
TIMe TIMe Electronic Textbook
19 Configuration
Management
Introduction .2
What .2
Why this is important. .2
Objective .3
Definition of terms .4

Levels of control and management. .5
Version Control .6
What can be obtained .6
Techniques .6

Configuration Control .9
What can be obtained .9
Techniques .9

Configuration Management .12
What can be obtained .12
Techniques .12

Classification of configuration management tools .17
Introducing Software Configuration Management into a company18
Tools or manual procedures? .18

List of figures .20
List of definitions .21

Configuration management
Configuration Management 19 - 1 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Introduction
What

TIMe19
Introduction

What

This chapter deals with how to control a software product as it evolves. It describes Lev-
els of control and management (p.19-5), and describes means to cope with the
complexity of product management.

The material covered here is complementary to the theme on Process models, which
deals with the processes that lead to changes. Both chapters present different perspec-
tives on what is generally known as configuration management.

Configuration management has hitherto been an immature field in software engineering.
There is little consensus in terms of standards or handbooks. The most important stan-
dard, ANSI/IEEE Std 828-1983 IEEE Standard for Software Configuration
Management Plans hence states that every major project should define its own stan-
dards. Here we present our view on Configuration Management, which should help in
defining such plans for projects and companies.

Configuration management is a comprehensive subject: it comprises issues as diverse as
identifying a specific component in a system, to managing error reports from customers.
Between such extremes we need to describe the structuring of systems in subsystems
and components, and how these components and subsystems shall be generated in order
to produce a system with the desired properties.

We contend that there are Levels of control and management (p.19-5) that can be iden-
tified: to achieve Configuration Management (p.19-12) we need a platform for
Configuration Control (p.19-9). To achieve Configuration Control we need a platform
for Version Control (p.19-6).

We also provide a Classification of configuration management tools (p.19-17), and look
at issues important when Introducing Software Configuration Management into a com-
pany (p.19-18).

Why this is important

The “soft” in the word “software” is intended to indicate that programs can easily
change their form. This linguistic picture is accurate enough: we all know that software
can indeed be changed very easily.

At first sight, this characteristic of software seems to match very well with one of the
key requirements for commercial success in software development:

To be able to produce and sell as many concrete systems as possible while
minimizing costs related to details of particular instances

Since software is “soft” and easy to change, software-based products should also be easy
to change. Or are they?
Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1619 - 2

Introduction
Objective 19TIMe
Experience shows that software systems are not, in practice, so very easy to change. An
important reason for this is that this very flexibility of software also has its negative side:
software items not only can change but typically do change - and often. This leads to

large numbers of “versions”1 of software items, and there are often difficulties in main-
taining a clear picture of:

• exactly which versions exist

• the essential characteristics of each

• inter-dependencies amongst the versions.

The lack of effective methods to handle variability in software items can cause problems
ranging from minor frustrations to considerable development and maintenance effort
being wasted through selection of incorrect versions.

A related issue is that of software reuse. The advantage of reuse is clear: development
costs are reduced through utilization of existing items instead of developing new ones.
But successful reuse adds to the problem of handling variants. In simple cases, an item
can be reused “as is” (i.e. without any change being applied). Even this adds to the com-
plexity of variant handling, as extra inter-dependencies have to be handled. In more
complex cases, items are reused with changes to customize for the new intended use of
the item. This is an added source of variability.

So: if you need to produce new system instances quickly and easily, or if you want to
re-use software components to minimize development costs, you need to have effective
ways of handling product variants.

Objective

The goals of configuration management can be summed up as follows:

• identifying the items that are to be managed

• controlling changes in terms of the change process, and registering and reporting
status

• controlling that items are complete and correct, involving registering and reporting
item status, and controlling the distribution and use of changed items

• maintaining approved configurations of the items, implying the control of correct-
ness, completeness and consistency

• controlling which items are included in a given product

These are the practical and pragmatic reasons for employing configuration management
and configuration control in a software engineering context. I.e. it is part of ensuring that
the products one develops, delivers and maintains adhere to the required quality w.r.t.

• the customers use of the product

• the resources used by the producer to develop and maintain the product

1. The word “versions” is used here in a wider sense than simply file versions. For instance, a single C source
file might contain many #ifdef directives, resulting in a very large number of semantically distinct programs
(depending on the values chosen for the parameters which control the #ifdefs).
Configuration Management 19 - 3 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Introduction
Definition of terms

TIMe19

Definition of terms

As there is no universal consensus on the use of terms in the field of software configu-
ration management, we provide definitions of the terms we use:

1. Configuration Control

2. Configuration Management

3. Configuration Control Board

4. Configuration Management Plan

5. Version

6. Variant

7. Revision

8. Identification

9. Attribute

10.Status

11.Configuration

12.Configuration Item

13.Baseline

Note that we in configuration management are only concerned with the “physical” Con-
figuration Items that are parts of the systems and products we are building and
maintaining, as apposed to the (semantic) building blocks we deal with in the system
domain. There is not always a one-to-one correspondence between logical building
blocks and physical Configuration Items; you may experience never locating the logical
building blocks when looking at the structure of the Configuration Items.
Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1619 - 4

Levels of control and management
Definition of terms 19TIMe
Levels of control and management

The issues involved in configuration management are many and diverse, as we have
seen. We believe that by categorizing them into levels, where each level provides a plat-
form for the next, both talking about it and doing something with it becomes easier.

We have found the following levels to be of use:

• Version Control (p.19-6), which has to do with describing, identifying and retrieving
any significant version of an atomic entity (item) in the (syntactic) description
domain. Included here are issues such as efficient representation and retrieval of con-
figuration items

• Configuration Control (p.19-9), which deals with controlling the development of
products that are composed of different parts, and where the parts (items) evolve into
many different versions. Controlling the transformation of components by tools into
complete products (build support) also belongs here.

• Configuration Management (p.19-12), which deals with the management view, i.e.:

- what is delivered to a specific customer (release support)

- which problems and discrepancies are reported for which delivery, by whom (and
what status do they currently have?)

- that improvements and changes are initiated depending on analysis of technical
and economical consequences, and only then (change control)

- that the quality of the product and development process is monitored (process
management)

Note that all three levels are often called configuration management, while we have
reserved the term Configuration Management to the managerial aspects of the broader
issues of Software configuration management.
Configuration Management 19 - 5 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Version Control
What can be obtained

TIMe19
Version Control

In this section we describe What can be obtained (p.19-6) by Version Control, and what
Techniques (p.19-6) are available.

What can be obtained

With Version Control we obtain an unambiguous identification of the (syntactic) ele-
ments that a system is built from. This provides a necessary prerequisite for building a
correct system.

Version Control is the minimum level of control needed to manage the development and
maintenance of entities that make up a product.

Version Control essentially provides an unambiguous identification of entities. It dis-
criminates between revisions and variants, thereby identifies improved and alternative
revisions of entities.

Furthermore it enables a customer and a producer to communicate about versions of
products, so that errors and enhancements can be performed with knowledge of the
delivered components.

Version Control must include measures to avoid simultaneous (and destructive) updates
of entities.

Versioning mechanisms can also be used to classify entities and to make statements
about properties and quality aspects of a component, e.g. whether it is a working version
or a more official version.

Techniques

The following techniques for Version Control are presented:

• Revisions, Versions and Variants (p.19-6),

• Variant Production (p.19-7) and

• Identification and selection of versions (p.19-8).

Revisions, Versions and Variants

These are terms that often are used in an imprecise manner. The definitions we have cho-
sen for Version, Variant and Revision are in short that any change to a Configuration
Item produces a new version, which is either a revision (that is meant to replace the pre-
vious version), or a variant (which is meant to coexist with the previous version).

Note therefore that a variant can be modified to produce a revision of the variant (mean-
ing that it is a “better” variant than the previous version).
Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1619 - 6

Version Control
Techniques 19TIMe
Variant Production

Often one has a need to develop several variants (of a component or system) to satisfy
incompatible needs of customers (e.g. variants for different computer platforms) or for
reasons internal to the developing organization (e.g. maintaining several product
releases with different functionality simultaneously, with and without corrections).

This can very soon lead one to a situation where the number of variants of a single com-
ponent makes management awkward, like having to perform identical changes (e.g. due
to a bug fix present in many variants) to many versions. One needs to rationalize; below
a number of alternatives are given.

1. Variants can be given different names in their Identification, where one can see from
the name what variant it is (e.g. file name with naming conventions to distinguish
between variants for different computer platforms).
This alternative easily gets out of hand if the variants become many and not related
to commonly understood variability such as computer platform or language, and also
requires physical storage for complete versions of all variants.

2. Variants all share the same name, but are distinguished by their revision and version
number in the Identification. This is the method typically adopted in file repositories
such as RCS, CMS PVCS and SCCS, which adopt measures to reduce storage space
using some delta mechanism (only storing one “master” version and the differences
- deltas - between versions). A configuration description can determine which ver-
sion one should use of modify.
Although this saves storage space and name space, one still may have to perform
identical changes to many versions. Merge functions in the versioning tool can
reduce the number of versions one has to modify for e.g. a common bug fix, but all
“external” variants must non-the-less be maintained in parallel.

3. Conditional text is a mechanism that has been present in programming languages for
many decades, and which to a certain degree is found in other sources such as text
processing systems (like FrameMaker and Word), but seldom in design tools. The
idea is that to use a preprocessor on the source text (containing “macros” that indicate
inclusion or exclusion) before invocation of a tool (e.g. a compiler), and configuring
the tool (supplying parameters that select macros).
This mechanism, if available, is useful in situations where the number of variants is
limited, the macros are concepts that are easily understood (e.g. “test”, “host”, “tar-
get”), and one can control the transformation process (selecting the correct macros
for the correct transformations). Applied in addition to versioning systems one can
reduce the number of physical variants (file versions) one has to modify.

4. Change oriented versioning is a fairly new approach that is not commonly found yet,
unfortunately. The idea is that the repository can itself add or remove macros accord-
ing to conditions (intentions) supplied in the form of logical statements (e.g. test
AND host AND bug_fix_345 AND NOT bug_fix_211).
Change oriented versioning is the only mechanism that would significantly reduce
the number of parallel updates required to maintain many variants, and is therefore a
promising future possibility. Text processing systems implementing conditional text
are the closest one comes to change oriented versioning at present.
Configuration Management 19 - 7 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Version Control
Techniques

TIMe19

The opposite function, that is merging variants to become a single version, is supported
by many CM tools (at least on textual sources like code files). The most advanced tools
offer multiple windows, showing the file versions being merged, the merged result, and
lets one select contents at the event on conflicts, also letting one enter new input into the
merged file if appropriate.

Identification and selection of versions

All repository tools (like RCS, CMS, PVCS and SCCS) have their own way of assigning
an Identification of a Version of a Configuration Item. For items not stored in the repos-
itory (e.g. physical items) one should adopt an identification scheme which is as far as
possible in accordance with the repository tool’s.

The identification scheme typically consists of a name (e.g. file name) and a set of num-
bers, denoting revision and variant in some structured fashion.

Selecting a version (either one wants to modify it, simply look at it, or use it in a build
operation) can be a non-trivial task. The simplest and most common is to select the “lat-
est and greatest”, that is along the main line of descent. But one may want one that is
identified in a configuration description for a certain product version, or one may want
some other version of particular functionality or quality.

One technique for selecting versions is based on assigning an Attribute to items. Such
attributes can denote general properties that are common for many items (e.g. quality
attributes such as “approved”, or other general attributes such as “host”, “language”,
“author” or “modified”), or properties that are particular for few or only one item (e.g.
attributes identifying functional changes and bug fixes).

Each attribute may have a legal value set (e.g. language = English, German, Norwe-
gian). Such attributes must be recognized by the repository, which must associate each
item version with applicable attribute values; it must be possible to uniquely discrimi-
nate each version by a combination of attribute values. Not all attribute values need to
be bound, only enough to uniquely identify a version. Default attribute values can be
defined (e.g. approved == TRUE).

This approach is possible in some of the more advanced tools (“Views” in ClearCase,
intentional version selection in PCL).

1.3.1.1 1.3.1.2 Variant 1 from 1.3
 �����������

1.1 1.2 1.3 1.4 1.5 Main line of descent

 �������
1.3.2.1 1.3.2.2 Variant 2 from 1.3

Figure 19-1: Revision tree (RCS type)
Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1619 - 8

Configuration Control
What can be obtained 19TIMe
Configuration Control

In this section we describe What can be obtained (p.19-9) by Configuration Control, and
what Techniques (p.19-9) are available.

What can be obtained

Configuration Control adds structure to Version Control: a formalized description of
how a product is composed of (syntactic) parts.

It also adds formalized procedures for the transformation processes, describing required
input (e.g. source code) and the resulting output of the transformation. This is called
Build support (p.19-10). By adhering to naming conventions, checking on the existence
of input and output entities, and checking on generation times (timestamps), transforma-
tions can be performed automatically and only when needed.

With Configuration Control we can improve system documentation by expressing the
composition of the system in a Configuration Description (p.19-10). Regeneration of a
specific configuration becomes simpler and more reliable, and automation is made
possible.

The production of new variants can be performed with greater ease, quicker and with
less probability of errors by making new versions of the configuration descriptions.
Such descriptions can be maintained independently from other version.

The combination of configuration descriptions and component classifications (see Iden-
tification and selection of versions (p.19-8)) enables one to deduce the status for a
particular configuration from the individual component status, with the addition of
results from integration tests etc.

Communication about the system becomes easier and more secure, in that structures can
be identified and isolated, and given appropriate identity in the configuration descrip-
tion. Evolution of the system can be performed with greater control and with less
dependence on the individual developer.

Techniques

The following techniques for Configuration Control are presented:

• Product structure (p.19-9)

• Build support (p.19-10)

• Configuration Description (p.19-10)

Product structure

Maintaining a formalized description of the structure of the (semantic) parts that make
up a system or product is invaluable to configuration control.
Configuration Management 19 - 9 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Configuration Control
Techniques

TIMe19

Product structure should not only describe this part-of structure, it should also document
interrelationships between components. Documentation items should be linked to the
components they explain, requirements should be linked to their solutions, executable
software items should be linked to descriptions of the hardware that run them and so on.

The level of detail, the granularity and the classes of components that are part of such a
description depend on the needs of the company and the system being described, but
unfortunately also very much on the tools that are available. The current situation in tool
support leaves much to be desired, as typically non-software items cannot be modelled
decently, and user-defined relations are not commonplace.

Build support

An addition to the description of the product structure is the description of the transfor-
mation process carried out by software production tools like compilers, linkers and
loaders.

Such a formalization has been commonplace for the most common tools for many years
in the form of make-files (native to unix and PC platforms). But with integrated tool
chains as one finds in the SDL world, the transformation process can consist of many
steps: selecting an SDL component (or collection of components), generating code
using a code generator with appropriate options (e.g. determined by the software design/
framework), and then compilation and linking of the generated code. The transformation
description must cater for all this, and preferably be capable of automatic tool invoca-
tion. Support for defining manual steps formally is seldom a feature of CM tools.

Given that the product structure and the transformation process has been described, one
can hope for good support from the CM tool to rebuild subsystems and systems effi-
ciently, i.e. only regenerating the parts that are effected by changes since the previous
system generation (typically only generating or compiling the parts that are affected by
a recent change). Advanced support for parallel, distributed building is offered by some
of the CM tools.

Some tools also not only rely on timestamp information to determine the need to regen-
erate, but also record which options where used for the transformation. Such
information is then stored as an attribute of the destination elements (outputs of trans-
formation tools like compilers). This level of refinement is necessary where several
components with identical names but different building rules are used in more than one
place in a system.

Configuration Description

A configuration description is a formal description identifying exactly which versions
of which configuration items are involved in a particular system build, and how each
derived component was produced.

This information is essential for the capability of rebuilding (reconstructing) a particular
system version, and for identifying exactly what went into the system and how transfor-
mation tools were used; all important information when analysing error reports and
change requests.
Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1619 - 10

Configuration Control
Techniques 19TIMe
Maintaining such configuration descriptions can render the need to store derived com-
ponents in the repository unnecessary, although the choice between saving space by not
versioning derived components must always be weighed against the time required to
rebuild them on demand (some types of system generations can take days).
Configuration Management 19 - 11 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Configuration Management
What can be obtained

TIMe19
Configuration Management

In this section we describe What can be obtained (p.19-12) by Configuration Manage-
ment, and what Techniques (p.19-12) are available.

What can be obtained

Configuration Management adds the managers view to Configuration Control. It for-
malizes the contact with customers, registering error reports and requests for new
functionality (enhancements). It initiates and controls the evolution process, and con-
trols the termination of changes and the release of new product versions.

Procedures for change management give the company a controlled, efficient and mar-
ket-driven product development throughout the product life-span. It helps build up a
base of customers and experience, and is a place to find market trends amongst
customers.

Configuration Management contributes to highlighting valid configurations, and lets
one define standard solutions where undesirable (conflicting) feature interaction is
avoided. A company can more easily answer tenders that do not require new (unex-
pected) development work.

Techniques

The following techniques for Configuration Management are presented:

• Managerial issues (Roles in Configuration Management (p.19-12)):

- Quality Control Board (p.19-13)

- Configuration responsible (p.19-14)

- Configuration Management Plan (p.19-14)

- Project Worker (p.19-15)

• Change control (p.19-15)

• Release support (p.19-16)

• Process management (p.19-16)

Roles in Configuration Management

A traditional project model is taken as a basis in the following. A project is given a
Configuration Management Plan defining rules and procedures. The plan is defined
and controlled by the Quality Control Board (p.19-13), while the Configuration respon-
Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1619 - 12

Configuration Management
Techniques 19TIMe
sible (p.19-14) performs the bureaucracy concerned with Configuration Management.

The types of roles we thereby define are

- the performing role played by the Project Worker (p.19-15)

- the controlling role of the Quality Control Board (p.19-13) that makes decisions
regarding requested changes, approves of implemented changes, and determines
which choices (variants) are to be available

- the registering role of the Configuration responsible (p.19-14), that is a link between
the performing and controlling roles, by maintaining lists of change requests and
making approved changes available for further development

Note that there roles will exist independent of what tool support one has; good tool sup-
port simply helps people perform these roles.

Quality Control Board

The company should have a body that is responsible for quality assurance, as required
by the ISO 9001 standard series, both for development and manufacturing. Configura-
tion Management applies to product development, and comprises:

• defining plans and standards for quality assurance and configuration management

• ensuring that these plans and standards are followed

• initiate development and maintenance projects according to analysis

• approve development results at project milestones

Quality Control Board

Configuration Project Manager

Project Worker

Project Worker

Project Worker

Configuration
management

Figure 19-2: Roles in configuration management

responsible
plan
Configuration Management 19 - 13 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Configuration Management
Techniques

TIMe19

The organization of the Quality Control Board (including the Configuration Control
Board) must be tailored to the companies needs: in small-scale situations the project
manager, quality manager, product manager and configuration responsible may be roles
played by a single person and constitute the control board; in large-scale situations a
hierarchy of responsibility and control may be appropriate.

The important issue is to focus on roles, assign them in a rational way, and be conscious
of which role one is playing at a given time.

Configuration responsible

This role is a support function that takes care of the necessary “red tape” involved in
configuration management, the object being to alleviate the creative work of the Project
Worker (p.19-15) from such issues. Examples of the activities performed by the config-
uration responsible are:

• create, implement and manage procedures and rules, as approved of by the Quality
Control Board (p.19-13)

• register and collect problem reports (errors) and change requests (suggestions for
functional improvements), and submit these to the Quality Control Board (p.19-13)

• identify components (items) created and modified during development

• identify and register approved configurations of these items

• performing regression tests and reporting results to the control board

• composing complete configurations for releases

• manage tool use (and versions of tools)

Good tools can support many of these activities.

Configuration Management Plan

As mentioned earlier there is little consensus in terms of standards or handbooks for con-
figuration management. The most important standard, ANSI/IEEE Std 828-1983 IEEE
Standard for Software Configuration Management Plans hence states that every major
project should define its own Configuration Management Plan.

Such a plan should be an integrated part of the quality system required by the ISO 9001
series of standards, and typically specify:

• the organization, roles and responsibilities within quality assurance, including con-
figuration management

• procedures to manage error reports and change requests, showing how decisions are
to be made and carried out

• procedures to be followed when performing functional changes to products or sys-
tems, identifying quality assurance activities

• which quality assurance techniques are to be performed (e.g. walkthroughs, reviews,
testing, validation) in which situations, paying special attention to regression testing
Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1619 - 14

Configuration Management
Techniques 19TIMe
• how achieving and identification of versions is to be performed, and how to represent
variants wrt. customers

• procedures for managing deliveries to customers

• use of tools for configuration management

An appropriate plan will vary depending on:

- the degree of parallel development

- the ratio of error correction versus development

- quality requirements (risk involved)

- number of variants available for customers

- the number of configuration items

A tool with process support can define much of this; but planning is still required!

Project Worker

One should strive to relieve the individual project worker from the tedious details of
configuration management. This is only partly possible, depending on what (tool) sup-
port is available.

The project worker will be involved in:

• determining which configurations of items are possible (i.e. yield a valid result) -
information which the Configuration responsible (p.19-14) must record for use by the
Quality Control Board (p.19-13)

• performing the functional changes decided by the Quality Control Board (p.19-13)
via the Configuration responsible (p.19-14), who identifies the Baseline from which
to develop. Information about the functional properties of the baseline should be
found in the configuration description.

Change control

The management aspects of change control have already been mentioned in the previous
sections on Quality Control Board (p.19-13) and Configuration responsible (p.19-14).
There are in addition a number of technical issues that are relevant:

1. Change records: the change history of a component should record not only the time
and date of change and the difference, but also the reason for perform the change.
Such change forms can be manual or part of CM tool functionality.

2. Change groups: a single change request as supplied by e.g. a customer will more
often than not require changes in many components, and in components of various
types (e.g. both in computer sources and documentation). The changes to the compo-
nents should be grouped to be able to initiate, monitor and report on the changes to
all affected components as a unity.
Some CM tools now provide mechanisms for change sets or change packages, where
the tool provides support for grouping the individual items changed, and naming the
change with an identifier.
Configuration Management 19 - 15 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Configuration Management
Techniques

TIMe19

Release support

Keeping track of which customer has received what can be a very important set of infor-
mation if there are many variants of a system in the market. This should preferably be
maintained by the CM tool; at least there must where necessary be unambiguous links
between the customer database and the version descriptors for the delivered systems, or
the customer should be able in some way to find version identifiers on or in the system
itself, which can be quoted when communicating with the producer or service personnel.

Process management

The Configuration Management Plan defines amongst other things a process that shall
be followed in Configuration Management activities, as mentioned before. The most
advanced CM tools can be adapted (programmed) to support many such activities, plus
other activities that are part of the software development process; we call this Process
Management.

Such tools can support the life-cycle phases which a component runs through, and can
define different schemes for various classes of components (e.g. a textual requirements
specification and an SDL operator will typically have very different steps of quality
assurance).

We recommend that one doesn’t invest in tools of this kind (or use these features) unless
the software process is well defined, well understood and stable. Support in this field is
a enabling technology on the higher level of maturity on the CMM capability model.
Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1619 - 16

Classification of configuration management tools
Techniques 19TIMe
Classification of configuration management tools

A useful classification of CM tools follows our definition of Levels of control and man-
agement (p.19-5) with some overlaps:

1. Basic versioning tools. Support Identification and selection of versions (p.19-8), Ver-
sion Control (p.19-6) and basic (not distributed) Build support (p.19-10). Simple
tools to use that solve rudimentary issues such as identifying revisions and variants,
and the automatic regeneration of a system after a change. Classic examples are the
basic use of rcs (or sccs) and make.

2. Configuration Control tools. In addition to the functionality of Basic versioning
tools, they support Product structure (p.19-9), Configuration Description (p.19-10)
and Release support (p.19-16). Tools at this level should combine the configuration
description and the transformation description when performing build support, and
offer distributed Build support (p.19-10).

3. “proper” Configuration Management tools (using our definition of the term). Sup-
ports (in addition to the above) Roles in Configuration Management (p.19-12),
Change control (p.19-15) and Process management (p.19-16). This implies handling
error reports, change requests, impact analysis, approval mechanisms etc. They are
capable of describing and formalizing processes which do not lend themselves to
automation (i.e. humans are involved).

Pleasingly enough, OVUM in their 1995 evaluation of Configuration Management
Tools [148] report that “CM tools have advanced by leads and bounds” since their 1993
evaluation, producing some very interesting results, the most important being that sev-
eral mature tools in the third level are now available (e.g. ClearCase, Continuus/CM and
PCMS). This is also the conclusion of the latest SISU evaluation of ClearCase [170].
Configuration Management 19 - 17 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Introducing Software Configuration Management into a com-
Tools or manual procedures?

TIMe19
Introducing Software Configuration Management into a
company

Introducing Software Configuration Management (SCM) is and should be tightly linked
with the definition of the quality system, such as defined by the ISO 9001 standard
series. Much of what applies to introducing ISO 9001 into an company also holds for
SCM, and involves improving the development process:

- analyse your present situation, identify areas of improvement, select the areas within
which improvement is sought (priority depends on risk analysis, cost of means and
level of improvement), make a plan for introduction

- involve all levels of the organization, especially seeking management commitment to
the plan - and involve enthusiastic promoters (look for influential individuals)

- inform all involved of the plan

- implement the plan, and measure its effects on chosen metrics

- evaluate results at predefined checkpoints, and inform all

- learn from your mistakes and successes - and document them!

- iterate all the steps above as long as you live

Tools or manual procedures?

Experience has shown that the main problem with introducing Software Configuration
Management (including Configuration Control) is not the use of tools, but establishing
routines and procedures. This causes us to recommend that manual procedures be an
appropriate starting point for any organization trying to swap chaos with control.

The following organizational measures are recommended:

1. Create a body responsible for quality assurance and configuration control, the Qual-
ity Control Board (p.19-13)

2. Create a support function for filing and possibly regression testing, the Configuration
responsible (p.19-14)

3. Define a Configuration Management Plan (p.19-14) as part of the company’s quality
assurance system

Development work is performed by the developers (project workers) as usual.

Only when the organization is capable of defining, recognizing and playing these roles
will the addition of tools be of any significance.

Whether you choose to leap-frog from “no CM tool” to a level 3 CM tool (see Classifi-
cation of configuration management tools (p.19-17)) or whether you choose a stepwize
approach is a matter you must settle in your improvement plan; note though that tools
on level 3 differ in the extent to which they let you refrain from defining your process,
so that you can make do with functionality at levels 1 and 2; it is possible to apply a step-
wize approach without changing your CM tools!
Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1619 - 18

Introducing Software Configuration Management into a com-
Tools or manual procedures? 19TIMe
Many find the price of advanced CM tools intimidating; it may therefore be of little
comfort to learn what experience has shown: you can count on spending more money in
terms of time and energy when introducing the tool into the company than the actual cost
of the tool.

For more about introducing CM tools into a company, refer to e.g. the 1995 OVUM
report Evaluation of Configuration Management Tools [148].
Configuration Management 19 - 19 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of figures
Tools or manual procedures?

TIMe19
List of figures

Revision tree (RCS type) . 8
Roles in configuration management . 13
Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1619 - 20

List of definitions
Tools or manual procedures? 19TIMe
List of definitions

Attribute . 21
Baseline . 21
Configuration . 21
Configuration Control . 21
Configuration Control Board . 22
Configuration Item. 22
Configuration Management . 22
Configuration Management Plan . 22
Identification . 23
Revision . 23
Status . 23
Variant . 23
Version . 23

Attribute

is an aspect of a Configuration Item that gives additional information, e.g. about its
functionality.

The attribute is not part of the Identification of the item.

Baseline

is the designation of a “snap-shot” (typically in time) of a product or system, with a spec-
ification of all Identifications of all Configuration Items that are part of it.

A baseline may also have a more specific definition, implying that all the configuration
items included in the baseline have a certain Status.

Configuration

is a particular composition of a product or (sub)system from particular components
(items) with a defined functionality.

Configuration Control

The formal guidelines for

• describing the configuration of a system or product on the basis of the identification
and status of each Configuration Item it consists of

• describing the derivation process and rules from source components through derived
components to a complete system

• coordinating and approving changes in this description
Configuration Management 19 - 21 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Tools or manual procedures?

TIMe19

Configuration Control Board

A body which is

• responsible for evaluating change requests

• capable of ordering their execution

• capable of monitoring their completion

Configuration Item

is an entity which is subjected to Configuration Management and is treated as atomic
(indivisible) in this respect.

A configuration item may consist of parts, but these parts are then not managed as parts
according to configuration management (e.g. a printed circuit board may be a configu-
ration item, while the components on it are not subjected to configuration management).

A configuration item is concerned with the (syntactic) descriptions that a system con-
sists of, and not the (semantic) building blocks in the system domain.

Is also informally called part, entity or component.

Configuration Management

The formal guidelines for

• identifying and defining the Configuration Items a system is composed of

• recording and reporting the status of entities and requests for change throughout the
components life-span

• evaluating and initiating changes

• controlling the change process

• verifying the release of system versions

Configuration Management Plan

A document which describes how Configuration Management shall be carried out in a
project or for a product. It describes:

• roles and role responsibilities

• the process for evaluating and implementing change

It defines:

• component statuses and corresponding approval criteria

• identification criteria

• methods for inspection, approval, filing etc.

• types of items to be managed
Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1619 - 22

List of definitions
Tools or manual procedures? 19TIMe
• tools to be used

Identification

is an unambiguous designation of a Configuration Item that is part of a system or
product.

The identification can consist of a name, type, revision number and variant.

The identification can not be changed during the life-span of the item.

Physical items will bear the identification.

Revision

is a Version of a component that is derived from an earlier version, and that is designed
to replace the earlier version. The difference between two succeeding revision is usually
a “small” improvement (error correction or enhancement in functionality). The latest
revision is the version one intends should be used (“latest and greatest”).

Status

is an Attribute of a Configuration Item that qualifies it, e.g. in terms of formal approval
or what quality criteria it fulfils.

As apposed to the Identification of the item, the status will change.

Variant

is a Version of a component that is designed to co-exist in parallel with other versions of
a component, as an alternative. One variant of a component is seldom “better” than
another, but offers different alternative functionality (e.g. for different computer
platforms).

Version

is a common term for Revisions and Variants.

Is also used to denote an identified product configuration with a defined status, typically
indicating a larger change than a new revision (e.g. version 5.0 of FrameMaker).
Configuration Management 19 - 23 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Tools or manual procedures?

TIMe19
Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1619 - 24

	Introduction
	What
	Why this is important
	Objective
	Definition of terms

	Levels of control and management
	Version Control
	What can be obtained
	Techniques
	Revisions, Versions and Variants
	Variant Production
	Identification and selection of versions
	Figure 19-1: Revision tree (RCS type)

	Configuration Control
	What can be obtained
	Techniques
	Product structure
	Build support
	Configuration Description

	Configuration Management
	What can be obtained
	Techniques
	Roles in Configuration Management
	Figure 19-2: Roles in configuration management
	Quality Control Board
	Configuration responsible
	Configuration Management Plan
	Project Worker
	Change control
	Release support
	Process management

	Classification of configuration management tools
	Introducing Software Configuration Management into a company
	Tools or manual procedures?

	List of figures
	List of definitions
	Attribute
	Baseline
	Configuration
	Configuration Control
	Configuration Control Board
	Configuration Item
	Configuration Management
	Configuration Management Plan
	Identification
	Revision
	Status
	Variant
	Version

