

Unlock

User

msc GivePIN

loop
<4> Digit

ACSystem
decomposed as

AC_GivePIN
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 34

Analysing from scratch
Application design 9TIMe
Application design

(See also activity).

We have in Application Specification (p.9-21) described the top levels of the object
structure and the services by “use cases” where the system as such appears as one
instance. This is basically a “black box” specification. In order to approach an imple-
mentation further and to be more aware of the problems and potentials of our system,
we should make a more detailed specification.

Property orientation and combined approach

We start by working on the property model, but we will supplement the property ori-
ented approach with an object oriented one such that we perform a mixed approach to
system description and the constructive use of MSC.

We decompose the AC system instances of our specification MSCs according to the
structure found in Figure 9-28 "AccessControl System V1" (p.9-27). If we take User
Access as an example this results in Figure 9-37 "AC_UserAccess V1" (p.9-35).

Figure 9-37: AC_UserAccess V1

Open figure

For PIN Change the decomposition results in Figure 9-38 "AC_PIN_Change V1" (p.9-
36).

msc AC_UserAccess

AccessPoint
decomposed by

AP_UserAccess

Idle

AC_EstablishAccess
subst Entry by AccessPoint

subst msg(txt) by msg(“Illegal PIN”)

opt

AC_OpenDoor

PIN OK

Idle

ConsoleAuthorizer

“Please enter”
Example: Initial development 9 - 35 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application design

TIMe9

Figure 9-38: AC_PIN_Change V1

Open figure

The interface consistency of the decomposition is easily established since the decompo-
sition diagram follows the exact same structure as the diagram where the decomposed
instance is located.

Discovering Entry

In both User Access and PIN Change (and also New User) we have applied the auxiliary
MSC EstablishAccess. In User Access the access is establish through an Access Point
while in PIN Change and New User the access is done through a console. Since we want
to keep the structures simple and keep the orthogonality between instance decomposi-
tion and referencing auxiliary MSCs (see in the MSC tutorial and confer the Figure of
this orthogonality), we need to describe the lower level AC_EstablishAccess in way
which generalises (or parameterizes) such that the AccessPoint and the Console can be
seen as similar entities.

msc AC_PIN_Change

PIN OK

Idle

opt

alt

Idle

AC_GivePIN
subst Entry by Console

/*new PIN*/

AccessPoint Authorizer

AC_EstablishAccess
subst Entry by Console

subst msg(txt) by msg(“Illegal PIN”)

AC_GivePIN
subst Entry by Console

/*new PIN again*/

NewCode(Cid,PIN)

Console
decomposed by

Console_PINChange

“Give PIN again”

“Wrong PIN”

“Give new PIN”
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 36

Analysing from scratch
Application design 9TIMe
We conclude that in AC_EstablishAccess we wanted to introduce an instance called
Entry which could be filled by both the AccessPoint and the Console.
AC_EstablishAccess is shown in Figure 9-39 "AC_EstablishAccess V1" (p.9-37).

Figure 9-39: AC_EstablishAccess V1

Open figure

Already at this point we halt and consider whether our new insight from the property
model should be carried over to (harmonized with) the other descriptions in particular
the SDL structure model.

Harmonizing with the object model

We have discovered a concept Entry which is not property reflected in the object model.
We said above that both AccessPoint and Console could be Entry. Said in object ori-
ented words this could mean that there could be a concept Entry which AccessPoint and
Console were subtypes of.

We decide to work on this idea and discover that this is in fact fruitful.

Entry
decomposed by

Entry_EstablishAccess Authorizer

msc AC_EstablishAccess

loop<0,3>

“TryAgain”

AC_GivePIN

CardId

Code(Cid,PIN)

AccLevel(m)

alt
AccLevel(n)

AC_GivePIN

Code(Cid,PIN)

PIN OK

CardOut

Idle

msg(txt) Not acceptable
Example: Initial development 9 - 37 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application design

TIMe9

Figure 9-40: AccessControl System V2

Open figure

Figure 9-40 "AccessControl System V2" (p.9-38) shows the modified system structure.
We notice that the low level interface Panel now has been contained in Entry as shown
in Figure 9-41 "Entry" (p.9-39).

ap(100):
AccessPoint

cons(5):
Console

Authorizer

AccessPoint Console

[(validity)]

[(outp)]

[code] [code]

[(inp)]

use SignalLib

[(inp)]

[(outp)]

[(validity)]

system AccessControl

[isOpen,
isClosed

[unlock,
lock]

�

��

Entry

�

�

Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 38

Analysing from scratch
Application design 9TIMe
Figure 9-41: Entry

Open figure

Having introduced Entry, the AccessPoint becomes slightly simpler as shown in Figure
9-42 "AccessPoint V2" (p.9-40).

block type Entry 1(1)

[(validity)]

[code]

[(inp)]

[(outp)]

[(validity)]

[Code]

P1

/* signallists (inp), (out) and (validity) defined in
enclosing block. This holds also for signal ’Code’ */

CE

CU

panl:
Panel

� �

�
�

Panel

contr:
Controller

virtual
Controller
Example: Initial development 9 - 39 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application design

TIMe9

Figure 9-42: AccessPoint V2

Open figure

The Console becomes almost empty as shown in Figure 9-43 "Console" (p.9-40).

Figure 9-43: Console

Open figure

The low-level unintelligent Panel

A Panel is contained in both the AccessPoint and the Console. From the idea that the
Panel is the ultimate interface given entity and the Controller the logical “brain” of the
Entry, we postulate that the Panel should have no specific knowledge of the services as
such and that the same Panel should be used in both AccessPoint and Console.

1(1)

Door

[opened,
closed]

[lock,
unclock]

signal opened,closed ; /* Door -> Controller */
signal open, close ; /* Controller -> Door */
/* signallists (inp), (out) and (validity) defined in
enclosing block. This holds also for signal ’Code’ */

D

[isOpen,
isClosed

[unloc
k,

DO

�

contr:
Controller

redefined
Controller

block type AccessPoint
inherits Entry

1(1)

redefined
Controller

block type Console
inherits Entry
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 40

Analysing from scratch
Application design 9TIMe
Formally this is shown in Figure 9-41 "Entry" (p.9-39) by the fact that Panel is not vir-
tual while Controller is virtual.

Approaching more detail through decomposition

To specify our “dumb” Panel we continue our decompositions. Now Entry should be
decomposed leaving the Panel interaction explicit. We show in Figure 9-44
"Entry_EstablishAccess V1" (p.9-41) the decomposition of Entry_EstablishAccess.

Figure 9-44: Entry_EstablishAccess V1

Open figure

The decompositions of Entry are also carried out from every service. Again we make
sure that the orthogonality principle between decomposition and MSC references are
kept as Entry_EstablishAccess is referenced from AP_UserAccess the decomposition of
AccessPoint in UserAccess shown in Figure 9-45 "AP_UserAccess V1" (p.9-42)

Controller

msc Entry_EstablishAccess

loop<0,3>

“TryAgain”

Entry_GivePIN

CardId

Code(Cid,PIN)

alt
msg(txt)

Entry_GivePIN

Code(Cid,PIN)

AccLevel(n)

Code(Cid,PIN)

Code(Cid,PIN)

Idle

PIN OK

CardOut

msg(txt)

msg(“Try again”)

AccLevel(n)

GivePIN

CardOut

Not accept-
able access
level

Panel
Example: Initial development 9 - 41 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application design

TIMe9

Figure 9-45: AP_UserAccess V1

Open figure

Having done all the decompositions of Entry (including those of AccessPoint and Con-
sole) we have reached a good specification of the Panel interaction. We could expect to
be able to produce Panel automatically from the MSCs through the MSC-to-SDL
skeletons.

Producing SDL skeleton from MSCs for Panel?

When trying to apply the skeleton technique, we discover that it is not well suited here.
There are no local conditions related to Panel, and using the global conditions does not
do the trick since they are actually states of the service as such and not the local behavior
of the unintelligent Panel. The attempt is not reported here, but the attempt ends in a
need to unify a fairly large set of states. This may be possible, but it is not easily done
automatically, and it seems unnecessary complicated for a simple process like Panel.

We decide to continue on the SDL track and specify Panel in SDL inspired by the MSCs.

Specifying Panel in SDL

The Panel is “dumb” as it reacts blindly to the signals received from the controller and
the inputs from the user. It could suffice to have only one state and then a number of
transitions from that state. We believe this would work, but good engineering practice
recommend otherwise.

Our strategies for modelling behavior recommend that the state space should be found
from what the user will identify as control states from the outside. In the case of the
Panel it is reasonably obvious that the user will distinguish between the situation where
there is a card in the Panel card reader and the situation where there is no card in the
Panel.

msc AP_UserAccess

Idle

Entry_EstablishAccess
subst msg(txt) by msg(“NoEntry”)

opt

AP_OpenDoor

PIN OK

Idle

DoorController

“Please enter” msg(“PleaseEnter”)

Panel
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 42

Analysing from scratch
Application design 9TIMe
Figure 9-46: Panel

Open figure

By distinguishing between these two states we also achieve more robustness in our
description. We can now not only define situations which are correct, but also situations
which represent errors. Such situations occur when we get unexpected signals in a state.

Figure 9-46 "Panel" (p.9-43) shows the definition. The reader should notice that we have
introduced a procedure for the user inputting a PIN. We have considered this trivial and
have not described that here. It is clear that the entering of the PIN could be made more
elaborate by introducing timers and properly handling partial PINs. This adds little to
our story.

The reader should also bear in mind that we have implicitly said that all default transi-
tions should be considered harmful and erroneous.

Checking the Panel by executing PIN Change

Having designed the Panel in SDL we are in a position to perform some model checking.
We should try to find out whether the MSCs of the services projected down to the Panel
can be fulfilled by our specification of Panel. We assume that all other components act
according to the MSCs, but the Panel performs according to its SDL description.

Our example service is PIN Change found in Figure 9-47 "Console_PIN_Change V1"
(p.9-44).

process type Panel
1(1)

NoCard

cardid
(cid)

GivePIN

Code
(cid,pin)

OneCard

OneCard

GivePIN

GivePIN

Code
(cid,pin)

—

CardOut

CardOut

NoCard

*

msg(t)

“t”

—

GivePIN
dcl cid, pin

integer;
Example: Initial development 9 - 43 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application design

TIMe9

Figure 9-47: Console_PIN_Change V1

Open figure

Since this service starts by a reference to an auxiliary MSC found in Figure 9-48
"Entry_EstablishAccess V1" (p.9-45), we should start by executing that.

msc Console_PINChange

PIN OK

Idle

opt

alt “Wrong PIN”

Idle

Entry_GivePIN
/*new PIN*/

Controller

Entry_EstablishAccess
subst msg(txt) by msg(“Illegal PIN”)

Entry_GivePIN
/*new PIN again*/

NewCode(Cid,PIN)

“Give PIN again”

“Give new PIN”msg(“Give new PIN”)

msg(“Give PIN again”)
GivePIN

GivePIN

Code(Cid,PIN)

Code(Cid,PIN)

msg(“Wrong PIN”)

Panel
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 44

Analysing from scratch
Application design 9TIMe
Figure 9-48: Entry_EstablishAccess V1

Open figure

For our model checking to work, we must align the MSC and the SDL descriptions. Here
we assume that condition Idle corresponds to the Panel being in NoCard state. Then our
execution proceeds as follows:

1. Input of Cardid shown in MSC Figure 9-48 "Entry_EstablishAccess V1" (p.9-45).
This is legal and results in the SDL Figure 9-46 "Panel" (p.9-43) executing GivePIN
which is exactly matched by the MSC. The SDL then outputs Code signal which
again is matched exactly by the MSC. Panel then enters state OneCard.

2. Assume entering the loop<0,3> of the MSC Figure 9-48 "Entry_EstablishAccess
V1" (p.9-45). This means receiving msg(“Try again”) which in the SDL is simply
forwarded to the User (environment) which matches the MSC completely. Panel is
still in OneCard state.

3. Input of GivePIN signal (shown in MSC) is now the next event. This is legal in the
SDL and results in another execution of the GivePIN procedure which is matched by
the Entry_GivePIN MSC reference. This is again followed by the Code output which
also matches the MSC. Panel is still in state OneCard. The situation at the end of the
loop is very similar to the start of the loop and further iterations cannot upset the con-
sistency between the MSC and the SDL descriptions.

Controller

msc Entry_EstablishAccess

loop<0,3>

“TryAgain”

Entry_GivePIN

CardId

Code(Cid,PIN)

alt
msg(txt)

Entry_GivePIN

Code(Cid,PIN)

AccLevel(n)

Code(Cid,PIN)

Code(Cid,PIN)

Idle

PIN OK

CardOut

msg(txt)

msg(“Try again”)

AccLevel(n)

GivePIN

CardOut

Not accept-
able access
level

Panel
Example: Initial development 9 - 45 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application design

TIMe9

4. Assume exiting the loop and continuing. CardOut signal is received (from MSC) and

this is legal in the SDL. The SDL specifies forwarding the CardOut to the User mean-
ing that the card is ejected. Panel now enters NoCard again.

5. The MSC now specifies an alternative. We have to perform them both. One alterna-
tive is simply that the execution enters the condition PIN OK while the other
represent a situation where the user is not allowed to enter.

6. Assume alternative where the user is not allowed to enter. Then msg(txt) is received.
From the substitution in the MSC reference of Figure 9-47 "Console_PIN_Change
V1" (p.9-44) this actually means msg(“Illegal PIN”). This is simply forwarded to the
environment (User) and Panel remains in NoCard. This matches the MSC. The MSC
specifies that the whole system is back to Idle which locally corresponds to Panel
being in NoCard which is OK.

7. Now we leave the referenced MSC and return to the MSC of the service in Figure 9-
47 "Console_PIN_Change V1" (p.9-44). There is an option where only the case
where condition PIN OK holds initially will be considered. Formally the global con-
ditions have no constructive semantics to define the legal continuations, but we
choose to interpret the MSC this way. In this particular case this does not really mat-
ter. Thus we assume that we are in the situation where PIN OK, the MSC specifies
the input of msg(“Give new PIN”). This is forwarded to the user and the Panel stays
in state NoCard. The consistency is still present.

8. Now the MSC specifies the input of GivePIN. Alas! GivePIN is illegal in NoCard
state of Panel! (It is defined as a default transition which formally is legal, but we
have decided to consider all default transitions harmful. Why we have them at all is
just the lack of space in the diagrams in order to be able to show them in reasonable
space in this textbook).

Our conclusion must now be that we have found that the service PIN Change cannot be
performed consistently with the current definition of Panel.

We now face a problem. Either the services are inadequately specified in the MSC doc-
ument, or the definition of Panel is wrong. As mentioned earlier, we could specify Panel
by only using one state. In this case this would do the trick, but it may not be the best
solution.

Our problem is that we wanted to give the new PIN when the user had received his card.
Imagine that the new PIN should in some encrypted form be stored in the card. This is
not specified now, but we can imagine such situation in the future or in some related sys-
tem. Then the user has actually received his card too early. Another possible situation is
that the user leaves after having received his card, but having neglected to finish the ser-
vice. This has no consequences for the user, but only for the system which is left in a
situation where it must be helped by some timer to exit from the PIN Change service.
This is not specified here either. Holding the card back to the end of the service would
at least give consequences for the user who leaves the premises without completing the
service. He will be without his card (provided that the card reader actually keeps the
card).

Our considerations result in a decision to redesign the services and keep the Panel defi-
nition as it was made.
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 46

Analysing from scratch
Application design 9TIMe
Redesigning the services

The redesign of the services must imply that EstablishAccess cannot give the card back
to the user. We simply delete the return of the card from EstablishAccess and insert it in
the proper place in the three other services. All MSCs must be updated as a result of this
change. As an example we show the PIN Change service which was the initiator of this
change in Figure 9-49 "Console_PIN_Change V2" (p.9-47).

Figure 9-49: Console_PIN_Change V2

Open figure

Model checking this service results in complete consistency since the Panel will be in
state OneCard all the way down to the final CardOut signal. In state OneCard, GetPIN
is a valid input.

msc Console_PINChange

PIN OK

Idle

opt

alt “Wrong PIN”

Idle

Entry_GivePIN
/*new PIN*/

Controller

Entry_EstablishAccess
subst msg(txt) by msg(“Illegal PIN”)

Entry_GivePIN
/*new PIN again*/

NewCode(Cid,PIN)

“Give PIN again”

“Give new PIN”msg(“Give new PIN”)

msg(“Give PIN again”)
GivePIN

GivePIN

Code(Cid,PIN)

Code(Cid,PIN)

msg(“Wrong PIN”)

Panel

CardOut CardOut
Example: Initial development 9 - 47 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application design

TIMe9

The service level Controller of Console

We will use a different strategy to specify Controller. Controller is a virtual process in
Entry. The default Controller is only a start transition leading to the state Idle. The con-
troller of Console and the controller of AccessPoint will be specializations of the Entry
controller.

We have decided that to perform PIN Change and New User services, this can only take
place at a console. We thus have these characteristics which distinguishes the services:

• User Access: takes place at an AccessPoint.

• PIN Change: takes place at a Console and the User is a normal user.

• New User: takes place at a Console and the performer is a supervisor.

To distinguish between the two latter services at the console we introduce the assump-
tions given in Figure 9-50 (p.9-48) of the returns from the Authorizer.

Figure 9-50: Assumptions for our solution

Open figure

The controller is the performer of the services. Therefore the global conditions of the
MSCs corresponds more closely to the expected states in the controllers than in the
Panel. We may therefore have more confidence in producing SDL from MSC.

We assume that the authorizer is able to give a more
advanced return than a mere OK and NOK. We assume
that the authorizer knows the difference between the
supervisors and the normal users.

Thus the return with AccLevel has the following possibil-
ities for parameter value:

• -2: Supervisor with illegal PIN

• -1: Normal user with illegal PIN

• 0: Not a valid card

• 1: Normal user with legal PIN

• 2: Supervisor with corresponding PIN

• -99: Error occurred
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 48

Analysing from scratch
Application design 9TIMe
Figure 9-51: Controller skeletons

Open figure

An overview of our technique is given in Figure 9-51 "Controller skeletons" (p.9-49).
We shall concentrate on Controller of Console.

Service skeletons

Through using our recommended semi-automatic techniques for producing SDL skele-
tons from MSC, we reach the following result from the service PIN Change shown in
Figure 9-52 "Controller skeleton from PINChange" (p.9-50).

MSC diagrams (source)

AP_UserAccess V2

Console_PINChange V2

Console_NewUser V2

Entry_EstablishAccess V2

SDL skeletons (automatic)

UserAccess: Controller

PINChange: Controller

NewUser: Controller

EstablishAccess:Controller

SDL diagrams (modified)

Entry: Controller

procedure EstablishAccLev

Console: Controller

AccessPoint: Controller

development
direction
Example: Initial development 9 - 49 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application design

TIMe9

Figure 9-52: Controller skeleton from PINChange

Open figure

Similarly we reach the skeleton shown in Figure 9-53 "Controller skeleton from New
User" (p.9-51) from service New User.

Idle

Code

EstablishAccess
(“Illegal PIN”)

msg (“Give
new PIN”)

GivePIN

X

Code

msg (“Give
PIN again”)

GivePIN

Y

Y

Code

msg
(“ Wrong PIN”)

NewCode

CardOut

Idle

process type skeleton Controller /* PINChange msc */

(PIN ok)
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 50

Analysing from scratch
Application design 9TIMe
Figure 9-53: Controller skeleton from New User

Open figure

In both these skeletons we refer to the procedure EstablishAccess and this can also be
given a skeleton from the same technique shown in Figure 9-54 "Controller skeleton
from EstablishAccess" (p.9-52).

Idle

Code

EstablishAccess
(“Not Supervisor”)

Z

CardOut

process type skeleton Controller /* New User msc */

Z

Code

NewCode

Idle

(PIN ok)
Example: Initial development 9 - 51 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application design

TIMe9

Figure 9-54: Controller skeleton from EstablishAccess

Open figure

The technique now calls to unify the two transitions given by the two services as they
both have the same “signature” (Idle,Code).

Manual program transformations of the skeletons

The distinction between the services actually lies within the EstablishAccess procedure
skeleton. This is not practical. Therefore we divide the EstablishAccess concept in three
parts which have been shown in Figure 9-54 "Controller skeleton from EstablishAccess"
(p.9-52).

1. Input of Code. This has been moved out of EstablishAccess already by applying the
rule 11 of the technique.

2. The main body loop. This is not very well produced automatically. This is due to the
fact that MSC does not indicate anything about the cause of the loop exit. In this case
the loop control is on the access level returned from the signal AccLevel. We refor-
mat the loop such that the loop control is properly placed. We isolate this part in a
procedure EstablishAccLev. We add local data and parameters.

3. The decision on access level. The return from EstablishAccLev is an indication of
which access level the card and PIN is on. This indication is used to distinguish
between the services and its different outcomes.

U

AccLevel

msg (“Try
again”)

GivePIN

V

Code

msg
(“parm”)

W

procedure skeleton Controller /* EstablishAccess msc */

(loop cont)

Code

Code

Code

AccLevel

W

AccLevel

Input trans-
ferred to
process by rule

procedure
start transition

loop where loop
control is not
properly
placed. This
part checks
card/PIN
correspondence

Procedure ter-
mination.
Distinguishes
the different
cases
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 52

Analysing from scratch
Application design 9TIMe
The result of our manual massage of the skeletons is shown in Figure 9-55 "procedure
EstablishAccLev in Entry:Controller" (p.9-53) and Figure 9-56 "Controller in Console"
(p.9-53).

Figure 9-55: procedure EstablishAccLev in Entry:Controller

Open figure

The reader is urged to discover the resemblance between the skeletons and the final SDL
diagrams. We have added sensible names to the states and data to the decisions and the
signal parameters. Model checking of the services PIN Change and New User wrt. Con-
troller of Console will result in consistency. This is almost a tautology, but the exercise
should be performed nevertheless because the introduction of data and simple transfor-
mation of loops etc. may also contain (stupid) errors.

Figure 9-56: Controller in Console

Open figure

Validate

AccLevel
(acclev)

msg (“Try
again”)

GivePIN

WaitCode

procedure EstablishAccLev
fpar in/out acclev integer;
in cid integer;
in/out pin integer;

(false)

Code
(cid,pin)

Code
(cid,pin)

Code
(cid,pin)

(true)acclev>0
or cnt>3

dcl cnt integer = 0;

Validate

cnt:=cnt+1
Example: Initial development 9 - 53 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application design

TIMe9
The service level Controller of AccessPoint

Figure 9-57: Controller in AccessPoint V1

Open figure

WE could produce the Controller of AccessPoint in a very similar fashion, and the result
would be equally attractive. We assume that the technique has been used or that the con-
troller has been made manually. In either case we choose to take advantage of the
produced procedure EstablishAccLev. The result is shown in Figure 9-57 "Controller in
AccessPoint V1" (p.9-54).

Idle

Code
(cid,pin)

EstablishAccLev
(acclev,cid,pin)

msg (“Give
new PIN”)

GivePIN

WNewPIN

msg (“Give
PIN again”)

GivePIN

Confirm

Confirm

msg
(“Wrong PIN”)

CardOut

Idle

process type <<block type Console>> Controller
inherits <<block type Entry>> Controller

(1)

dcl cid,pin,pin2 integer;
dcl acclev integer;

acclev

Code
(cid,pin)

Code
(cid,pin2)

(2)

CardOut

NewCard

NewCode
(cid,pin)

Idle

Code
(cid,pin)

(0,-1)

CardOut

msg
(“Illegal PIN”)

Idle

(-2)

CardOut

msg(“Not
Supervisor”)

Idle

NewCode
(cid,pin)

pin (=pin2)

(else)
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 54

Analysing from scratch
Application design 9TIMe
Model checking for consistency between MSC and SDL

We may of course perform model checking and show that the Controller may perform
the service User Access as specified by the MSC referring to the auxiliary MSC Figure
9-35 "OpenDoor" (p.9-34). The consistency is not difficult to assert.

Is this sufficient?

Validation of Controller of AccessPoint

The fact is that it is not sufficient to assert the consistency between the service specifi-
cation in MSC and the SDL specification. The reason is that a normal MSC document
only defines a set of possible traces and not necessarily all legal traces.

Furthermore MSC is not well suited to disclose whether there are cases which have not
been thought of. The main reason for that is probably because MSC does not describe
causalities, but merely orderings of events. MSC says nothing about what causes under-

Idle

Code
(cid,pin)

EstablishAccLev
(acclev,cid,pin)

lock

ClosingOpening

process type <<block type AccessPoint>> Controller
inherits <<block type Entry>> Controller
/* See also necessary modifications in Version 2 of this*/

(>0)

dcl cid,pin integer;
dcl acclev integer;
timer door;

acclev

door

(<=0)

msg
(“No Entry”)

Idle

set(now+10, door)

opened

set(now+30,
door)

lock

Idle

closed

reset(door)

Idle

door

Idle

alarm

Closing

CardOut

unlock

msg
(“Please enter”)
Example: Initial development 9 - 55 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Application design

TIMe9

lie alternative cases of execution. Also within a sequential execution there is not by
necessity any connection between the events. They may even reside on different con-
crete processes.

SDL on the other hand, defines imperatively how executions are. We know exactly what
the causes of alternative courses of action are. We know the set of possible executions
on every stage in the execution. This is not the case with MSC.

We now return to our Controller of AccessPoint. We have shown that it may perform
the service which was called for namely User Access. So what may be the problem?

We want to perform an analysis of Controller which could disclose whether there is any
chance of executing a default transition (which is considered harmful). This is a type of
analysis which is provided by modern validators. Manually many problems can be
found by looking closely at situations where there is a possibility legally to receive input
from several independent sources.

In our case we have a situation where we can either receive an opened signal or a door
timer. We have covered them both, but have we covered the case where they actually
appear both at the same time? What if the user has just managed to open the door, but
before the opened signal has reached the controller, the timer expires. This situation is
theoretically possible, but one can easily imagine that it will not happen often in reality.
In our specification in Figure 9-57 "Controller in AccessPoint V1" (p.9-54) we will con-
sume the timer first and then enter Idle. Then we must consume opened, but this is
illegal!

In Figure Figure: "Controller in AccessPoint V2" (p.9-57) we have modified the process
slightly such that the reaction to the timer does not take for granted that the door is actu-
ally closed. Instead the process will ask whether it is closed and expect a closed signal
from the door if it is indeed shut. We have also added a transition which throws away
the opened signal in the case where the timer has expired in close concurrency with the
opening of the door.

The sharp reader will also notice that the same story may repeat itself concerning the
timer and the closed signal in state Closing. We have not properly specified a recovery
after the timer has expired with an open door. We have merely changed the nextstate of
the transition triggered by the expiration of the timer such that the process will not enter
Idle before the door is closed.
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 56

Analysing from scratch
Application design 9TIMe
Figure: Controller in AccessPoint V2
Open figure

The Authorizer

We have not given the specification of the Authorizer here. We trust that the reader will
be able to provide this as an exercise. Authorizer can be made as a process which reacts
to signals Code and NewCode and delivers AccLevel.

Summary Application Specification and Design

In Figure 9-58 "Application Descriptions of Access Control" (p.9-58) we give the over-
view of the application descriptions.

Idle

Code
(cid,pin)

EstablishAccLev
(acclev,cid,pin)

Opening

process type <<block type AccessPoint>> Controller
inherits <<block type Entry>> Controller

(>0)

dcl cid,pin integer;
dcl acclev integer;
timer door;

acclev

door

(<=0)

msg
(“No Entry”)

Idle

opened

set(now+30,
door)

ask_closed

��������������

CardOut

opened

�������

set(now+10, door)

unlock

msg
(“Please enter”)

lock

Closing

closed

reset(door)

�	�

door

�������

alarm
Example: Initial development 9 - 57 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Architecture modelling

TIMe9

Figure 9-58: Application Descriptions of Access Control

Open figure

We have chosen to include all versions of the descriptions both those which proved erro-
neous and those which we have so far found no flaws.

Architecture modelling

(See also activities).

Make architecture design

The starting point for implementation design is made up of the design constraints and
the functional design above. Figure 9-40 "AccessControl System V2" (p.9-38) shows
the top levels of the functional design.

The functional design also contains process graphs, data and signal definitions.

ApplicationObject Models

system context
system spec. domain
AccessPoint classif.

Application PropertyModels

role
structure

System Statement

System Dictionary

User Access

FromProperty
UserAccess V1
UserAccess V2

Roles

PIN Change

PIN_Change V1
PIN_Change V2

New User

NewUser V1
NewUser V2

casting

Casting

Services

OMT models

reference model
architecture model

SDL models

AccessControl V1
AccessControl V2
SDL tutorial: AC

SDL skeletons

AC process (source)
Controller

text

assump-
tions in
this case

non-func-
tional

properties

extra
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 58

Analysing from scratch
Architecture modelling 9TIMe
Trade-off between hardware and software

The physical user interfaces of the AccessControl system are the Panels and Doors. The
Panels have to be physically located at the Doors where the users need them. Does this
mean that the AccessPoints should be physically distributed as well? Or should they be
physically centralised in the vicinity of the CentralUnit?

To answer these questions we look at the channels represented in the functional design
in order to find which ones are best suited to cover physical distances. SDL signals are
defined independently of physical distances. One is therefore free to localise processes
physically apart. But there will always be a certain delay and cost associated with signal
transfer over distances. We therefore look for channels carrying a low signal traffic
without strict timing constraints.

We want to distribute processes in a way that minimises the bandwidth needed over
physical channels. (Distribute along the channels with few interactions and relaxed tim-
ing constraints. Keep strongly coupled processes together. This will often mean that a
fair bit of processing should be performed physically close to the external interfaces.)

In the system the channels between the AccessPoints and the Authorizer satisfy these
criteria best. We therefore decide to let these channels be the ones that cover distances.

Does this mean that each AccessPoint should be a physically separate unit? Not neces-
sarily. We may implement several AccessPoints in one computer when their Panels and
Doors are located close to each other.

Make hardware design

Perhaps some AccessPoints can be co-located with the CentralUnit too? This could be
a solution for small installations. A scheme that can be physically distributed or centra-
lised depending on the physical distances and the size of each installation seems
attractive. We therefore select the structure shown in Figure 9-59 "A possible Access
Control hardware structure" (p.9-60) as our first attempt at a hardware architecture.
Example: Initial development 9 - 59 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Architecture modelling

TIMe9

Figure 9-59: A possible Access Control hardware structure

Open figure

There will be at least one block of Central Control Hardware and from zero up to 1000
blocks of Local Control Hardware. In this architecture we intend to implement the Con-
troller processes and the CentralUnit processes in software running on the various
computers. We are not sure as yet how to implement the PanelControl processes, but
software seems to be most likely option if the computer capacity permits.

At this stage of design there are still many open questions. What kind of computer to
use, what kind of communication links to use and so on.

Before we carry on, we make two general observations:

1. The hardware architecture is different in structure from the functional design.

2. Some communication protocols will be needed to support the communication
between the local and central hardware.

We calculate the Mean peak load of the AC system and have to conclude that it is pos-
sible that the central computer performing the validation with protocols etc. will be
overloaded at peak load. We recall our non-functional requirements in Figure 9-20
"Non-functional requirements of AC system" (p.9-21).

We therefore decide to distribute the validation load to a number of ClusterUnits, each
serving a group of AccessPoints.

In Figure 9-60 "Hardware structure with cluster Units" (p.9-61) is shown the new hard-
ware structure we propose to use for large installations. The Central Hardware will be
without Panels in this case. The clusters will be connected to the central hardware
through a local area network, the LAN in Figure 9-60 "Hardware structure with cluster
Units" (p.9-61).

Operator
Terminal

panel controller

Panel
Hw

Central Control Hw

Panel
Hw

Computer

Local Control Hw(0,1000):

(1,10):

(0,10): (1,5):
Computer
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 60

Analysing from scratch
Architecture modelling 9TIMe
Figure 9-60: Hardware structure with cluster Units

Open figure

In this solution the validation database will be distributed. There will be a copy of the
central authorization process (and its database) in each cluster. This means that the
Authorizer must handle updates in a distributed database. This introduces a new prob-
lem to solve in the functional design, but the AccessPoints and the authorization pro-
cesses in each cluster may (hopefully) work just as before.

Make Software Design

We have assumed that the majority of SDL processes are implemented in software run-
ning on the various computers. Each of these computers will contain software that
implements the local functions, the cluster functions and the central functions. In addi-
tion, they will have software for intercomputer communications, local input–output and
error handling. Finally, they will most likely have an operating system.

As our next step, we return to functional design to make a refined and restructured def-
inition of the complete functional properties that are visible to the user. Figure 9-61
"Redesigned Access Control system V3" (p.9-62) illustrates the top level of the resulting
SDL description.

Computer

Central Control Hw
(1,5):Console

<3>

panel

Panel
Hw

Computer

Cluster Control Hw

<2>

panel controller

Panel
Hw

Computer

Local Control Hw(1,10):

<1>

(1,100):

LAN

Cluster Hw

(1,10):

(1,10):

<1> implements
[AccessControl.
AccessPoint]

<2> implements
[AccessControl.
ClusterUnit]

<3> implements
[AccessControl.
Authorizer]

<4> implements
[AccessControl.
Console]

<4>

panel

Panel
Hw

(1,1):
Computer
Example: Initial development 9 - 61 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Architecture modelling

TIMe9

Figure 9-61: Redesigned Access Control system V3

Open figure

The initial functional design described in Figure 9-40 "AccessControl System V2"
(p.9-38) was structured to render the functional properties with minimum complexity
and maximum clarity, while the implementation design shown in Figure 9-60 "Hard-
ware structure with cluster Units" (p.9-61) was structured to render the physical con-
struction.The functional blocks in Figure 9-61 "Redesigned Access Control system
V3" (p.9-62), map directly to the hardware blocks in Figure 9-60 "Hardware structure
with cluster Units" (p.9-61).

Note that the restructuring does not mean that everything has to be redefined. A majority
of the processes from the first functional design may be left unchanged. As they are
defined as stand alone types, it is a simple matter to put them into a new structural con-
text together with some new processes.

In Figure 9-63 "Cluster with LocalUnits and ClusterUnits" (p.9-63) and Figure 9-64
"AccessPoint used in both LocalUnit and ClusterUnit" (p.9-64) we take AccessPoint as
an example. We will use instances of AccessPoint in the LocalUnits as well as in the
ClusterUnits. Those in the ClusterUnits will have direct, local access to the validation
process, whereas those in the LocalUnits must communicate via physical links and pro-
tocols, but the signals will be the same.

The CentralUnit consists of the block Authorizer and the block set of block type
Console.

SYSTEM AccessControl

clusters(100):
ClusterCE

OP

C

GE

GC

Cluster Entry

CentralUnit
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 62

Analysing from scratch
Architecture modelling 9TIMe
Figure 9-62: Central Unit

Open figure

The reader should notice that we have done a restructuring of the functional specifica-
tion, but we have not in this section made any specific software architecture description.
We have taken this as being implied by the functional specification and the hardware
specification.

Figure 9-63: Cluster with LocalUnits and ClusterUnits

Open figure

block CentralUnit

Authorizer
cons(5):

ConsoleC OP

Console

BLOCK TYPE Cluster

Protocol

localunits
(10):LocalUnit

clustercontrol:
ClusterUnit

PR

PR

GC

GE

e

e
CE

AccessPoint

ClusterUnitLocalUnit
Example: Initial development 9 - 63 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Architecture modelling

TIMe9

Figure 9-64: AccessPoint used in both LocalUnit and ClusterUnit

Open figure

Figure 9-65: Make framework specification (See also activity)

In our development we have considered the Access Control system a first product and
we have not put much effort in trying to generalize the design of the Access Control sys-
tem such that a whole family can be built upon the design.

With the architecture design in Figure 9-60 "Hardware structure with cluster Units"
(p.9-61), the task is now to make a line between the application specific parts and the
implementation specific parts of the design, look for stable structures in both and define
the parts that vary from system to system as virtual types.

When distribution has been taken into account we will have a stable structure of a Cen-
tralUnit and a number of Cluster blocks. Each Cluster will have a stable structure of
protocol and validation parts, while for different access control systems the type of
AccessPoints may be different.

If we turn the structure in Figure 9-61 "Redesigned Access Control system V3" (p.9-62)
into a framework and let the distribution parts be stable, then we get the system type in
Figure 9-66 "System type AccessControl V4 as a framework" (p.9-64). The structure of
all system of this type will have at least the structure of one CentralUnit and a number
of Cluster objects. As the type Cluster is a virtual block type, the Cluster objects in dif-
ferent system subtypes may be of different types.

Figure 9-66: System type AccessControl V4 as a framework

Open figure

The virtual type Cluster, defined in Figure 9-67 "Cluster as part of a framework" (p.9-
65), similarly contains a stable implementation specific part and a stable structure,
where the application specific virtual AccessPoint type is used to define just one part of
the structure.

L1:
AccessPoint

L2:
AccessPoint

P1:Protocol

P2:Protocol

Authorization

BLOCKTYPE LocalUnit BLOCKTYPE ClusterUnit

PR

PR

e
e

P3:Protocol

CE
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 64

Analysing from scratch
Architecture modelling 9TIMe
Figure 9-67: Cluster as part of a framework

Open figure

Note that the definitions of Protocol, LocalUnit and ClusterUnit are not affected by
turning the system into a framework. The reason is that these constitute the fixed struc-
ture and are only using the type AccessPoint for defining blocks. We have, however,
also chosen to make Protocol and LocalUnit virtual since the flexibility to change the
support system of the framework can also be practical. If the stability of their descrip-

system type AccessControl

clusters(100):
Cluster

CE

OP

C

GE

GC

virtual
Cluster

virtual
Entry

CentralUnit

virtual block type Cluster

virtual

localunits
(10):LocalUnit

clustercontrol:
ClusterUnit

PR

PR

GC

GE

e

e

CE

virtual
AccessPoint

virtual
ClusterUnit

virtual
LocalUnit

Protocol
Example: Initial development 9 - 65 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing from scratch
Architecture modelling

TIMe9

tions should be emphasized, either the types should remain non-virtual or it is possible
to make a redefinition of Cluster (say StableCluster) where the virtual types LocalUnit
and Protocol (say) are finalized. Building on StableCluster will then make it impossible
to alter any definitions of LocalUnit and Protocol.

Summary Framework

We show a sketch in Figure 9-68 "Architecture of AC System" (p.9-66) of the structure
of the descriptions under the framework strategy. The MSC documents have not been
updated and are thus no included in the documentation.

Figure 9-68: Architecture of AC System

Open figure

Neither the application statement nor the dictionary have been updated.

Architecture Object Models

hardware structure
software structure

Architecture PropertyModels

Family Statement

Family Dictionary

User Access

UserAccess

PIN Change

PIN Change

New User

New User

Services

OMT models

reference model
architecture model

SDL models

AccessControl V3
AccessControl V4 as

framework

non-func-
tional

properties

extra
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 66

Application Evolution
Architecture modelling 9TIMe
Application Evolution

New functionality to be introduced:

• Blocking stations which can be disabled from the Authorizer;

• Logging stations which can log any transaction on the AccessPoint.

This version of the Integrated Methodology does not cover this in further detail. To look
into the functionality of blocking and logging stations please refer to the SDL Tutorial.
Example: Initial development 9 - 67 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Documentation
Domain Descriptions

TIMe9
Documentation

Domain Descriptions

For a structural map of the domain descriptions see Figure 9-17 "Domain Descriptions
of Access Control" (p.9-17).

Family and Application descriptions

For a structural map of the application descriptions see Figure 9-58 "Application
Descriptions of Access Control" (p.9-58).

Architectural Descriptions

For a map of the architectural descriptions see Figure 9-68 "Architecture of AC System"
(p.9-66)
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 68

List of figures
Architectural Descriptions 9TIMe
List of figures

Developing from scratch . 2
Domain Statement V1 . 5
Domain specific Dictionary . 6
The access control domain. 6
Attribute specification . 7
User Access . 8
MSC User_accepted. 8
MSC User_not_accepted . 9
MSC User changing PINwith success . 10
New User . 11
Role object model . 12
Casting Access Control . 12
Domain Statement V2 . 14
Harmonised Domain specific Dictionary. 15
Domain model of Access Control V2 . 15
Change PIN (MSC-96) . 16
Domain Descriptions of Access Control . 17
Problem Statement, with system specific elements . 19
Dictionary, with system specific concepts included . 20
Non-functional requirements of AC system . 21
The access system context . 23
The access control domain, system specific . 24
The class definition of User . 25
The class definition of Access Zone . 25
The class Access Point with environment . 26
Classification of Doors . 26
Classification of Access Points . 27
AccessControl System V1 . 27
AccessPoint V1 . 28
System specific casting . 29
UserAccess V1. 30
PIN_Change V1 . 31
NewUser V1. 32
EstablishAccess V1 . 33
OpenDoor. 34
GivePIN . 34
AC_UserAccess V1 . 35
AC_PIN_Change V1 . 36
AC_EstablishAccess V1 . 37
AccessControl System V2 . 38
Entry. 39
AccessPoint V2 . 40
Console . 40
Entry_EstablishAccess V1. 41
AP_UserAccess V1 . 42
Example: Initial development 9 - 69 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of figures
Architectural Descriptions

TIMe9

Panel. 43
Console_PIN_Change V1 . 44
Entry_EstablishAccess V1. 45
Console_PIN_Change V2 . 47
Assumptions for our solution. 48
Controller skeletons . 49
Controller skeleton from PINChange . 50
Controller skeleton from New User. 51
Controller skeleton from EstablishAccess . 52
procedure EstablishAccLev in Entry:Controller . 53
Controller in Console . 53
Controller in AccessPoint V1 . 54
Controller in AccessPoint V2 . 57
Application Descriptions of Access Control . 58
A possible Access Control hardware structure . 60
Hardware structure with cluster Units . 61
Redesigned Access Control system V3 . 62
Central Unit . 63
Cluster with LocalUnits and ClusterUnits . 63
AccessPoint used in both LocalUnit and ClusterUnit . 64
Make framework specification (See also activity). 64
System type AccessControl V4 as a framework . 64
Cluster as part of a framework. 65
Architecture of AC System . 66
Example: Initial development TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-169 - 70

	Introduction
	Figure 9-1: Developing from scratch

	Analysing from scratch
	Analysing Domain
	Make Domain Statement (See also activity)
	Figure 9-2: Domain Statement V1
	Make Dictionary (see also activity)
	Figure 9-3: Domain specific Dictionary
	Make Domain Object Model (see also activity)
	Domain Object Model, classes, relations and connections
	Figure 9-4: �The access control domain
	Domain Model, attributes
	Figure 9-5: Attribute specification
	Domain Object Model, generalisation/specialisation
	Domain Object Model, aggregation, localisation
	Make Domain Property Model (see also activity)
	User Access
	Figure 9-6: User Access
	Figure 9-7: MSC User_accepted
	Figure 9-8: MSC User_not_accepted
	PIN changing
	Figure 9-9: MSC User changing PINwith success
	New User
	Figure 9-10: New User
	More services?
	Role model
	Figure 9-11: Role object model
	Casting
	Figure 9-12: Casting Access Control
	Harmonise Domain Descriptions
	Harmonize Domain Statement (see also activity)
	Figure 9-13: Domain Statement V2
	Excecutive summary and area of concern
	Stake holders
	Passive Objects and associations
	Active objects and connections
	Services
	Harmonize Domain Dictionary (see also activity)
	Figure 9-14: Harmonised Domain specific Dictionary
	Harmonize Object model (see also activity)
	Figure 9-15: Domain model of Access Control V2
	Harmonize Property model (see also activity)
	Figure 9-16: Change PIN (MSC-96)
	Summarizing domain descriptions
	Figure 9-17: Domain Descriptions of Access Control

	Analysing Requirements
	The System and its Application Context
	Making system family statement (see also activity)
	Figure 9-18: Problem Statement, with system specific elements
	Relation to domain
	Services
	Interfaces and environment
	System family dictionary (see also activity)
	Figure 9-19: Dictionary, with system specific concepts included
	Non-functional Requirements
	Figure 9-20: Non-functional requirements of AC system

	Application Specification
	Make a context diagram
	Figure 9-21: The access system context
	Specifying the domain given objects
	Figure 9-22: The access control domain, system specific
	Analyse each class
	Figure 9-23: The class definition of User
	Figure 9-24: The class definition of Access Zone
	Figure 9-25: The class Access Point with environment
	Generalisation/specialisation hierarchies
	Figure 9-26: Classification of Doors
	Figure 9-27: Classification of Access Points
	Figure 9-28: AccessControl System V1
	Figure 9-29: AccessPoint V1
	Specifying the system given objects
	Specifying the interface given objects
	Specifying the services
	Figure 9-30: System specific casting
	User Access
	Figure 9-31: UserAccess V1
	PIN Change
	Figure 9-32: PIN_Change V1
	New User
	Figure 9-33: NewUser V1
	Auxiliary MSCs
	Figure 9-34: EstablishAccess V1
	Figure 9-35: OpenDoor
	Figure 9-36: GivePIN

	Application design
	Property orientation and combined approach
	Figure 9-37: AC_UserAccess V1
	Figure 9-38: AC_PIN_Change V1
	Discovering Entry
	Figure 9-39: AC_EstablishAccess V1
	Harmonizing with the object model
	Figure 9-40: AccessControl System V2
	Figure 9-41: Entry
	Figure 9-42: AccessPoint V2
	Figure 9-43: Console
	The low-level unintelligent Panel
	Approaching more detail through decomposition
	Figure 9-44: Entry_EstablishAccess V1
	Figure 9-45: AP_UserAccess V1
	Producing SDL skeleton from MSCs for Panel?
	Specifying Panel in SDL
	Figure 9-46: Panel
	Checking the Panel by executing PIN Change
	Figure 9-47: Console_PIN_Change V1
	Figure 9-48: Entry_EstablishAccess V1
	Redesigning the services
	Figure 9-49: Console_PIN_Change V2
	The service level Controller of Console
	Figure 9-50: Assumptions for our solution
	Figure 9-51: Controller skeletons
	Service skeletons
	Figure 9-52: Controller skeleton from PINChange
	Figure 9-53: Controller skeleton from New User
	Figure 9-54: Controller skeleton from EstablishAccess
	Manual program transformations of the skeletons
	Figure 9-55: procedure EstablishAccLev in Entry:Controller
	Figure 9-56: Controller in Console
	The service level Controller of AccessPoint
	Figure 9-57: Controller in AccessPoint V1
	Model checking for consistency between MSC and SDL
	Validation of Controller of AccessPoint
	Figure: Controller in AccessPoint V2
	The Authorizer
	Summary Application Specification and Design
	Figure 9-58: Application Descriptions of Access Control

	Architecture modelling
	Make architecture design
	Trade-off between hardware and software
	Make hardware design
	Figure 9-59: A possible Access Control hardware structure
	Figure 9-60: Hardware structure with cluster Units
	Make Software Design
	Figure 9-61: Redesigned Access Control system V3
	Figure 9-62: Central Unit
	Figure 9-63: Cluster with LocalUnits and ClusterUnits
	Figure 9-64: AccessPoint used in both LocalUnit and ClusterUnit
	Figure 9-65: Make framework specification (See also activity)
	Figure 9-66: System type AccessControl V4 as a framework
	Figure 9-67: Cluster as part of a framework
	Summary Framework
	Figure 9-68: Architecture of AC System

	Application Evolution
	Documentation
	Domain Descriptions
	Family and Application descriptions
	Architectural Descriptions

	List of figures

