T | M @ TIMeElectronic Textbook

ﬂActivities and

Descriptionsin TIMe

Content and SCOPE vt i it 2
DeSCription OVEIVIBWot e 3
ACLIVITY OVEINVIBW . . o e e e e 20
ANAlYSING . oo e 24
DESIgNING. . ot 39
Implementing e 41
INStantiatingot 43
Domain statement 44
Domain diCtionaryco i 49
Domain models. 53
System family statement 70
System family dictionary. ... 73
Family implementations i 76
Family auxiliary e 78
APPHCALION . . . 80
Applicationreferencemodel 81
Application MOdElS.o e 86
Framework 120
Framework models 126
Developingframework 143
ArChitecture 154
Architecturemodels. 164
LISt Of fIQUIES . . oo 181
Listof definitions.o e 183

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activities and Descriptionsin TIMe 6-1

- Content and scope Tl M e

Content and scope

Scope The core of The Integrated Method (TIMe) will be presented in the following. TIMeis
centered around a number of descriptions which are developed by activities. These
descriptions express domain knowledge, specifications in terms of external properties,
system family designsin terms of structure and behaviour, implementation mappings
and system instantiation. They are organised in three main areas of concern: thedomain,
the system family and the system instance areas.

It isassumed that the L anguages and Notations used to make descriptions and the Foun-
dation of TIMe are known to the reader.

Content The content is organised as follows:

3. Description overview (p.6-3) which introduces the main descriptions and how they
are organised.

4. Activity overview (p.6-20) which introduces the main activities and how they are
organised.

5. Description modules. Here we present the various descriptions as modul es with asso-
ciated operations. They are organised according to the three areas of concern:

- Domain: Domain models (p.6-53), Domain statement (p.6-44) and Domain dictio-
nary (p.6-49);

- Family: Application models (p.-106), Framework models (p.-155) , Architecture
models (p.-202), System family statement (p.-86), System family dictionary (p.-
90) and Family implementations (p.-93);

- Instance: instance models, instance implementations.

6-2 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me Description overview

The main descriptions

Description overview

The main descriptions

Figure6-1: Themain descriptionsused in TIMe

Open figure
Domain Descriptions Dictio-
nary
Domain
models State-
ment
System Family descriptions
System Family models
L Application Dictio-
models nary
L— Framework Statement
models
- Architecture Auxiliary
models
Implemen-
tation

Instance descriptions

Instance Implemen- Auxiliary
models tations system

Areas of As can be seen from Figure 6-1 (p.6-3), the descriptions are organised within three areas

concern of concern: domain, system family and system instance. In each areathere are formal
models and there are other descriptions (dictionaries, statements and auxiliary). Thefor-
mal core of the methodology is the models which are expressed using the well defined
languages UML, MSC and SDL.

i
i

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activities and Descriptionsin TIMe 6-3

Goals

Textual
explana-
tions

Domain

Family

Description overview Tl Me

The main descriptions

These descriptions are necessary and sufficient to achieve central goals of TIMe:

1. toimprove common under standing and communication among the
peopleinvolved in al areas of concerns,

2. to achieve a controlled process towards quality results;.
3. to achieve flexibility in services and system designs;
4. to minimise cost and lead times and to increase reuse.

The descriptions have been carefully selected. They are neither too few, nor too many.
Thereislittleredundancy, asthey describe different aspects and complement each other
in a complete, concise and readable documentation. TIMe keeps the amount of tempo-
rary (throw away) descriptions to a minimum, and emphasizes descriptions that end up
as final documentation. This does not prevent us from identifying partial descriptions
that are useful in their own right, such as specifications, and to issue them in separate
documents when needed.

Textual explanations may be attached to models as well as to other descriptions.

Domain descriptions are organised in:

» Domain models which are collections of classeswith attributes, relations and associ-
ated properties. They may be organised in several abstractions. Since the domainis
about general concepts and processes that are common to many systems, it is likely
that some parts of the domain models will be used within the family models. These
parts will often be quite stable, reusable and resilient to change.

» Domain statements which are concise statements about the domain normally
expressed in prose.

» Domain dictionaries over common domain terminology. It isimportant that the ter-
minology used in other domain descriptions is harmonized with and defined in the
dictionary.

» Domain auxiliary descriptions, which are any other description used. Will often be
informal text and illustrations used to help reading the models.

Family descriptions are organised in:

« Family models which are object models and property models describing the family
on several levels of abstraction:
- Applicationsthat describe what the user environment want the system to do (user
services).

- Frameworks that describe how applications are distributed and supported by an
infrastructure. Frameworks and applications together define the complete system
behaviour.

- Architecturesthat describe how frameworks and applications are realised in terms
of hardware and software nodes.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Instance

Description overview
The main descriptions

» Family implementations which are implementations of family concepts. Here we
find the general parts of implementations that are stable over all instances.

« Family statements which are concise statements about the family: its main purposes,
its market and qualities.

» Family dictionaries which define the family specific terminology.
» Auxiliary descriptions which are any other description used, for instance test plans.

I nstance Descriptions are organised in:

 Instance modelswhich define the particular system instance on al abstraction levels.
These may be self contained system models, but it is recommended to define
instances as configurations of families.

* Implementations which are the instance specific implementations such as configura-
tion files.

» Aukxiliary descriptionswhich are any other description of theinstance, for instance a
test suite.

Model organisation

Asexplained in Objects and properties, models have the facetsillustrated in Figure 6-2
(p.6-5). In general there are object models and property models. Seen together they
define a context and a content. The context represents the entity being defined (e.g. a
system type) as a“black” box and details its environment, while the content detailsits
internal composition in terms of object structures and behaviour.

Figure 6-2: Thefacets of a type model

Open figure

objects properties

context
/E_\
specification

content

A specification covers those aspects of amodel that are relevant for its external repre-
sentation and use, while the design cover the internal composition and the internal
properties.

The distinction between specifications and designsis not so important in domain mod-
els, whilein system family modelsit isimportant. This has been illustrated for
application, framework and architecture modelsin Figure 6-1 (p.6-3).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activities and Descriptionsin TIMe 6-5

Description overview Tl Me
The main descriptions

Specifications

A specification covers those aspects of amodel that are relevant for its external repre-
sentation and use. The context part is often sufficient as a specification, but if parts of
the content areimportant it may beincluded in the specification. Specifications are asso-
ciated with the abstractions they belong to.

Soecifica- TIMe emphasises that specifications are not special models, but integral parts of type
tionsare models. The reason is that we want to minimise the amount of descriptions that are
partial thrown away. In stead we want to make use of specifications throughout the lifetime of
models amodd:

1. first to express the required properties so they can be verified and validated,;

2. then to synthesise the design in away that satisfies the specification;

3. finally to describeits provided propertiesfor later assessment, (re)use, validation and
evolution purposes.

Soecifica- System Family specifications contain the specification parts of application, framework

tionsvs and Architecture models. These are related to the design parts, as indicated below.
design

Figure 6-3: Specification and design related

Open figure
Application Specification part of models
models
Application Framework
specification modes

Framework Architecture
specification models

Architecture
spec

Application
design

Framework
design

Architecture
design

Design part of models

6-6 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me Description overview

The main descriptions

Specifications and designs are often developed in different phases. Specifications are
produced early and play a central role in quality and process control. Designs are pro-
duced later. Therefore, in adevelopment project they are devel oped by separate steps as
illustrated in Figure 6-4 (p.6-8).

Require- In TIMe we consider a requirements specification as a document. It is normally pro-
ments duced early in adevelopment project and used as a contract for the design work. It will

Elf(’)en‘:ifica' contain specifications and other items of relevance at that stage.
Specifications should be kept consistent with the properties provided by adesign. We
foresee that specification are used:

» for marketing;

o for retrievdl;

 for validation of applications,
» for evolution.

Qualitiesof Important qualities of specifications are:
specifica-

tions e precision and detail;

e unambiguity;
* traceability and verifiability;
» modularity that will support evolution and change.

Some specification rules

Context » Make a context diagram where the entity being specified isidentified and the system

specifica- environment is detailed. Describe communication interfaces and other relations the
ton entity will handle. <x>
» Do not show everything in the environment, only the parts that are related to the
entity being specified.
Content « Avoidto state content requirementsin specifications unless absol utely necessary and
specifica- well justified.
tion
 ldentify the parts that are subject to requirements. Avoid describing more than
required. <x>
» Use open aggregation to illustrate how entities in the environment are related and
connected to components. <x>
Development steps
Seps The descriptionswithin different areas of concern and on different abstraction levelsare

developed in stepsthat help to reduce risk, and to improve quality and control. Thishelp
to give better control and also to use the skills of different people better and to run activ-
itiesin paralel.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activities and Descriptionsin TIMe 6-7

Not only
waterfall

Description overview Tl Me

The main descriptions

Each model is developed in two main steps. first the specification step where the spec-
ification part (interfaces and the required properties) ismade, and then the synthesis step
where the design part is devel oped.The main development cycles areillustrated in Fig-
ure 6-4 (p.6-8).

Figure 6-4: The main development cycle

domain
‘ domain

family

Open figure

domain needs specification

application design
framework design
architecture design

family needs \

implementation

\ instance

instance

configuration
instance needs
nee ¢

4—Pp| system
satisfies needs

Thisisof courseasimplifiedillustration of the main steps. Considered over timewewill
seethat the descriptions evolve gradually, that there are many iterationsand that changes
take place dueto better insight, new requirements and new technology. Wewill also see
that there are other, smaller cycles. For instance: to add a new service or feature to an
existing product we need not modify the domain. To produce a customized instance we
only need to add a new instance configuration.

Please do not jump to the conclusion that TIMe only supports the classical “waterfall”
model! It is up to the actual projects to determine whether they will adopt a waterfall
strategy, a prototyping strategy, use incremental development or whatever.

What TIMe providesis a set of descriptions and some general development activities
including strategies and rules, see Figure 6-7 (p.6-20). The activities are described in
Activity overview.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Description overview
Domain descriptions

Domain descriptions

What is a domain?

A domain is apart of the world where a system instance may be a (partial) solution to
some need (the problem).

Asapart of the real world the domain may be very large and not well delimited from
other parts of the world. Obviously, the domain descriptions cannot describeit all. Itis
necessary to focus on those parts that are important for the family of systemsin consid-
eration. A natural consegquence isto consider only a subset of the world that may
somehow be served by afamily member

Thedomain consists of physical entities such as persons, cards and doors aswell as con-
ceptual entities such as transactions and rules. The entities may be linked by physical
connections that enable entities to communicate or by associations.

Important entity classes are:

o Stakeholder. These are persons, institutions or systemswith direct or indirect interest
in the domain, such as users, owners, and producers. Needs originate from the stake
holders, so it is extremely important to have a clear understanding of who they are,
what they want to achieve and what their prioritiesare. These stake holders may have
quite different needsthat are not easily conveyed in asingle model. Consequently, it
will beimportant to identify the various classes of stake holdersand possibly develop
a set of models to properly describe their different views on the problem domain. In
the Access Control system for instance, the operator”s view is different from the
user’sview. A very important category arethe Actorsof the domain, the stake holders
that take part in the services or processes of the domain. These are later going to be
supported and/or represented by the system.

» Helpers. These are general toolsthat are used by the actors to provide services.
Examples are communication systems, radar equipment and keys.

» Subject entities. These are entitiesthat are subject to manipulation, representation or
control in the domain. They may be materialsin the case of amateria transformation
domain, e.g. moulding, or they may be entities represented in an information system,
e.g. flights and seats, or they may be controlled machinery, e.g. a paper mill.

» Transactions. These are entities representing transactions or eventsin the dynamic
behaviour of the domain, e.g. the purchase of a car, or a user passing a door.

In general the entities seeks to accomplish some services or transformation processes.
Their basic need isto provide these in the best possible way.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activities and Descriptionsin TIMe 6-9

Description overview Tl Me
Domain descriptions

Figure 6-5: Elements of the Domain

Open figure
Domain
Objects Properties
Stake holders Services

Actors

e o-O

Helpers Processes

Subject
entities

L

Transactions

B e
Connections

Oo—

Associations

The domain descriptions help to describe and clarify the needs of all the stake holders.
Needs may be classified as needs to:

know about entities and relationships, e.g. the identity of users and which doorsthey
are alowed to pass,

communicate among objects, e.g. for two persons to communicate;

transform objects from one form to another, e.g. to peel shrimps, to send afax or to
compile aprogram;

control something, i.e. to control or manipulate knowledge, transformations and
communications, e.g. to control afax machine.

Difference The problem domain has awider scope than any system in the domain, asitsfocusison

from what the systems are (to be) used for, i.e WHY the systems are needed. Compared to a

systems system context, it should be wider and more general. By studying the wholeit is easier
to see the purpose of the parts.

Thus, by studying awider context, it is possible to get a better understanding of WHY
the system is needed and what propertiesit should have. For instance, if the systemisa
communication system, we may consider why the communication is needed. In what
kind of processesisthe communication to be used? What are the success criteriafor
those?

6-10 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

System
indepen-
dence

Modelling

Description overview
Domain descriptions

By asking such questionswe get a better understanding of the underlying needs and may
be able to suggest new solutions. Perhaps the real need is not for a communication sys-
tem after all? Or, perhaps the need is for acompletely new kind of integration between
communication and transaction systems?

A problem domain may well be modelled as any other system. Compared to systemsin
the solution domain there are some differences, however:

» The domain will normally include people, so it is a socio-technical system.

» The domain need not have well defined interfaces asit is not going to be used as a
component.

» The domain need not be completely composed or operational to the same degree as
systems. It may well be described by many fragments.

* The domain avoids system specific solutions.

The enterprise view in ODP serves the same purpose as the domain here. However, in
the domain we do not wish to identify a particular system or system context. We want
the domain to be general and independent of particular systems for several reasons:

* Open system analysis. We want the domain as a foundation for system analysis. It
should not bind the solution but allow us to investigate many alternatives.

» Common concepts. We want the domain to describe common concepts and terminol-
ogy that can help different communities to communicate: users, marketing,
development, engineering.

* Reuse. We want to identify concepts and properties that will be needed in many dif-
ferent system families, and thereby promote reuse. The domain given parts of
systems (see System reference models) contain such reusable parts.

In principle, the problem domain can be modelled as a (socio-technical) system, more
ore less, like any other system. In practice a more fragmented view, with focus on the
needs of various stake holdersis more useful. It enables us to describe and to analyse
different viewpoints without enforcing the completeness and consistency required in a
system model at this stage.

The domain may be described on all three abstraction levels (see Abstractions in mod-
els). Normally only the abstract application level is considered and thisis what most
methods consider asthe “domain”. It is also what we shall consider the domain unless
otherwise stated.

However, it is also possible to describe e.g. the infrastructure domain and the platform
domain. Here we may describe common features of infrastructures, say user interfaces,
and platforms, say middelware like CORBA [145]. These other domainswill end up in
other parts of the system such as the interface given parts or the platform.

It is not always obvious what to include in the problem domain. One should avoid sys-
tem specific solutions, but concentrate on more general conceptsand propertiesthat will
be common to many systems. For information systems this will typically be types of
passive obj ects (see Active and passive objects) and associ ationsthat will be represented
in every system in the domain. For instance it is reasonable to believe that every seat
reservation system will handle flights, seats and passengers.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-11

Wth
Families

Description overview Tl Me

Domain descriptions

System specific solutions should be avoided, but general objects/types and functions
performed by (parts of) systems shall be covered.

Why make domain descriptions?

Domain descriptions are used to define a domain and its terminology. domain descrip-
tions serve three main purposes:

» To provide afirm basisfor communication and common understanding amongst dif-
ferent Stake holders such as: end users, owners, developers, marketing and
production.

» To provide afirm basis for product planning, i.e. to analyse needs, to seek possible
solutions and to specify the goals for anew product development. Inthisitis
extremely important to consider variability and to plan a system family from the
beginning that will cater for the variability. During product planning it is aso impor-
tant to consider existing systems and competition.

» To boost productivity and quality by systematically capturing and maintaining com-
mon knowledge in one place (possibly at a strategic company level) rather than
arbitrarily in various system specific documents. Domain descriptions will hold for
many different systems and identify stable, reusable concepts and properties. Com-
ponentsthat are derived from them arelikely to be quite stable and therefore reusable
across systems and system families. The domain given part of the application refer-
ence model has been introduced to highlight this aspect, see Domain given (p.-101).

» To establish a common understanding of terminology, phenomena, concepts, and
tasks by making domain descriptions (a set of models and a set of rigorous prose
specifications).

» To describe general objects/types and properties that is common to many systemsin
the domain and thereby achieve a high degree of reuse.

Domain description content

Domain descriptions contain the following description modules:

Domain statement (p.6-44), Domain dictionary (p.6-49), Domain models (p.6-53) and
auxiliary domain descriptions.

Domain relationships

The domain will normally include entities that will be part of (the domain given part of)
systems, see Figure 6-6 (p.6-13).

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Description overview
Domain descriptions

Figure 6-6: Parts of the (application) domain will berealised in the domain given part of

Domain
harmonisa-
tion

systems

Open figure

included in
family x

included in
‘ family y

interface % domain domain
given given given

Family x

We seek to keep the domain given parts of systems formally related to the domain.
These parts may not only contain “data objects’ (passive objects), but also active
objects. In the end, the domain models should cover all the domain given parts of
systems.

Harmonising domain descriptions

Within domain

The various domain descriptions should be harmonised as much as possible with each
other: phenomena and conceptsin the dictionary should have their counterparts in the
domain object model. If properties are properties of entities in the dictionary, then the
terminology introduced there should be used in the property models.

» Align the domain object model, the property model, the statement and the dictionary
with each other. At least define every main termin the statement in the dictionary.

As an example of this guideline, look at the example descriptions and see

. . Domain
how Access Zone, Access Point and User are treated in them. Statement,
Detailswill be given for the component descriptions: Domain statement — pro o

(p.6-44), Domain dictionary (p.6-49), Domain object models (p.6-54) and object

Domain property models (p.6-60). Model,
Property
With family Model.

When system families are introduced, domain descriptions will be harmonised and
extended to cover what is common for many systems or system types. Domain descrip-
tions are extended and detailed so that they take domain specific system elements into
consideration. The purposes are:

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 13

Description overview Tl Me

Family descriptions

1. to promote reuse;

2. to improve traceability;
3. to simplify maintenance;
4. to ssmplify design.

There are two sub-activities:

* Reuseanalysis: to analyse the design looking for object types and properties that will
be common to most systems in the domain. They will then be re-used in system
designs (families and system instances):

- add new object types and properties to the domain descriptions,

- adjust the domain descriptions to correspond as closely as possible with design
without introducing system specific details.

« Establish links: define the relationships between design and domain descriptions.

Detailswill be given for each description module: Domain statement (p.6-44), Domain
dictionary (p.6-49), Developing domain object models (p.6-63) and Domain property
models (p.6-60).

Family descriptions

What

What is a family?

A system family containsthe generic result of systems development. It represent a prod-
uct base on which acompany may capitalise by producing and selling system instances.
Asexplained in Abstractions in models, systems are modelled on several levels of
abstraction:

e application;
o framework;
» architecture;
* implementation.

Each level is developed in two main steps:. the specification step which emphasises
external properties and the design step which emphasises the internal content. The gen-
eral approachistowork from the application level towardstheimplementation level and
from the specification towards the design within each level.

Note that applications, frameworks, and architectures are somewhat independent and
interchangeable. An application may, for instance, fit into several frameworks, and a
framework may accommodate several applications. Each may use components that are
shared between families.

In most cases asystem family is designed to serve one market segment within adomain.
Asthe application level is closest to the market needs, it seems natural that the system
family should be defined on the application level. However, to fully generate system
instances, we need information provided in the framework, architecture and implemen-

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Types and
Families

When to use

Variability

Description overview
Family descriptions

tation levels. Therefore theselevels must be included when we want to produce concrete
system instances. To produce an abstract system instance for simulation purposes, on
the other hand, the application level is sufficient.

Object modelsinthefamily areawill contain types defined with acontext and acontent,
see Anatomy of object models. To some extent it is possible to define a system family
formally asatype, e.g a System Typein SDL. But to define the family asjust one type
would probably be too restrictive:

« it would make the family specific to the level (application, framework, architecture)
where the type belongs,

it would not capture the component libraries involved,
« it would berestricted to what is formally expressible in the languages.

In stead we consider the system family as a more loose organisation (library) of types
and other generic entities, which are used to generate system instances within adomain.
A system family need not be self contained. It may well import parts from and export to
other system families.

There are cases (one-of -a-kind systems) where afamily may seem to be overkill. But
even in such cases it appears that most results are generic in the sense that they can be
used to produce many similar system instances. They may aso contain partsthat can be
used in different systems. Therefore there is an implicit system family, which is made
up by the generic system descriptions that are produced anyhow, even in these cases.

In more interesting cases many instances with arange of different properties shall be
produced. In such casesit is desirable to analyse the needs for variability, and to design
the family so that instances can be configurated and build as cost effectively as possible.
This may require some additional design effort that has to be balanced by savings later
on when system instances are configurated and built.

Variability can be represented in two principally different ways:

» By different versions of descriptions. Thiskind of variability (outside the descrip-
tions) istraditionally handled by configuration management systems, see Software
configuration management.

« By variable partsin the descriptions, typically by parameters, configuration vari-
ables, virtuality. Thiskind of variability is expressed in the notations and languages
we use.

Our main focus here will be on the latter kind of internal variability. It involve al the
descriptionsin a system family.

Why make family descriptions?

The central idea behind the system family concept is that companies will benefit from
being more “ product oriented”. Rather than being driven by the short term goals of indi-
vidual system deliveries, which is tempting since each system sold give immediate
payback, development effort should beinvested in lasting resultsthat can generate a bet-
ter businessin the long run. Companies that focus too much on individual systemstend

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-15

6-16

Description overview Tl Me

Family descriptions

not to have a clear picture of what their products are and how they relate to the market.
They often have difficultiesin keeping the cost down and to keep schedules. After some
time they get trapped in vicious circles where they never have time nor money to
improve.

[deally:
» development effort should be invested where the results can be resold many times,
 the cost of each adaptation and sale should be as low as possible

The family concept is introduced to achieve these goals and to given an overall cost
reduction.

Content of family descriptions

A system family contains the following main description modules:

System family statement (p.-86) - a concise prose statement that characterises sys-
temsin the family.

System family dictionary (p.-90) - adictionary over family specific terminology.
System studies (p.6-17) - which are temporary descriptions of aternative system
principles made in order to assess alternatives and choose the best

Application models (p.-106) - which define the system behaviour related to user
needs.

Framework models (p.-155) - which define additional behaviour needed to support
the application.

Architecture models (p.-202) - which define the physical platform and how the
framework functionality is implemented.

Family implementations (p.-93) - which contain the implementation details in pro-
gramming languages and hardware description languages.

Family auxiliary (p.-96) - which contain other descriptions such as methods for evo-
lution and instantiation.

The needsfor variability is considered on each abstraction level and for the system fam-
ily aswhole. An important result isamethod for binding the variability and configuring
system instances.

Another important result isamethod for flexibleintroduction of new services. Onemain
goal isthat the method shall lead to a flexible framework and Architecture that will
allow usto add new services mainly by working on the application level.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Description overview
System studies

System studies

Objectives

What

System
study
notations

System studies are made in order to create deeper understanding of the technical prob-
lems and solution possibilities at an early stage. By exploring the “ solution space” for a
given problem they seek to find innovative solutions that will lead to better systems.
“Better” in the sense that the quality is good, that the cost is competitive the solution is
flexible for change.

System studies are not a specia kind of descriptions, but rather incomplete family
descriptionsthat are sufficiently detail ed that alternative solutions may be compared and
assessed. Thismeansthat it must be possible to compare devel opment costs, production
costs, risks and potential user satisfaction. It may be necessary to perform prototype
developments and laboratory experiments.

Note that system studiesinvolves al the abstraction levels, and builds on the activities
described for those. It can be seen as the start of system specification.

The results are system sketches consisting of rough specifications and content outlines.
They need not be very detailed, but sufficiently detailed to identify all critical partsand
the principle for implementing all services. They should be more detailed wherethereis
uncertainty concerning technology, performance or cost.

Note that the resulting descriptions (for the selected system concept) are not to be
thrown away. They areto be gradually elaborated into compl ete descriptions. However,
if well formed, they may later serve as an executive introduction to the system.

Two cases:

1. Feasibility studies which are performed when a new system family isto be made.

2. Impact studieswhich are performed when an existing system family isto be evolved.

» Do not feel obliged to use only UML in all sketches needed during this activity. It is
more important that all possible elements of the system and its environment come for -

ward. Make competing sketches. Have possibly one person responsible for
“formalising” these sketchesinto UML sketches.

I nstances

A system instance is a (real system which can perform behaviour and provide services.

The system instance area of concern contains system instances produced from system
families.An instance description describes a system instance.

When a system family is defined, a system instance can be defined by referenceto asys-
tem family using relatively simple configuration statements to binds the variability in
the family. If thereis no family however, it is necessary to define each system instance
completely in self a contained instance description.This can only be recommended for
one-of-a-kind devel opments.

In TIMe, system instance descriptions are organised in:

» Instance modelsthat formally define the system instance, usually by configuration of
some family;

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 17

Description overview Tl Me

Relations and traceability

instance auxiliary descriptions that provide supplementary documentation.

instance implementations which are the instance specific implementations such as
configuration files.

Relations and traceability

Rationale

Relation-
ships

6-18

It is clearly necessary to establish and maintain clear and traceable relationships
between the various descriptions and models. There are severa reasons:

Since each model or description is concerned with alimited area of concern and

abstraction, a complete documentation is made up of a set of interrelated models/

descriptions. In order to read and understand this compl ete documentation it must be

possible for areader to navigate in the descriptions and to understand the relation-

shipsaseasily as possible.

We need to trace the relationships from required properties to the design objects

where they are provided. There are at least, two reasons for this:

- guality assurance need to check that every requirement is satisfied,;

- when arequirement is changed we need to analyse what impact it will have on the
design.

We need to ensure consistency both between models and within models. This can be
achieved either correctively by comparing models or constructively by ensuring that
modelsare derived according to rules, e.g. by automatically translating from abstract
models to implementations.

Rel ationships between all the models and other descriptions shown in Figure 6-1 "The
main descriptionsused in TIMe" (p.6-3) must be defined. There are:

Domain to family relations:

- object to object;

- property to property.

Family to instance relations:

- object to object;

- property to property.

Family internal relations:

- application to framework relations,
- implementation relations,

- property to object relations,

- gpecification to design relations,

- validity of interfaces,

- dictionary, statement and model relationships.
Domain internal relations:

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me Description overview

Relations and traceability

- dictionary, statement and model relationships.
* Instance internal relations

The precise definition of relationships depend on the languages that are used. They will
be elaborated under the various description modules.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-19

Activity overview
Relations and traceability

Activity overview

General
activities

6-20

Figure 6-7: The main activitiesin TIMe

Open figure
(Andlysing h Domain descriptions Dictio-
nary
Analysing domain Domain
models —
ment
System Family descriptions
(' Analysing requirements) igt(altz:;;
- 7 Dictio-
(" Designing) nary
(D igni licati Designs State-
esigning application Sae
C [Appllcaiion |
Designing framework T =
mlzr M AUX|I|aryI

Designing architecture

G J

' Implementing '_

(Instantiating)

Implementa-
tion

Instance descriptions

(Configuring '
(Building '

(Testing)

N J

Asillustrated in Figure 6-7 (p.6-20), TIMe consists of five main activities:

Instance Implemen- Auxiliary
models tations

oncrete!

system

TIMe

Analysing (p.6-24). The purpose of thisactivity isto analyse adomain and to specify
the requirements to a new system family. It makes the following descriptionsfor the

first time:

domain models;

Activities and Descriptionsin TIMe

domain and family statement;
domain and family dictionary;

application, framework and architecture specifications.

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Ordering

Activity overview
Relations and traceability

» Designing (p.6-39). The purpose of thisactivity isto develop the design part of appli-
cation, framework and architecture models, including the detailed behaviour of all
objects.

* Implementing (p.6-41). In this activity all the detailed implementation descriptions
are produced including source code for the software and detailed hardware
descriptions.

» Instantiating (p.6-43). The purpose of thisactivity isto produce (executable) system
instances that satisfy specific suer needs.

For each activity we seek to give practical strategiesand rulesthat will help to produce
high quality descriptions and target systems. As far as possible the approach will be
illustrated by practical Examples.

These main activities consists of sub-activities. At the lowest level, sub-activities are
seen as tasks (operations) that “ belong to” description modules, for instance domain
object models. Such tasks will be described under the description modules they belong
to.

Specifications and designs have been identified as separate entities in Figure 6-7 (p.6-
20) in order to distinguish the specification and design activities. The reader should we
aware that this does not imply a separation of the models.

System development israrely a straight forward process where the optimal solution is
found at first attempt. It ismore of atrial and error process. By working with aparticul ar
solution we often learn how it can beimproved or get ideasfor radically better solutions.
Thereforeit isrecommended to spend sometime investigating the sol ution space before
selecting the system concept to develop. For this purpose we develop System studies
(p.6-17) which are compared and anal ysed with respect to cost, technical feasibility and
market potential. The most favorable alternative is then selected for further develop-
ment, if indeed it has sufficient business potential.

Thereis no specific ordering imposed on the activities themselves, but in practical
projects they will be ordered, and indeed the ordering is significant. It is essential that
specifications, designs and implementations follow each other in that order for each part
of the system. But it is not necessary that every part is developed at the same time.
Thereforeit ispossible to start design before all parts are specified, and to start imple-
mentation before all partsare designed. Thisisfurther elaborated in the Process models.

Itisimportant to note that the activities are not independent, but influence each other in
variousways. Asan example, adesign activity may lead to insight that triggersachange
in the domain models. These mutual interactions are not indicated in Figure 6-7 (p.6-
20), but will be explained in the text. We have sought to describe the activitiesin a
generic way that can be used in most processes. However, the best way to carry out an
activity depends on the actual state of its input descriptions and output descriptions at
the time when it isinvoked. In order to take thisinto account, we provide some aterna-
tive strategies and activity subcategories.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-21

Activity
categories

Activity overview Tl Me

Relations and traceability

Activity categories

Asexplained in Activity categories there are three main categories of development
activities:
» Make activities which make or synthesise descriptions for the first time, possibly

based on other descriptions, e.g. to make SDL process graphs from requirements
expressed using MSC.

» Evolve activities which perform (incremental) devel opment of existing descriptions.
They may either add new properties, e.g. add a new service to existing application
models, or change existing properties, e.g. correct errors.

» Harmonise activities which ensure that model s/descriptions are consistent with each
other, e.g. to make the domain dictionary consistent with the domain object models.

Making family
We may distinguish two cases:

1. Developing from scratch, where anew domain and anew system family isdevel oped
without any product baseto start from. The starting point isjust some needs or aprod-
uct idea.

2. Developing from existing families where a new system family is developed using
existing families as basis. In principle we go through the same steps as when devel-
oping from scratch, but now we seek to utilise as much as possible from the existing
Families. Design by reuseisacentral concern. This caseis considered the normal for
development of new system familiesin a company that have used TIMe for some
time. Such companies have established extensive domain descriptions and compo-
nent libraries which are taken into account in all new developments.

Both cases will follow the same overall strategy, but the detailed activities will be dif-

ferent. Normal development will put more emphasis on reuse and adaptation of existing
solutions. If, for instance the framework and the architecture is reused from an existing
family and only the family is modified, then the effort will be far less than when devel -
oping from scratch.

Evolving family

Evolution is caused by new requirements. It may be requirements for new services or
service features, it may be requirements for a new platform, or requirements for a new
interface. The abstractions and the system reference model we use in TIMe has been
chosen with evolution in mind. Areas that are likely to change independently of each
other are separated:

» Changesin services or user interfaces are defined on the application level. Here the
distinction between domain given, system given and interface given parts, help to
further isolate changes.

» Changes in implementation platform are defined on the architecture and the imple-
mentation levels.

» Changesin infrastructure are defined on the framework level.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TI M e Activity overview

Relations and traceability

The situation today is characterised by increasing demands for service flexibility. In
order to stay ahead of competition, the lead time for specifying and implementing new
services must be as short as possible. At the same time, many products must be sup-
ported on arange of different platforms. This means that system Families should be
designed with flexibility and diversity in mind and supported by tools.

The various evolution activities are dealt with for each description module separately.

Harmonising family

The harmonising activitiestake care of theiterations and feed-back between the various
descriptions.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 23

Analysing
Relations and traceability

TIMe

Analysing

Objectives

What

The objectives of analysing are:

* Tounderstand the domain and what users and other stake holderswant to achieve, i.e.
their needs.

» To find improvements they will consider valuable.
» To plan new product families that will give valuable improvement and thus create
businessin the future

Analysing is part of product planning which isamore or less, continuous task in any
prosperous company. It is constrained by the company’ s strategic plans and seeks to
come up with ideas for new products or enhancements to existing products.

Figure 6-8: Analysing

Open figure
Business plan,
product strategy
(Analysing)
Analyg ng Domain
S | oetiors [
Market An_alysi ng
people, us- requirements
ers, desigrl— ' Analysing System
ers,domain A solutions studies
experts
Specifying Family —
descriptions
.
-
' Family
descriptions

Own systems,
competing
systems

Central to the task is a deegp knowledge about a problem domain and existing system
solutions. It seeksto identify a problem, i.e. some deficiency or opportunity for
improvement, that anew system family may solve. This should not be just any problem,
but something that would mean considerable improvement and thus have sufficient
value for some stake holdersto justify an investment in the new system. Thus the core
of the task is to understand needs and find solutions.

The concrete results are domain descriptions, system studies and specifications for sys-
tem familiesthat may create future businesses. A businessis created when aproduct and
aproduction meets amarket. Thus, commercial success depends on more than the prod-

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Analysing
Relations and traceability

uct qualities. It also depend on the marketing and the production. Consequently it is
recommended to develop the product, the market and the production in parallel.The
domain relates clearly to the market, and the instances to production. In thisway TIMe
supports integrated development of all three areas.

Sub- Analysis consists of two activities:

adtviles Analysing domain (p.6-28)which produces domain descriptions. The main purpose
isto understand what various stake holders want to achieve, not what the product is.
The domain descriptions must be sufficiently complete to: achieve common under-
standing of terminology and concepts; understand the real needs of stake holders, and

analyse improvements.
* Analysing Requirements (p.6-32) which produces:

- System studies (p.6-17). These are design studiesfor aternative system solutions.
Theideaisto assesthe feasibility and the business potential of each and to select
the most promising alternative for further development, or to stop further devel-
opment if no aternative is sufficiently attractive.

- System family statement (p.-86).
- System family dictionary (p.-90).

- System family specifications, i.e. Application specification (p.-115), Framework
specification (p.-158) and Architecture specification (p.-206) which are used as
input to designing the family.

Actors Analysis require multidisciplinary teams. Key personnel are domain experts such as
marketing people and real users, but system developers should also participate both to
improvetheir own problem understanding and to help finding improvements. It isatask
where experts in the problem domain meets experts in the solution domain and new
opportunities arise out of their combined effort.

There may also be existing literature, existing systems and possibly existing domain
descriptionsto use. Existing systemsis an important source. Consider what parts of the
domain they cover. Can competitive advantage be gained if we cover more? or less?

What to do

“How can you possibly find the solution if you haven't grasped the problem?’ (adapted
form awise saying at Ericsson).

Thiswisdom tells us that understanding the problem should come first: start by describ-
ing and analysing the domain, and go from there towards possible solutions. However,

when the domain iswell defined and the challenge is to gain competitive edge through

innovative solutions, the solution comes first.

Therefore, the strategy will depend on the quality of existing domain descriptions, and
whether the challenge liesin the problem or in the solution.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-25

Iterations

Analysing Tl Me

Relations and traceability

Note that domains are not entirely independent of design concepts or technology. New
technology enable improvements that were not feasible and perhaps even not imagin-
able before. For instance: the access control domain was different before cards were
introduced than after. Before there were keys, but no need for person identification.
After, person identification is a central issue.

Figure 6-9: Domain - system iterations

Open figure

first domain changed
model domain model

i

alternative
system studies

[]

existing new system
system

The old solution was traditional keys that were hard coded according to access zones.
With new technol ogy it becamefeasibleto use personal cardsand PIN codesinstead and
thereby achieve more flexibility and security. This change led to a changed domain
model where person identification and authentication is a central issue.

In order to get agood start with the first domain descriptionsit may be agood idea sim-
ply to model the current redlity first. If the challengeisto re-engineer existing systems,
then first establish a domain description corresponding to the usage of the existing
systems.

When initial understanding of the problem domain isestablished, the next step isto start
looking for improvementsin terms of new technologies, innovative system solutions or
just better ways to organise work. What are the problems today, and what may be
improved? Answering these questions and setting goals for improvement is the soul of
product planning and should not be taken lightly.

If the improvements have effect on the domain, then make an new or updated domain
description.

When the goals for improvement has been set it is time to start looking for technical
principles and solutions. We start by Analysing solutions (p.6-36) seeking to come up
with aternative system ideas that may be evaluated and compared. How thisisto be
done depends on the problem, but it will involve making amixture of object modelsand
property modelsfor the new family (or system instanceif it is aone-shot devel opment).
These models are called System studies (p.6-17).

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Srategies

Analysing
Relations and traceability

In the beginning, these models may be independent of any particular system boundary.
Infact it may be agood idea not to identify the system initially, but use the modelsto
analyse what shall be done, and how it may be done. When thisiswell understood, the
next step is to decide what shall be done by the system, and what shall be done by the
environment.

The result will be anumber of alternative product outlines that may be analysed with
respect to technical feasibility, risks, cost and schedules.

Finally, the most promising system concept is sel ected among the aternatives, and ago/
no-go decision is made based on business criteria, available resources and schedules. If
it is go, then a specification is developed.

A magjor goal for analysing is to decide what parts of a problem domain to include or
support by a new product. Obviously the domain analysis should be more detailed for
those parts. Therefore thereisamutual influence between domain analysis and solution
analysis.

We define two main strategies: analysing from scratch and analysing from existing
domain.

Analysing from scratch

If the problem domain is new or the quality of existing domain descriptionslow the fol-
lowing strategy can be used.

Analysing from scratch (new domain)

1. Start by analysing the new domain in order to get the
fundamental understanding of the domain and its
needs. Use the strategy for Making domain descrip-
tions (p.6-30).

2. Continue by analysing requirements, performing
solution analysisand, if adecisionto go ahead is
made, specifying a system family that will satisfy (a
subset of) the needs. Use the Making requirements
(p.6-34) strategy.

3. Finally harmonise the domain descriptions with the

It is quite normal that domain models and system family models influence each other.
Therefore it may be agood strategy to start analysing solutions before the domain mod-
els are completed.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 27

Analysing Tl M e
Analysing domain
Analysing from existing domain

If the problem domain iswell described, and the main challenge isto find new technical
solutions, then the following strategy is recommended.

Analysing from existing domain

1. Usethe existing domain descriptions as input, and
analyse requirements to specify a system family that
will either satisfy some new domain needsor provide
better solutions than previous systems. Use the strat-
egy for Evolving domain descriptions (p.6-30).

2. Then harmonise the domain descriptions with the
specificationsif necessary, see Harmonising domain

Analysing domain

Objectives We perform domain analysisin order to:
 understand the domain and make domain descriptions;

» analyse the domain seeking improvements of value for the stake holders;
 evolve and harmonise the domain descriptions.

What Domain analysisisprimarily concerned with the problem domain. In addition to general
knowledge of the problem domain, knowledge about existing systemsisimportant. Itis
important to identify the strong and the weak sides of existing solutions. It may be useful
tofirst model the existing domain including existing systems, and then look for waysthe

domain may be improved. Asaresult afuture domain may be described. If systemsare
used in different markets for different purposes, severa domains may be described.

6-28 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl M e Analysing
Analysing domain -

Figure 6-10: Analysing domain

Open figure

Business plan,
product strategy

(Analysing domain)

Developing do- Domain
oo || e lam |-

Market

' Developing do- Domain)
people, ue
ers, design- A main statement statement
ers,domain

experts - - .
De\/(_el oping do ~ Domain -
main models models

-

- Family
descriptions

Own systems,
competing
systems

Sub- We perform domain analysis by means of the following sub-activities:
activities Developing domain statement (p.6-46)

» Developing domain dictionary (p.6-51)
» Developing domain models (p.6-62)

Actors The peopleto involve are stake holders in the domain such as users and other actors,
market people and other domain experts.

Whattodo Which sub-activity to start with will be amatter of choice. For anew domain it isrec-
ommended to start with the domain statement and the dictionary, and continue with the
object models and the property models. For an existing domain, it may be better to start
with object and property models. In both cases there will be iterations between domain
descriptions and design descriptions.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-29

Analysing Tl M e
Analysing domain
Making domain descriptions

In this activity we seek to define adomain for the first time. The main purpose isto
understand the domain in terms of concepts, objects and rel ationships and to understand
the needs that various stake holders have (the problem). We have no existing system
family to consider (but there may be other existing systems in the domain).

Make domain descriptions (new domain)

1. Asafirst step make the first domain statement. This
will normally be afirst sketch that gradually will be
improved. See, Making domain statement (p.6-46).

2. Based on the domain statement, make the first domain
dictionary. Thiswill also be gradually improved. See
Making domain dictionary (p.6-51).

3. Then continue in parallel with:

- Making domain object models (p.6-64) to formally
model the objects, classes and relationships in the
domain. Thiswill explain how the conceptsin the
dictionary relate to each other.

- Making domain property models (p.6-67), to for-
mally model services and other domain properties.

- Harmonising domain descriptions (p.6-13) (within

Work on the object and property models will normally lead to clarification and more
compl ete understanding which should be used to improve the dictionary and domain
statement.

Evolving domain descriptions

Here the purpose is to analyse and improve existing domain descriptions. A typical rea
son may be that we have revealed imperfections or are looking for improvements that
will lead to anew and better domain description or that we need to add details. Thiswill

6-30 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Analysing
Analysing domain -

typically bethe case when we plan new productsin an existing domain. The strategy will
depend on the circumstances, but since we already have a domain statement and a dic-
tionary, it may be agood ideato start with the formal modelsin this case.

Evolve domain descriptions (existing domain)

1. First update the domain models by:

- Evolving domain object models (p.6-64) to
include the new or changed parts.

- Evolving domain property models (p.6-68) to
include the new or changed properties.

2. Then ensure that the domain descriptions are inter-
nally aligned and consistent by Harmonising domain

Summary of dynamic domain rules

Domain » Establish contact with domain experts and other sources of information about the
modelling domain.
approach
» Present your results and have frequent discussions with domain experts.
* Do not use too much time on problem domain analysis if experiences with making
systems in the domain are poor. Iterate with system analysis and possibly system
design.

» Study existing systems, and make use of existing descriptionsand literature about the
problem domain.

* lterate with requirements analysis to explore new solutions and to find ways to
improve the problem domain. (Remember that some problems may go away, and new
opportunities be opened, when new ways are found. E.g. with personal cards, lost
keys are not a problem any more.)

Finding » A problem domain may be very comprehensive. Do not try to model everything that
domain might be considered part of the domain in somewide sense. Concentrate on partsthat
objects may be supported by new products.

* Asastart, consider how things are done today and describe the existing domain.
Then consider how it may be improved and develop a new domain description.

» Focuson abstract objects that are essentially needed and avoid system specific solu-
tions. This does not exclude elements that eventually will be part of systems. The
essential thing isthat the problem domain generalises over system specific solutions.
Classes of objects coming from an analysis of the problem domain are candidates for
reuse across systems, but reuse requires at least one use.

» When systems are defined, use the Application reference model (p.-99) to classify the
entities into interface, system, and domain specific parts. Generalisations of the
domain specific entities should be included in the problem domain.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 31

Analysing Tl M e
Analysing Requirements

Model the * Besureto represent each type of stake holder inthe domain statement, dictionary and
actors object model.

* For each stake holder, describe their needs for services and interfaces.

* Represent every actor as a type with context in the object model and describe its ser-
vicesin property models.

Analysing Requirements

Objectives Analysing requirementsis performed in order to analyse needs and to devel op specifi-
cations. Not just any specifications, but specifications for system Familieswith a
business potential. domain descriptions where needs for improvement areidentified isa
good starting point for this activity.

Figure 6-11: Analysing requirements

Open figure
Business plan,
product strategy
< Domain
Descriptions
(Analysing requirements \
Anaysing System
(o | awe [
Specifying \
Developing Family)
Developing Family
% % famlly dictionary > diC'[ionary !
\/ > Specifying Application
Market A application P specification >
persons,
users, de- Specifying Framework
velopers, L spesication |
production Spedifyi
and sales ecitying i —
p specification
Specifying Family
\ methods / - auxiliary —P
L J
g

Own systems,
competing systems

6-32 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

What

Actors

What to do

Analysing
Analysing Requirements

The activity iscrucial for the success of asystem family asit seeks to answer questions
like:

» what parts of the problem domain should be supported by the system family;
» what should be the environment and the interfaces of the system family;

» what should be the positioning properties and the duty properties of the system
family;

» what should be the main technological principles,
» what are the requirements to future instantiation and evolution.

A central issueisto balance the needs against technical feasibility and cost. To thisend,
system studies are made where alternative system concept can be evaluated and com-
pared. (These may be seen as mini developments.) If any of the alternatives seems
feasible and attractive from a business viewpoint, the best is chosen for further
development.

For the selected concept a specification is produced.

Itisof course possibleto make specifications without (explicitly) analysing the domain
and analysing solutionsfirst, but it will be more difficult. Parts of these activities will
then have to be done implicitly in the specification activity. With explicit domain
descriptions and system studies, the goals for the system devel opment are known, and
the task of specification isto express them precisely and detailed.

Developers, market persons, and stake holders in the domain should all participate. Go/
no-go decisions will of course involve management.

Thefirst thing to do is to make system studies seeking for aviable overall system con-
cept. If such aconcept isfound the next step isto develop asystem family statement and
start on a dictionary, and then to devel op specifications.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 33

Analysing Tl M e
Analysing Requirements

Making requirements

When making requirements for the first time, we assume there are domain descriptions
to use asinput, but there is no existing family (apart from those that other companies
might have on the market).

Make requirements

1. Start by Analysing solutions (p.6-36). Thisactivity explores aterna-
tive conceptsfor anew system family and sel ects one concept having
agood business potential for further elaboration. Once a system con-
cept has been chosen, time has come for Specifying (p.6-36) the new
system. Do this by:

2. Making system family statement (p.-89). This setsforth the goalsfor
the new system family.

3. Making systemfamily dictionary (p.-91) to establish thefirst version
of the family specific dictionary.

4. Then specify the system family formally by:

- Evolve Application specification (p.-139) to express the func-
tional requirements.

- Making framework specification (p.-183) so the requirementsto
infrastructure and handling of the application in aframework
becomes clear (if anything can be said at this stage.)

- Making architecture specifications (p.-218) so the non-functional
requirements to the implementation becomes clear.

5. Make requirements to methods for code generation, system instanti-
ation and application evolution.

6. Harmonising family (p.6-23) to ensure that the family descriptions

6-34 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Require-
ments
analysis
approach

Initial
require-
ments

Analysing
Analysing Requirements

In this case we have existing system family descriptions to start from. We assume the
reason for evolution is that some external requirements have been added or changed.
(Changes caused by internal iterations are handled by harmonising) In this case too, we
start with the formal specifications

Evolve Requirements

Evolving Requirements

1. Start by stating the new requirements.

2. Perform impact study: analyse the new requirements
and decide which parts that must be changed. Then
evolve the appropriate specifications by:

- Evolving application specifications (p.-139)
- Evolving framework specification (p.-184)
- Evolving architecture specifications (p.-219)

3. Thenupdatethefamily statement by Evolving system
family statement (p.-89),

4. and the dictionary by Evolving system family dictio-
nary (p.-92)

Summary of dynamic requirementsrules

« Thisisa creative activity, so creative techniques such as brain storming may prove
useful.

» At an early stage do not be afraid of unconventional solutions. On the contrary, ook
for them.

* Remember that the purposeisto find a new and better way to satisfy the needs of
stake holders. Therefore, close interaction with stake holders and domain modelling
IS strongly recommended.

» Themain purpose is not to find design solutions, but to determine the external prop-
erties and interfaces, in particular which services the system are going to provide.
Therefore the focus should be on context, and not content.

» Elaborate content only where thisis necessary to assess the feasibility or to estimate
cost an risk. Be prepared to reconsider content that is sketched at this stage.

» Useprototyping when thisiscost effective, i.e. when the additional cost of a prototype
isjustified by improved communication, decision making and/or reduced risk.

Sate explicitly the project and product requirements. These requirements are often
requirements to the tools and languages of the project.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-35

Analysing Tl Me

Analysing solutions

Analysing solutions

What

Feasibility
study

The purpose of analysing solutionsis too consider the needs and how they may be sat-
isfied. It isan interplay between the what and the how.

Inputs to the activity are needs and domain descriptions. Central decisions to be made
are what needs to satisfy, in particular which servicesto provide, and what technology
to use.

The activity isthefirst step in turning needsinto solutions. It can consist of many mini-
development projects with the purpose of exploring alternative solutions. The activity
may therefore produce a number of alternative system Sketches. The detailing of these
sketches depends upon the knowledge about the desired system and the risks involved.

For each system concept:

Selecting services to support.

Sketching the environment.

Sketching the application.

Sketching the architecture.

| dentification of and assessment of risk and critical issues.

© o &~ DN P

Assessing cost and schedules.
7. Evolution and maintenance.

When some promising alternatives have been sketched they shall be compared and the
best selected. This forms the input to make family statement and Make Specifications.

Specifying

What

Actors

What to do

Themaininputsto thisactivity areinformal statements about needs, the domain descrip-
tions and system Studies.

Outputs are precise specifications expressed on the relevant abstraction levels. The
focusis on properties and context. The challenge isto structure the input information,
find missing detail and organise the specification. Clarifications and iterations will be
needed.

Specifications are developed by development persons in close cooperation with users
and other stake holders. System and market departments should also take part, if not in
the detailed work, at least in major decisions.

Turning needs into specifications is not always straight forward. On one hand it is nec-
essary to clarify the needs in order to make the specifications sufficiently precise and
detailed. Onthe other hand it is necessary to consider technical feasibility, economy and
schedules. Finally it is necessary to consider how each particular requirement will inter-
act with other requirements. An iterative processisrequired where users and other stake
holders take actively part.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Analysing

It isassumed herethat specification isproceeded by system studieswherean overall sys-
tem concept has been selected. It isclear roughly what parts of the domain that shall be
covered by the system family, and what propertiesit shall have. The goal isto state this
more precisely and with more detail.

For ageneral approach to making specifications more precise and detailed, see The dia-
lectics of refinement.

Making specifications
When specifications are devel oped for thefirst time, the following strategy may be used.
Make specifications

1. Making system family statement (p.-89). This sets
forth the goals for the new system family.

2. Making system family dictionary (p.-91) to establish
thefirst version of the family specific dictionary.

3. the specify the system family formally by:

- Making application specifications (p.-137) to
express the functional requirements including
services.

- Making framework specification (p.-183) so the
requirements to infrastructure and handling of the

application in aframework becomes clear (if any-
thing can be said at this stage.)

- Making architecture specifications (p.-218) so the
non-functional requirementsto theimplementation
becomes clear.

4. Make requirements to methods for code generation,
system instantiation and application evolution.

5. Finaly ensurethat all descriptions are aligned and

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 37

Incremen-
tal
specifica-
tions

6-38

Analysing Tl Me

Soecifying

Evolving specifications
When new requirements lead to changesin specifications, follow this strategy:
Evolve specifications

1. Start by stating the new requirements.

2. Perform impact study: analyse the new requirements
and decide which parts that must be changed. Then
evolve the appropriate specifications by:

- Evolve Application specification (p.-139)
- Evolving framework specification (p.-184)
- Evolving architecture specifications (p.-219)

3. Thenupdatethefamily statement by Evolving system
family statement (p.-89),

4. and the dictionary by Evolving system family dictio-
nary (p.-92)

Summary of dynamic specification rules
» Inorder to achieveflexibility in the development process and the product, try to make
the specificationsmodular so it isaseasy aspossibleto add or change specifications.

» If flexibility isimportant, express this as clearly as possible in the specification (in
the Auxiliary descriptions, in the statement or in textual annotations to the models).

» State clearly the requirements to methods for (incremental) evolution, code genera-
tion and instantiation.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Designing

What

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Designing
Soecifying

The main inputsto this activity are the formal specifications: Application specification
(p.-115), Framework specification (p.-158) and Architecture specification (p.-206).

The main outputs are the corresponding design models.Application design (p.-119),

Open figure

22

y
developers, A
production
people,

product
managers

Figure 6-12: Designing

Business plan,

product strategy

g

Designing
Designing
application

Designing
Framework
Designing
Architecture

Designing
methods

Domain
Descriptions

Family
dictionary

Family
statement

Family specifi-
cations

Application
design

'

Framework
design

Architecture
design

vy

.

Auxiliary:
methods for
evolution,
code genera-

tion,...

gt

Own systems,
competing systems

Framework design (p.-160) and Designing architecture (p.-219). In addition one should
consider how implementations shall be generated, how instances shall be produced and
how evolution isto be done, in particular how services shall be added. Thisis described
as part of the Family auxiliary (p.-96) descriptions.

Designing is not amonolithic activity. It is composed from activities that each require
considerable effort, especially when developing from scratch:

Activities and Descriptionsin TIMe

Designing applications (p.-140) which synthesises the application design from the
application specifications, and verifies that the specifications are satisfied by the
design. Both when making and evolving adesign it isrecommended to take existing
components into account (designing with reuse) and to keep a close relationship

6-39

6-40

Designing TI Me

Soecifying

between serviceroles, interface roles and design objects (service orientation). When
anew object behaviour must be designed, try to synthesise object behaviour from ser-
vice and interface roles.

Designing architecture (p.-219) which synthesises the architecture design from the
architecture specification and the application design. The goal of this activity isto
define an implementation architecture which will implement the application and sat-
isfy the non-functional requirements. This activity will often require a cut and try
approach, where an architecture is suggested, and then evaluated with respect to per-
formance, error handling, and other non-functional properties. As platforms become
more standardised, this activity can focus more on the application specific
architecture.

Designing framework structure (p.-185) and Designing framework behaviour (p.-
189) which takes the infrastructure required by the implementation architecture into
account and defineaframework. It also verifiesthat the specification part is satisfied.
Oncethe framework has been defined it islikely that the application must be harmo-
nised so that it uses the infrastructure part of the framework. It should be noted that
aframework is useful only when thereis an infrastructure to consider and may be
omitted in other cases. It may also be the case that the framework is omitted in the
first system development, but introduced | ater in order to better support evolution and
production.

Designing methods which define methods for the future handling of the system fam-
ily: methods for automatic code generation, methods for system instantiation and
methods for system evolution, see Family auxiliary (p.-96). Such methods are not
needed for one-of-a-kind systems, but essential for cost-effective product handling.
Animportant goal of TIMeisto free resources that traditionally has been tied up in
maintenance, evolution and production activities.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me Implementing

| mplementing

I mplementations are detailed and precise descriptions of the hardware and the software
that a concrete system is made of. They define the physical construction of systemsina
family. The software part will be expressed in programming languages such as Java,
C++ or Pascal, while the hardware part will be expressed in a mixture of hardware
description languages such as circuit diagrams, cabinet layout diagramsand VHDL.
Software playsadual role. Firstly, asadescription to be read and understood outside the
system, and secondly as an exact prescription of behaviour to be interpreted inside the
system.

Concrete Concrete systems consist of:

System » The application and the framework software. State-of-the-art tools allow this soft-

ware to be automatically derived.

» Special application and framework hardware. Thiswill be special hardware designed
to perform part of the application or the framework.

» The platform, which consists of:

- the support software which normally is a layered structure containing operating
systems, middleware for distribution support, SDL runtime systems, DBMS and
interface support;

- the genera hardware which normally is an network of computers.

Whattodo For every new system development, the platform isan important design issue, as it
determinesimportant propertiessuch ascost, reliability and flexibility. It also influences
the way that applications and frameworks are implemented.

Figure 6-13 (p.6-42) illustrates some aspects of implementations. Note that the code
generated from application frameworks will interface with code coming from different
sources. To produce a concrete system these various parts of code must be linked
together and loaded on the hardware.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-41

I mplementing TIMe
Soecifying
Figure 6-13: Software implementation
Open figure
Application
framework
models
Generate code
Automatically Hand Application General
generated written code support support
code code code

compile and link compile and Iin/

W K

Appllceg)islvzvl support SW F(ggzlgn

Infrastructure

link and load

RN

Once the platform and the code generation strategy is defined, it is possible to rely on
automatic code generation for application and framework evolution for those parts
where SDL isused. The code which is generated for the application and the framework
must be adapted somehow to the platform. Herethe Vendors of code generators use two
different strategies. Oneisto adapt the code generator so the generated code fitsthe plat-
form. Another is to adapt the generated code to fit different platforms by means of
interface modules and/or macros.

It should be noted that even if automatic code generation is used, there islikely to be
some hand generated code (e.g. for input/output drivers) and possibly legacy code from
existing solutions. It may also happen that different parts are generated using different
tools, e.g. SDL tools for the control parts and UML tools for database parts.

Consequently there are many issuesto consider, and many tool problemsto solve before
the implementation activity iswell defined for a new system family. However, once
defined it may be used over and over again to produce new implementations.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Instantiating
Instantiation

| nstantiating

In the instance area of concern, the main thing is to configurate and to build a system
instance. This can be done both on the abstract level, using SDL, in the implementation
architecture, and in the implementation. The common practice in most companiesisto
do this on the implementation level using configuration files and tools like Make. An
alternative isto use special configuration languages in this area.

| nstantiation

Objective

What

System instances are what companies sell and customers buy. The purpose of instantia-
tion isto produce system instances from family descriptions and instance configuration
descriptions.

In the instance area of concern, the main thing is to configurate and to build system
instances. Ideally we should perform configuration at the level where it belongs: func-
tionality at the application and/or framework levels, and implementation at the
architecture and/or implementation levels.

It is possible to perform some configuration at the application and framework levels
using SDL, but due to limitations in the language, this is restricted.

The common practice in most companies today is therefore to do configuration on the
implementation level using configuration filesand toolslike Make. (An aternativeisto
use special configuration languages.)

We recommend that a method for configuration and building of system instancesis
defined as part of the architecture design work.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-43

Domain statement Tl Me

Domain statement outline

Domain statement

Objective

What

The domain statement leadsto the very first understanding of what this problem domain
isall about. It helpsto clarify needs and to understand the real purpose of systemsin the
domain. It also serves as an introduction to the other domain descriptions.

A (problem) domain statement is a concise description of the problem domain with
focus on stake holders and their needs, the essential concepts, functions and work pro-
cesses, rules and principles. It should also clearly state the nature of the problem, i.e.
what one tries to achieve.

It will normally be sufficient to express the domain statement informally using natural
language and drawings, but one should try to be as clear and precise as possible.

The domain statement can often be based on existing prose descriptions. There may be
descriptions of earlier systems, there may be textbooks on the subject and there may be
informal statements about the system.

The domain statement may also contain required propertiesif these exist at this point of
time, but for aninitial development of anew system these may be vague or non-existing.

Domain statement outline

Executive summary

Thisshould beavery brief summary with focus on the key issues. It may well bewritten
in astyledirectly suitable for market purposes. Stake holders in the domain should
immediately recognise and accept the description.

Area of concern/context

High level description of the area of concern or the context of the domain. E.g. theinter-
bank financial market, the security in buildings area.

Stake holders

Stake holders are persons or institutions with direct or indirect interest in the domain:
companies, users, operators, owners, etc. The various stake holders have responsibilities
and tasksto perform that giveriseto needs. Therefore the domain statement should men-
tion every class of stake holders, their overall objectives, needsand responsibilities. The
Actors are of course important, but do not forget other stake holders that have a more
indirect interest (often economic), e.g. managers or owners.

Subject entities
These are all the entities that are manipulated, represented or controlled in the domain:

- Passive entities that need to be represented as data, and their associations.

- Manipulated entitiesthat are transformed or handled in the domain such as: mate-
rials, commodities, assets.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Domain statement
Domain statement relationships

- Controlled entities, such as some machinery, that are under control by other enti-
tiesin the domain.

Be sure to mention every category of subject entities and explain their role in the
domain.

Helpers

These are the entities that are used by the actors to perform services and transformation
processes. Be careful not to make the hel perstoo system specific. Try to capture the gen-
eral features needed irrespective of particular systems.

Services

List all the main functions, their purpose, which objects that collaborate and describe
how they are performed in terms of textual use cases.

Work processes and materials

If the domain contains non-trivial transformations, describe each transformation stating
itsinputs, outputs and constraints. Thisisparticularly useful for material transformation
processes, e.g. to pick potatoes or peel scrimps.

Rules and principles

State general rulesand principlesthat apply to the domain asawhole or to specific parts
of the domain.

Trends

If there are trends in how the domain will develop: describe them.

Existing systems

Brief summary of systems that are common to use in the domain, their strengths and
weaknesses.

Problems - improvements needed

I dentification of problems or shortcomings that need to be solved.

Domain statement relationships

Wthin
domain

With family

Every domain term used in the domain statement shall be defined in the dictionary.

Every type of actor and entity shall be represented in the object models under the same
name as in the statement.

Every service and transformation shall be represented in the property models under the
same name as in the statement

No particular constraints.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-45

Domain statement Tl Me

Devel oping domain statement

Harmonising domain statement

Make sure the rel ationships with other domain descriptions are satisfied. Make an entry
in the dictionary for every domain specific term . Important objects, classes, relation-
ships and properties in the domain models shall be mentioned in the statement.

Developing domain statement

Objective

What

Actors

6 - 46

To collect domain knowledge and make a Domain statement (p.6-44), and to keep the
domain statement updated and in harmony with other descriptions

The source information will normally be fragmented, informal and imprecise by e.g. not
using the same terminology or by stating the same required property twice, but with a
dlight difference. It may aso be unbalanced in its coverage of essential versus not so
essential information. This activity, together with the one making the dictionary, shall
transform these informal specifications to a more precise, yet informal, specification,
where the essential parts are emphasi sed.

Asfor the domain at large.

Making domain statement

Thisactivity may well be subdivided according to the topics of a domain statement, for
instance like this:

Make Domain Statement

Describe area of concern/context
Describe stake holders

Describe subject entities

Describe helpers

Describe services

Describe work processes and materials
Describe rules and principles

Describe trends

© © N o g ks~ WD PE

Describe existing systems
10.Describe problems and improvements needed

11.Make executive summary

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Domain statement
Make Domain Statement

This part is best written after the other parts of the domain statement. Consider what is
the essential message of the problem domain descriptions. Expressitinaway everybody
can understand. Make it short (half a page).

Make executive summary

Describe area of concern/context
Try to state concisely what the area of concern is about and what its environment is.

Describe stake holders

Ask yourself who has an interest in this domain? Try to identify every type of stake
holder/person-role in the domain and describe their overall responsibilities and tasks.
Note down what kind of problemsthey have and what kind of improvementsthey would
consider valuable.

Describe subject entities

Try toidentify all passive entities (including the stake holders), manipul ated entities and
controlled entities. Explain their roles in the domain and how they are connected and
related to each other. Do they communicate? How? Consider only entities and associa-
tions that are relevant to some services or work processes in the domain.

Describe helpers

Are any helpers needed to perform the services? Try to abstract from particular system
solutions and identify the general features needed. Note that the helpers are likely can-
didates for improvement. If it is very difficult to generalise, then describe the existing
helpers, and consider improvements afterwards.

Describe services

List all services (functions) needed and give a concise description of what each does.
Againitisimportant to abstract as much as possible from how services areimplemented
In existing systems. Try to focus on what essentially needs to be done.

Describe work processes and materials

For each material transformation, give a concise description of what it does. What are
the inputs and the outputs? What are the sub-transformations? What are the constraints?
Note that the purpose is not to describe technical solutions, but to clarify the goals.

Describe rules and principles

Rules that regulate the problem domain should be referenced, as should general princi-
ples. You will have to consult domain experts to find out about these issues. Be aware
that law may severely constrain the technical solutionsthat are available, aswell asit
may create new business opportunities.

Describetrends

Important trends regarding functionality, work processes, regulations and technol ogy
should be stated.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 47

Consistent
domain
statement

Maintain-
able
domain
statement

6-48

Domain statement Tl Me

Make Domain Satement

Describe existing systems

The purpose hereisto briefly explain the main features of existing systemswith empha-
sison their strong and weak points. Consider also the competition here. Thiswill help
to identify duty bound and success properties for new products.

Describe problems and improvements needed

Analyse the domain described so far and try to identify the problems with existing solu-
tions and how they may be improved. Interviews with domain Actors and other stake
holders will be important here.

Evolving domain statement

When new insight or new requirements leads to a modification of the domain descrip-
tions, then the domain statement shall be updated accordingly. This activity follows
from other activities in domain analysis or solution analysis.

Note that the domain shall berelatively stable compared to the system solutions. It shall
not be updated so often. However, anew domainislikely to be updated more frequently
than awell established one.

Summary of dynamic domain statement rules

» Check that the terminology isinternally consistent, using the same termsfor the same
entities throughout the statement.

» Check that the statement is unambiguous, that each term has only one meaning.

» Check that the statement is maintainable. i.e. modular and without redundancy that
makes it difficult to maintain.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe Domain dictionary
Domain dictionary content -
Domain dictionary

Objective The objectives of adomain dictionary are to define terminology and thereby enable pre-
cision and efficiency through:

e common use of terminology;
* improved communication and coordination;
e common understanding.

What A dictionary is areference book listing words or terms and giving information about a
particular subject or activity (Collins 86).

A dictionary in TIMe need not be abook, but it shall contain alist of termswith an
explanation of their meaning.

Aninforma Domain statement (p.6-44) isnormally not sufficient. We will need amore
precise definition of the most important phenomenaand concepts and the corresponding
terminology. We therefore improve our understanding by listing the conceptsin adic-
tionary. For some domains, dictionaries are readily available, but for other areas, an
important task is to define one.

A dictionary is based upon the three aspects of concepts. designation, intention and
extension. The designation is the entry in the dictionary and the explaining text isa
description of the properties that phenomena shall have in order to belong to this con-
cept. The extension are all the phenomena covered by the concept.

Producing adictionary adds to the understanding of the subject being analysed. Further-
more, it will help people to communicate more precisely. A dictionary helps to bridge
the gap between people with specific knowledge of the application areaand people new
to the area. Later in the development the conceptsin the dictionary will often find their
way into the system description as types (of objects). We suggest that the dictionary
should be maintained along with the other permanent documents.

Be aware of the difference between concepts and sets. A set has cardinality, and agiven
entity may or may not be member of the set. A concept is not a set of phenomena, but
just adefinition of the properties of the corresponding phenomena. This should be
reflected in the wording of the dictionary - the reason is that the domain may have real
Sets.

Domain dictionary content

Thedictionary may simply be an alphabetic list of termswith informal explanation. All
terms used in the problem domain should be included, such as:

- termsfor phenomena and concepts,
- termsfor entities;

- termsfor properties;

- termsfor services;

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-49

Domain dictionary Tl Me

Relationships

- termsfor relationships,

- termsfor connections and interfaces,

- termsfor processes,

- termsfor rolesin particular human roles like users, operators etc.;
- termsfor materials.

TIMe may, in later versions, provide atemplate for dictionaries.

Relationships

Within Thereisamore or less direct road from a dictionary to an object model. Concepts are

domain represented by classes: the name of the class correspondsto the designation and the class
definition to the intention of the concept. objects according to the class represent the
extension. Therefore the names used for object types shall be the same as the name used
for the corresponding concept in the dictionary.

With family The domain given terminology used in Families shall be the same asin the domain dic-

tionary. It is possible to define additional terminology in separate Family dictionaries.

Harmonising domain dictionary

Within
domain

With family

Ensure that the relationships with the other domain Descriptions are maintained. See
Relationships (p.6-50).

Ensure that the general domain terminology isapplied in the Families. If family specific
Dictionaries are devel oped, they should refer to the domain dictionary for all domain
given terminology and avoid redundant definitions (which may develop into inconsis-
tent definitions).

Summary of static domain dictionary rules

Domain
dictionary
entries

Updated
domain
dictionary

» Represent each essential problem domain phenomena and concept by an entry in the
dictionary.

» For entriesin the dictionary that correspond to concepts that will be represented
directly by types (classes), it may be a good idea (if this is known) to use the same
name on the type as the designation of the concepts.

» Keep the dictionary updated throughout the development. If desired classify the
entries as coming fromanalysis or design, domain, environment or system. This may
help in updating the dictionary and also to answer questions like “ Is this phenome-
non covered by the domain of the system?” or “ Isthis type of entity handled by the
system?”

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe Domain dictionary
Developing domain dictionary

Domain » For each concept in the dictionary (and the corresponding Devel oping domain

specialisa- object models (p.6-63)), ask whether all the objects that fall within the extension of

tion the concept/class have the same properties. If they have not, find specialisations,

hierarchies \\hich may or may not extend the dictionary. During the specialisation, extend the
description in the dictionary with properties which add to the under standing of the
concept.

Developing domain dictionary
Objective ~ To make a Domain dictionary (p.6-49).

What The activity makes an entry in the dictionary for each term in problem domain.

In general, the dictionary comes from the other domain Descriptions, asits purposeisto
define the terminology used there. Thus, the dictionary is developed more as a spin-off
from making the other descriptions, than as an independent activity.

When object models and property models are devel oped, the dictionary should cover all
the objects/types, associations and properties represented in those models.

Actors Same as for domain Analysis at large.

Making domain dictionary

Thedictionary ismadefor thefirst time as part of thefirst domain analysis, see: Making
domain descriptions (p.6-30).

Thefirst dictionary comes from a (prose) Domain statement (p.6-44). By studying the

nouns in the Domain statement (p.6-44) we can maketheinitial dictionary. But the dic-
tionary shall contain more than the nouns, it shall also include services or functions and
associations which may be visible in the domain statement as verbs.

A practical approach isto analyse the text of the domain statement and mark every term
that refer to a domain specific concept or phenomena.

For each term thus marked, make an entry in the dictionary which define the term.

editorial 1. should the dictionary be organised in some way? e.g. according to the domain state-
ment categories, according to the kind of entity (concept, property, entity, relationship,
service)

2. should the dictionary contain references to object models and property models?

Evolving domain dictionary

Thedictionary isevolved as part of the evolution of domain Descriptions, see Evolving
domain descriptions (p.6-30). Changes may be due to evolution of the domain statement
aswell asthe domain models. Whenever existing terms are modified or new terms are
introduced in any of the other domain Descriptions, the dictionary should follow up.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-51

Domain dictionary TI Me
Devel oping domain dictionary
Summary of dynamic domain dictionary rules

Finding » Develop the dictionary as a consequence of other domain descriptions.

domain dic-
ugﬁ'; ' Usethedictionary actively asa source of terminology when making the other domain

entries descriptions.

» Do not add new terms to any model without checking that there is no appropriate
termin the dictionary already.

» Analyse each entry checking that it is precisely and unambiguously defined. Look for
similaritiesamong entries. Avoid to use the same termfor different things, and to use
different termsfor the same thing. If necessary define synonyms explicitly. Clarify
rel ationships between related entries, e.g. subtype relationships.

6-52 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Domain models
Developing domain dictionary

Domain models

Objective

What

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The purposes of domain models are:
» To describe formally how objects and propertiesin the domain are related.

» To define generic types that may be used in many system families and system
Instances serving the domain.

Domain models are composed from Domain object models (p.6-54) and Domain prop-
erty models (p.6-60), and organised asillustrated in Figure 6-14 (p.6-53).

Figure 6-14: Domain M odels

Open figure

Domain property models

Domain object models Service-a

MSC Service-al

ote
structure

Actor-1 view

Intertace-x

roie

structure MSC Interface-x1

Domain models will mostly be application abstractions. But the possibility to model
more concrete aspects (e.g. infrastructure and platform) will not be excluded. It may for
instance be useful to model various technical solutions which are common for the prob-
lem domain. It is perfectly relevant to make more concrete object models whenever
there are concrete mattersin the domain needing to be described, e.g. physical materials,
concrete interfaces. |mplementations are not part of domain models.

Activitiesand Descriptionsin TIMe 6-53

Domain models Tl M e
Domain object models
Figure 6-15: Domain model notations

Open figure

Object Model | Property Model

Application UML MSC
Infrastructure SDL

Implementation

Architecture UML various Domain

Implementation | not relevant | not relevant

Domain object models

Objectives Domain object models serve:

» To improve understanding and communication by rigorously describing how con-
cepts and objects in the domain are related.

» To give amore precise meaning to terms in the Domain dictionary (p.6-49).

» To clarify the basic needs existing in the domain.

» To promote reuse by describing objects and classesthat are common to most systems
in the domain.

What Domain object models (p.6-54) describes the problem domain from an object oriented
perspective.

6-54 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl M e Domain models
Domain object models
Figure 6-16: Domain Object M odels

Open figure

Domain objects

Stake holders Domain object models
Actors

% Actor-1 viewpoint

Hel
pers Describes I:,E/E
Tan -

Subject entities

Actor-2 viewpoint

L™
Transactions

e B
Connections - - -

oO—

Associations

It definestypeswhich represent conceptsin the problem domain, and objectswhich rep-
resent phenomenain the problem domain. It defines the attributes, the operations and
the behaviour of objects as well as associations and communication links between
objects. It shall be complemented by Domain property models (p.6-60).

Domain object models will describe active objects as well as passive objects.

Activeand Objects of thereal world are by nature active. They interact with other objects and have

passive adynamic behaviour. When we consider the domain as a part of the real world, all

objects objects are potentially active. However, we do not need to model them all as active
objectsin the domain models. Some may be active, some may be passive and some may
be both. Thisis adecision we make in the models.

At some stage we must decide the level of detail and the kind of behaviour we will spec-
Ify for each object type. For active objects, we specify a“real” behaviour, whereas for
passive objects we specify a*“data’ behaviour which isvery different from the “real”
behaviour. Considered as an active object an AccessPoint in the Access Control domain
have a reactive behaviour that interact with real users. As a passive object, represented
in the validation database, is has asimpler behaviour that respondsto validation queries.

Normally therewill be only one active object representation of adomain entity, but there
may be several passive object representations. The behaviour, the attributes and the con-
text may be very different in each case. Therefore we may need to develop one active
and severa passive component models representing the same domain entity.

The advantage of the object models over prose descriptions are that they show the rela-
tionships between objects in arigorous way, and that they use a graphical notation.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-55

Make com-
ponent type
models

Domain models Tl Me

Domain object models

The domain object model is not only made in order to get a better understanding of the
domain. It is also made to identify types that are common to all systemsin the domain.
Itisagoal to describe at least every object type that will be part of the domain given
parts of systemsand system environments. It may bedifficult to find all of those without
considering any system. It will normally help to study existing systems, and al so to work
on the new system design. Consequently, when compl ete, the domain object modelswill
be influenced by existing systems as well as the design of new ones.

However domain object models may well include more objects than those that will
eventually be in systems or system environments. They should also describe related
objects that are important for the purpose of systemsin the domain.

Componentsfor reuse are supposed to beidentified in thisactivity, and correspondingly
components identified in earlier domain object models are used here. Classes of objects
that areidentified as belonging to the problem domain will have more chancesfor being
reused in other systemsthan classesbeing madein the design of aspecific system. Types
(classes) identified in the domain object model are therefore supposed to be made as
general as possible, and there may even be sub-activitiesthat have thisastheir main pur-
poses. to prepare for reuse. Apart from this, TIMe believes in the fact that reuse comes
after a successful first use.

Since the domain as we consider it, is ageneralisation it may be modelled asatype (in
SDL) or aclass(in UML). It will normally contain componentsthat are defined with ref-
erence to other types (SDL) or classes (UML), see Anatomy of object models. In most
cases these component types are more useful than the domain model itself.

There are several reasons for this:

* Inmany casesthe domain isnot well defined enough or containstoo much variability
to capture in asingle model. A collection of component typesis less restrictive and
more flexible. They provide more information than can be said in asingle model.

» Within the domain there will be many different viewsthat we need to understand and
reconcile, e.g. the views of different actors. Component types offer aformal way to
describe the relative views of each component type through its context expressions.

» Reusewill bein terms of component types and not complete domain models.
For this reason we recommend the following rule

» Make atype model showing the context and content of each actor, helper and subject
entity.

In order to get a better overview, one should try to put the components together in com-
plete or partial domain modelswhere possible. A useful compromise may beto develop
several viewpoint models.

Consequently, domain object models will normally contain two main parts:

» Domain structures which give a structural overview of the domain representing all
objects, connections and associations. It may be a single model, or it may be com-
posed from several viewpoint models. In the case of asingle model, theentiredomain
Is viewed from the same angle (somewhere “above” the domain), see Figure 6-17
(p.6-57). In the case of viewpoint models the domain is seen from different angles
(from some “side”). Viewpoint models may be simpler to make since they may dis-

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| Me Domain models
Domain object models -

card aspects that are not relevant from that angle. At the same they alow usto make
the differences between different viewpoints more clear. UML supports viewpoints
by using Packages.

» Component type models which define each component type (class) separately with
context and associated properties. These models serveto give the relative views that
each component type has on the domain, see Figure 6-18 (p.6-57).

Figure 6-17: The access control domain

Open figure
*

AccessZone
1 | 4
W bounded by may enter

1 * { mag/ eﬂter

« through ~ 21
AccessPoint User

Figure 6-18: The class definition of Access Zone

Open figure
Access Zone * may enter
O\N ‘ * < d 1 User
£ 50> |Name 1) may acoept *
é;ge Number
Level
Authorizer 1
1xY accessed through
Door
12 a controls
1
AccessPoint

Domain object modelling belongs to a subset of more general object modelling. Object
models can be described using either UML or SDL, depending on whether they are
domain or design object models and depending on the formality needed.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 57

Domain
object
notations

applica-
tion:

Infrastruc-
ture

Make com-
ponent type
models

I mplemen-
tation
architecture

6-58

Domain models Tl Me

Domain object models

Domain object model languages and notations

Object models are expressed using UML or SDL. It should be noted that UML is
designed primarily for passive objects, while SDL is designed for active objects.

e Use SDL for abstract component models where (concurrent) state transition behav-
iour is central. If associations and passive objects are important as well, make
supplementary modelsin UML. Use:

- Block types where there are concurrent behaviours;
- Processtypes where there is only sequential behaviour.

» Use UML for component models where associations are central and state transition
behaviour less central.

» Use UML for structure models where the nature of componentsis association heavy
or unknown.

* Use UML for concrete models.

Make separ ate object models for active and passive objects?

Abstract domain object models

Domain object models are abstract model s unless otherwise stated. They are abstract in
two senses:

» they model the world without considering the physical details of entities;

» they model partsthat will be realised in systems without going into system specific
detail.

The abstract models will normally concentrate on the application abstraction, and only
consider infrastructure in special cases where the infrastructure is general for the
domain. Frameworks are normally not considered as they belong to the family area.

At thislevel we find the bulk of domain object models. Every actor, helper and subject
entity should be represented in a component model.

In addition the domain structure may be represented in a number of viewpoint models
or in asingle model.

Thislevel will consist of component modelsfor infrastructure componentsthat are com-
mon to the entire domain. System and family specific components should not be
included.

» Make atype model showing the context and content of each actor, helper and subject
entity.

Concrete domain object models

At thislevel we find models for platform components that are general for the entire
domain.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| Me Domain models
Domain object models -

models at thislevel are only madeif the domain is about platforms, or if the platformis
standard for the domain.

Domain object model relationships

Within » Every object type shall be mentioned in the dictionary under the same name.
domain « Every object type shall have associated property models.
» Object models refer to properties through service names and role names.

» The association between objects and properties are maintained through service
names and role names.

» Thefunctional properties specified for an object shall be satisfied by the object
behaviour, i.e. be a proper and valid projection.

» The behaviour of every object type shall be strongly input consistent in every role.
» Every object instance shall be valid in all assigned roles.

With » Domain given design objects shall berelated to domain object through inheritance or
Design implementation relations.

Harmonising domain object models

In this case the domain object model is harmonised within the domain and with design.

Within Ensure that the rules for domain internal relationships are correctly maintained:
domain

» Every type name shall be defined in the dictionary.
» Every object type shall have associated property models.

With Ensure that the rules for Design relationships are correctly maintained:
Design » Every domain given object in design shall be related to an object type in the domain

object models. Therelationship shall either be pure inheritance or animplementation
relation.

Summary of static domain object model rules

Use the general rules for object modelling and the following special rules:

Makecom- <« Makeatype model showing the context and content of each actor, helper and subject

ponent type enti ty.
models

Domain e Use SDL for abstract component models where (concurrent) state transition behav-
object iour is central. If associations and passive objects are important as well, make
notations supplementary modelsin UML. Use:

- Block types where there are concurrent behaviours;
- Processtypes where there is only sequential behaviour.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-59

Domain models Tl Me

Domain property models

» Use UML for component models where associations are central and state transition
behaviour less central.

» UseUML for structure model swherethe nature of components are association heavy
or unknown.

e Use UML or SOON.hs, SOON.ss for concrete models.
» Make separate object models for active and passive objects?

Domain property models

Objectives To improve understanding and communication about the domain by rigorously describ-

What

Applica-
tion:

Infrastruc-

ture

ing the properties applying to domain objects, services and interfaces.

Domain property models are used to describe the problem domain from the property
perspective. It includes functional and non-functional properties.

Functional properties are considered as projections of object behaviour, and described
using text, role structures and MSC, see Figure 6-14 (p.6-53).

Text isused to give atextual explanation of a service or interface. Role structures are
UML.instance diagrams that represents the roles of the service or the interface. The
objectsinrole structure diagrams can be considered as anonymous objects. They will be
related to object model objects by role association links, and to the instances in the ser-
vice M SCs through the same name.

When the system is designed, the domain property models will also be valid property
models of the corresponding (domain specific) system objects. Properties belonging to
the domain will be candidates for properties of several system in the domain.

It isan implicit assumption that models of the domain will not cover design dependent
properties. Such propertieswill be added in design models. However, the domain may
well cover concrete propertiesaslong asthey are general for the domain and not specific
to particular systems or families. Domain properties shall be related to domain objects
if they can, but it is allowed to describe properties without reference to objects. One
example isroles where the actor objects are unknown or irrelevant in the domain.
Another exampleisgeneral properties applying to the domain at large. property descrip-
tions will typically be quite fragmented.

Abstract domain properties

Services. Text, role structure diagram and UseCasesin MSC.
Interfaces: Text, Role structure diagram and Use Cases in MSC.
General properties. safety, liveness, user friendliness etc.

Services. as above.
Interfaces; as above.
General properties: as above.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| Me Domain models
Domain property models

Property * Make property modelsthat are as self contained and independent of other properties
modularity as possible.
Motivation: to enable property (service) flexibility through modular property
composition.

Concrete domain properties

Applica- General constraints and requirements that are common to the domain:
tion
implemen-
tation

reliability, safety, modularity, performance, size, technology.

Platform As above.

Other About general properties of the environment, material's, processes, €etc.

Domain property model relationships

Within » Every service shall be mentioned in the dictionary.
domain » The MSC instances shall represent either service roles or interface roles.

» Object models shall refer to properties through service names and role names.
With * Interfaces of domain given design objects shall be an implementation of the corre-
Design sponding domain interfaces.

» Services of domain given design objects shall be implementations of the correspond-
ing domain services.

Harmonising domain property models
Within Ensure that the rules for property-object model relationships within the domain are sat-
domain isfied, see Domain property model relationships (p.6-61).

Ensure that every service mentioned in the dictionary and statement has an entry in the
service lists and corresponding MSCs.

Withdesign Ensure that the property-property relationships with design are satisfied, see Domain
property model relationships (p.6-61).

Summary of static domain property model rules

Property * Make property modelsthat are as self contained and independent of other properties
modularity aspossible.
Motivation: to enable property (service) flexibility through modular property
composition.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 61

Domain models Tl Me
Developing domain models

Developing domain models

Objective ~ The goal isto make domain object models and domain property models and to keep
them aligned and in harmony with other descriptions.

Figure 6-19: Developing domain models

Open figure
Business plan,
product strategy R
Domain
< statement
Domain
dictionary

% % [Developing domain models)
Y Developing Domain obj
e ject
Market A object models — ! models L
persons,
users, do- Developing Domain
; prop-
main stake property models ™1 ety model >
holders, \ y
domain ex-
erts
P -
- Family
descriptions

Own systems,
competing systems

The main inputs are domain knowledge that come from people, and general domain
knowledge that can be found in the literature. The domain statement and the domain dic-
tionary give important input too. When a system family has been defined, it may
influence the domain models. The outputs are the domain object model s and the domain
property models.

What This activity is composed from two sub-activities:
» Developing domain object models (p.6-63);
» Developing domain property models (p.6-66).

Summary of static domain model rules

« Switch between object modelling and property modelling, as each of these activities
may contribute to the other. Object modelling and property modelling go hand in
hand.

6- 62 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Domain models
Developing domain object models

Developing domain object models

Objectives

What

Active and
passive
domain
objects

» to make and evolve Domain object models (p.6-54);
 to analyse the models looking for improvements,
* to keep the models updated and in harmony with other descriptions.

This activity produces a (set of) Developing domain object models (p.6-63)s, some of
which may be adaptations of existing object models (which will be the normal case dur-
ing evolution and reengineering).

The main inputs to this activity are existing domain object models (if any) the Domain
statement (p.6-44) and the Domain dictionary (p.6-49) supplemented by domain knowl-
edge and the Domain property models (p.6-60). It isalso influenced by existing systems
and the design of new ones.

Asexplained in Domain object models (p.6-54), it is possible to model the domain asa
single structure, but we recommend to devel op viewpoint models and component type
models aswell. In asingle domain structure it is not so easy to distinguish between
active and passive objects. Therefore we may start to devel op the domain structure with-
out considering whether objects are active or passive. In viewpoint models we are more
likely to see differences, and in the component models we must be clear about it. The
following guidelines help to identify active and passive objects:

» Use connections primarily to link active objects. Therefore objects with connections
attached will be active.

» Userelationg/associations primarily for constructive relations. Therefore objects
participating in relations/associations are likely to be represented by passive objects.

« It follows that objects with both connections and relations will have both an active
and a passive representations in the models

As an example consider the user of the Access control system, see Figure 6-17 "The
access control domain” (p.6-57). The model indicates that there will be two user con-
cepts: active users seeking services, and passive users representing those that are valid
usersin the domain.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 63

Domain models Tl Me

Devel oping domain object models

What to do?

Making domain object models

In this case we have no existing object model or property model, only afirst domain
statement and adomain dictionary. Thetask isto devel op thefirst domain object model.

Make Domain Object Model (new Domain)
1. Active objects.

- Look through the dictionary and represent every
active object mentioned. Consider every stake
holder and be sure to include every actor.

- Make an object structure showing the interconnec-
tion between objects.

- ldentify component types and define each type
separately in adiagram where its environment is
described, i.e. itsinteraction linkswith other object
roles.

2. Passive objects:

- Look through the dictionary and represent every
type of passive object mentioned.Consider every
subject entity and transaction.

- Make an (information) object structure showing
the classes and associations.

- ldentify component types and define each type
separately in adiagram where its environment is
described, i.e. its associations with other object
roles.
In all steps above, variability, generalisation and specialisation should be considered.

Using thisstrategy it is natural to develop two models, an active object model and apas-
sive (information) object model. Here the active model will map to active (domain
given) objects in the systems while the passive will map to known entities represented
by passive (domain given) objects in the systems.

An alternative is to combine active and passive objects in the same models.

Evolving domain object models

In this case an existing domain object model is evolved to take new domain knowledge
or requirements into account. Inputs are the existing models and knowledge about the
changes to be made. The reasons for change are either:

* an extension of the domain;
e Some hew services to be added;
e arestructuring due to better insight;

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Domain models
Developing domain object models

some magjor changesin the system technology (such as replacing mechanical keys by
magnetic cards).

Note that updates due to system design normally is handled in the harmonising
activities.

Evolve Domain Object Model (existing Domain)

1. Expressthe new features required and analyse the
impact on the existing models. Modify the models as
required.

2. Active objects.

- ldentify new object types and devel op new compo-
nent type models.

- Change the component types that must be
changed.

- Update the object structure using the set of compo-
nent types now available.

3. Passive objects:

- ldentify new object types and develop new compo-
nent type models.

- Change the component types that must be
changed.

- Update the object structure using the set of compo-
nent types now available.

Summary of dynamic domain object model rules

Domain .
object mod-
eling
approach

Make com- *
ponent
models

Take the entities that a system must know about and possibly control as starting
points for classes of objects.

If working with the domain alone is too abstract, consider in stead systems in the
domain and try to generalises from them.

Classes of objects may very well be identified in a process where the required prop-
erties of a systemare analysed. These may just be lists of requirements, or expressed
interms of Use Cases (MSC), preferably involving people representing the users and
people being responsible for the required properties.

Switch between identifying attributes and relations between classes of objects, as it
may be a matter of choice if a property isarelation or just an attribute.

Take each of the classes and make a model that includes the most important classes
of objectsin the environment of this class. Identify the constraints on the classes
stemming from this model.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-65

Using
domain
object
notation

Domain models Tl Me

Developing domain property models

For parts where the system Design object model is to be specified in SDL, the prop-
erties of SDL should be taken into consideration.

Examples: Asit isknown that SDL has single inheritance, it would be a bad idea to
make a domain object model in UML with extensive use of multiple inheritance. SDL
has a strong notion of real aggregation that depends upon which kind of objects to
aggregate (services as part of processes, blocks/processes as part of blocks) - if
aggregation is part of the domain object model it should take thisinto consideration.

Domain object modelling isaspecial kind of object modelling. In addition to the general
guidelines for object modelling; the following special guidelines apply:

Object classes with attributes, relations and connections

If attributes are not known, just introduce the class. Include any relation or commu-
nication link that may be important - in the design activity these will be refined and
detailed (or thrown away). Do not use too much time on signals on communication

links, unless they are given from the domain statement.

Communication connections between classes indicates that there will be Interaction
model s between instances of these. For each of the communication connections check
if thisisimportant enough to call for Interaction models.

Relations
Do not be afraid to use illustrative relations, but be aware that they may have to be
“implemented” during design.

Attributes

If the type of an attribute is not known, simply introduce the attribute without any
type, or introduce the attribute type as a class - thiswill then be defined during
design.

Aggregation
Useonly real aggregation whenitisobviousthat thisisthe case. If in doubt, userela-
tion aggregation, as this the most flexible.

Classes with constraints on the environment

Behaviour associated with the object model

Thiswill mostly bein terms of Interaction models by use of MSC. If state information
isimportant for the behaviour of an object, sketch an SDL process graph fragment
for this part of the behaviour.

L ocalisation(nesting)

Do not consider thisunlessit isquite obvious. In case SDL isused for domain object
modelling it will produce a set of packages of type definitions. These will mostly be
independent of actual context. If domain modelling go so far as defining system and
block types, then apply the general rules of localisation.

Developing domain property models

Objectives

6 - 66

To make domain property models.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| Me Domain models
Devel oping domain property models

» To analyse the property models seeking to identify problems and find possible
improvements in the domain (and thusin systems).

» To keep the property models updated and in harmony with other descriptions.

What This activity produces the Domain property models (p.6-60), including only properties
of entitiesvisible in the Domain object models (p.6-54). Functional Propertiesthat can
be expressed as Use Cases by means of function listsand M SC are considered the most
important, but Non-Functional Properties are also considered when they are part of the
domain. A speciality of TIMeisthat objectsin the domain object model are not just pas-
sive“dataobjects’ - they may also be active objects. If such active objectsare identified
in the analysis of the domain, then an analysis of their properties also belong here.

Who to The peopleto involve are the same as for domain analysisin general. However, in order
involve to get the service propertiesright, it isimportant to consult actorsin the domain, and in
particular those that may become users of the systems.

Whattodo Consider each of the active object typesin all their different roles and describe, by
means of role structures, text and MSC, what they need to do or need othersto do for
them. For each service, identify the roles or actorsinvolved in role structures, and
describe the collaborations using MSC.

Be sure to cover al general tasks where systems in the domain are involved. Consider
also work situations and tasks to be achieved by means of the systems, i.e. consider a
wider context of purposes than the systems in question.

Making domain property models

As part of the Developing domain models (p.6-62) activity thisactivity runsin parallel
with Making domain object models (p.6-64).

The main inputs are the domain statement and the domain dictionary together with the
object model developed so far and general domain and system knowledge.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 67

Domain models Tl Me
Make Domain Property Models

Make Domain Property Models

1. Identify separate services which should be offered in the domain.

. For each service provide a prose description.

2
3. For each service define which roles provide the service.
4

. For each service, make the description more precise by:

Formalizing (1): Transform those aspects which may into afor-
mal language. The behavior should preferably be described in
MSC or SDL. See language specific methodology for details
(MSC-92, MSC-96, SDL).

Formalizing (2): Those aspects which do not lend themselves
easily to descriptionsin MSC or SDL should be described in
semi-formal prose (see The dialectics of refinement) and struc-
tured comments.

Narrowing: Find out what questions were not addressed in the
prose version and make decisions on these matters.

Supplement: Make sure that the precise description covers all

Evolving domain property models

In this case the starting point is existing domain models and some requirementsfor new
or modified properties. TIMe seeks to support property flexibility by promoting modu-
lar property models. However, undesirable interactions may occur between properties

and they should be detected and resol ved.

Evolve Domain Property Models

1. Make new Property models to represent the new or
modified properties.

2. Analysetheimpact of the new property modelson the
existing property models. Consider the property inter-
action problem.

3. Add the new property models to the total set of
domain property models and remove those that are no

longer valid. Modify properties that are affected, i.e.
where an undesired property interaction may occur.

4. For properties associated with objects, make sure the

6 - 68 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Domain
property
modelling
approach

Rule for
MSC usage

Domain
behaviour
properties

Domain
non-func-
tional
properties

Domain models
Evolve Domain Property Models

Summary of dynamic domain property model rules

Use the domain statement as starting point and consider the needs of all
stakeholders.

Use the domain object model as starting point, and consider especially objects that
are connected by communication links.

Make a Service List stating all the services (or functions) that needs to be performed
and possibly may be supported by systems in the domain. Explain what each service
does.

For each service, identify the object rolesinvolved and as far as possible, which
objects are the actors of the roles.

For each service, describe the most important Use Cases using MSC. Apply the
guidelines of the MSC methodol ogy.

Follow the MSC guidelines for the MSC part. See How to use MSC-92 effectively.

Follow the rules for MSC usage:

Identify all initiatives. For every initiative; describe the sequences that may follow
until the next initiative. Use one MSC for each alternative.

Describe abstract (behaviour) propertiesin a way that eases composition into object
behaviours and comparison with projections of object behaviour.

Motivation: ease of synthesis, quality by construction, ease of validation and
verification.

| dentify concrete (non-functional) propertiesthat arerelevant for the domain models,
i.e. properties that any concrete system must abide.

If the system design is considered, look especially for properties that are inherent in
the domain and describe themin a general way.

If the system is considered, then it is preferably considered as one object, and it is
only decomposed if this helpsin identifying properties of the domain objects.

0]

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-69

System family statement TIMe

What is a system family statement?

System family statement

[<]

What is a system family statement?

Objective

The system family statement isaconcise description of the system family with emphasis
on specifications, i.e. the external properties. A system family statement is normally
expressed in prose, but may well be supplemented by illustrations.

The system family statement isthefirst introduction to the system family. It servestwo
main purposes.

» To concisely express the goals for the system devel opment.

» Toserveasatop level introduction to the system family.

System family statement outline

Executive summary

Thisshould beavery brief summary with focus on the key issues. It may well bewritten
in astyledirectly suitable for market purposes. Stake holders in the domain should
immediately recognise and accept the description.

How it relates to the domain

Briefly about the domain (with reference to domain descriptions) and what needsin the
domain the system family addresses. Which actorsin the domain will be supported, and
what other stake holders may benefit.

How it relates to the environment

Describe the system context with emphasis on the system boundary and the system envi-
ronment Explain who are the users, operators and other systems that may connect to the
System.

What servicesit provides

A summary of the main functionality with alist of all the main services, their purpose,
and how they are performed.

I nterfaces

A brief description of the interfaces with emphasis on user interfaces.

Other properties

Give abrief account of the genera properties and the non-functional properties pro-
vided. Emphasise positioning properties. If maintenance properties are important they
should be mentioned.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl M e System family statement
System family statement notations

Variability and evolution

Consider flexibility for change, variability and other issues related to market adaptation
In space and time.

Technology issues

If technological principles used or other design aspects are important at this stage, they
should be mentioned.

System family statement notations

The family statement will be expressed in prose, supplemented by figures.

Family statement relationships

With The statement islikely to refer to the domain descriptions, but it may also use terminol-
domain ogy from the domain. Therefore the domain given terminology used shall have entries
in the domain dictionary.

Within The statement islikely to use some system family specific terminology. Such terminol-
family ogy shall be defined in the system family dictionary.

Harmonising system family statement

With Be sure to use a terminology which is consistent with the domain terminology.

domain Every domain term used should be defined in the domain dictionary.

With family Every family specific term should be defined in the family dictionary.
For every service mentioned there shall be a corresponding entry in the Specifications.

Summary of static family statement rules
tb.d.

Developing system family statements

What It isassumed that the creative work which actually determines what the system is going
to beis performed in other activities, mainly in the system Study activities and Specifi-
cation activities. The task here is ssmply to express what has been decided. The form
shall be suitablefor a broad audience within the company (not only devel opers) and pos-
sibly for external use. It will be used for internal decision making and control.

Actors The system family statement should be written jointly by market persons and devel op-
ers. Management should be involved in approving it.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-71

System family statement Tl Me
Make system family statement

Making system family statement

The activity may be subdivided according to the topics of a system family statement:

Make system family statement

Describe How it relates to the domain (p.6-70).
Describe How it relates to the environment (p.6-70).
Describe What services it provides (p.6-70).
Describe Interfaces (p.6-70).

Describe Other properties (p.6-70).

Describe Variability and evolution (p.6-71).

N o o s~ DR

Describe Technology issues (p.6-71).

Evolving system family statement

The system family Statement should be written in such away that it can be kept as stable
aspossible. Nevertheless, some evolutionislikely to occur either because the Statement
needs improvement or because new features are added to the systemsin the family.

How to proceed depends on the nature of the change.

6-72 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e System family dictionary
What is a system family dictionary? -
System family dictionary

What is a system family dictionary?

The system family dictionary isorganised in the same way asthe Domain dictionary (p.-
59). The two dictionaries are used together to give full coverage of the relevant terms.
They may even be organised as two parts of the same dictionary.

Objective To define system family specific terminology in order to:
* improve precision and efficiency in the process;
 facilitate training of new people;

» facilitate reading system documentation.

System family dictionary content

The genera format is:
<term><explanation>[exampl €] [synonyms]

The family dictionary is related to the domain dictionary. The two dictionaries may
physically be different parts of the same dictionary.

System family dictionary relationships

Relationships system family dictionary - domain

The domain given terminology used in families shall be the same asin the domain
dictionary.

Harmonising system family dictionary - domain

Ensure that the general domain terminology is applied in the families. family dictionar-
ies should refer to the domain dictionary for al domain given terminology and avoid
redundant definitions (which may develop into inconsistent definitions).

Relationships system family dictionary - rest of family

For entriesin the dictionary that correspond to conceptsthat will be represented directly
by types (classes), it may be agood idea (if thisis known) to use the same name on the
type as the designation of the concepts.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 73

System family dictionary TIMe

Summary of static system family dictionary rules

Harmonising system family dictionary - rest of family

Ensure that the relationships with the other family descriptions are maintained. See Sys-
tem family dictionary relationships (p.6-73).

Summary of static system family dictionary rules

» Represent each essential system family phenomena and concept by an entry in the
dictionary.

» Keep the dictionary updated throughout the development. If desired classify the
entriesas coming fromanalysisor design, domain, environment or system. This may
help in updating the dictionary and also to answer questions like “ Is this phenome-
non covered by the domain of the system?” or “ Isthis type of entity handled by the
System?”

Developing system family dictionary

What

Actors

editorial

In general, the dictionary comes from the other family descriptions, asits purposeisto
define the terminology used there. Thus, the dictionary is developed more as a spin-off
from making the other descriptions, than as an independent activity.

When object models and property models are devel oped, the dictionary should cover all
the objects/types, associations and properties represented in those models.

The dictionary is most likely made by the developers.

Making system family dictionary

Thefamily dictionary ismadefor thefirst timeaspart of thefirst requirementsanaysis,
see: Making requirements (p.-40).

The first family dictionary comes from the System family statement (p.6-70), the Sys-
tem studies (p.-20) and the System family statement (p.6-70). By studying the nounsin
the System family statement (p.6-70) we can make theinitial dictionary. But the dictio-
nary shall contain more than the nouns, it shall aso include services or functions and
associations which may be visible in the domain Statement as verbs. It shall include
every term used in the system specifications. Note that domain terminology is not to be
covered.

1. should the dictionary be organised in some way? e.g. according to the domain state-
ment categories, according to the kind of entity (concept, property, entity, relationship,
service)

2. should the dictionary contain references to object models and property models?

Evolving system family dictionary

The dictionary is evolved as part of the evolution of family descriptions. Whenever
existing terms are modified or new terms are introduced in any of the other family
descriptions, the family dictionary should follow up.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe System family dictionary
Developing system family dictionary

Summary of dynamic system family dictionary rules

» Develop thedictionary in parallel with other family descriptions.

» Usethedictionary actively as a source of terminology when making the other
descriptions.

» Do not add new terms to any model without checking that there is no appropriate
termin the dictionary already.

» Analyse each entry checking that it is precisely and unambiguously defined. Look for
similaritiesamong entries. Avoid to use the same termfor different things, and to use
different terms for the same thing. If necessary define synonyms explicitly. Clarify
rel ationships between related entries, e.g. subtype relationships.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-75

Family implementations

I mplementations

Family implementations

| mplementations

What

6-76

TIMe

I mplementations are detailed and precise descriptions of the hardware and the software
that a concrete system ismade of. They define the physical construction of systemsina
family. The software part will be expressed in programming languages such as Java,
C++ or Pascal, while the hardware part will be expressed in a mixture of hardware
description languages such as circuit diagrams, cabinet layout diagrams and VHDL.
Software playsadual role. Firstly, asadescription to be read and understood outside the
system, and secondly as an exact prescription of behaviour to be interpreted inside the

system.

Figure 6-13 (p.6-42) illustrates some aspects of implementations. Note that the code
generated from application frameworks will interface with code coming from different
sources. To produce a concrete system these various parts of code must be linked
together and loaded on the hardware.

Open figure

Figure 6-20: Softwareimplementation

Application
framework
models

Generate code

/4 RN

Automatically Hand
generated written code
code

Application General
support support
code code

compile and link

¥

Application SW

Infrastructure

compile and Iin/
AV

support SW

Foreign
code

link and load

RN

Activities and Descriptionsin TIMe

TIMe Electronic Textbook v 4.0 ©

SINTEF Modified: 1999-07-16

Tl M e Family implementations
Implementations

Architecture models contain information that may be used to direct the transformation
from application frameworks into implementation code and the building of a concrete
system.

Automatic ~ State-of -the-art tools allow the application framework software to be automatically

code derived. The code which is generated for the application framework must be adapted

generation spmehow to the software environment (operating system, input-output, middleware).
Herethevendorsof code generatorsusetwo different strategies. Oneisto adapt the code
generator so the generated code fitsthe platform. Another isto adapt the generated code
to fit different platforms by means of interface modules and/or macros.

Once the platform and the code generation strategy is defined, it is possible to rely on
automatic code generation for those parts of applications and frameworkswhere SDL is
used.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 77

Family auxiliary TI Me

Why family auxiliaries?

Family auxiliary

Why family auxiliaries?

In addition to the formal models and the lessformal statements and dictionariesthereis
always a need for more informal descriptions.

Animportant category are made up by procedures, or methods, for handling of families.

Method for evolution

In order to stay ahead of competition today, it is necessary to shorten the lead times
needed to introduce new services and service features. To thisend TIMe seeksto
achieve arequirements oriented mode of systems engineering, where service flexibility
and incremental evolution is akey issue. Aspects to consider are:

* Modularity in application property models. How to describe services (and other prop-
erties) in amodular way so that new services may be added or existing services
modified with minimum impact on other services?

* Application flexibility. How to structure applicationsin a modular way so that the
impact of an new or changed serviceislimited, and how to incrementally evolvethe
application.

» Implementation flexibility. How to follow up application incrementsin the generated
implementation code, and how to update existing systems.

For any system family where evolution is an issue, one should try to define guidelines
for how to perform evolution.

Method for framework code generation

Objectives Once the architecture is defined, much can be gained if the remaining development

What

effort can concentrate on application evolution. That will be possible only if thereisa
well defined method, supported by automatic tools, for derivation of implementations.
The method needs to consider several issues:

« Automatic code generation. How to produce implementation code that fits into the
application software environment? How to handle incremental generation?

» Hand generated code. What are the rules that hand generated code shall follow?

* Integration of automatically generated code with hand generated code, foreign code
and support code.

How the code shall be divided into modules for ease of generation and handling?

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe Family auxiliary
Method for system instantiation

Method for system instantiation

Objectives The purpose is to enable cost effective production of system instances that:
o satisfy customer requirements;
 supports future evolution and maintenance.

What This method should define the procedures and the tools that shall be used to generate
system instances. Problems to solve are:

* how to specify configurations at the various abstraction levels: application, frame-
work, platform;

* how to generate or produce the various parts;
* how to compose the parts into a system;

D]

how to load and initialise the software.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-79

Application TI Me
Content and scope

Application
[<]

Content and scope

The application provides the main services of a system and is therefore the most valu-
able part of a system from a user point of view. Application models are very central in
TIMe:

» they arethe soul of service orientation, asthey model both the services and the object
that provide the services,

 they enable serviceflexibility and service evolution at a high abstraction level rather
than on the (concrete) implementation level;

 they enable quality assurance of services before they are implemented;
 they are used as the starting point for implementation architecture design;
 they are used as source when generating application (implementation) code.
In this Chapter we shall describe:

» The Application reference model (p.6-81): the generic structure of application
systems.

* Application models (p.6-86): how application systems are represented in models.

» Developing applications (p.6-106): how we go about developing the application
models:

- Application specification (p.6-93),
- Application design (p.6-96).

6-80 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Application reference model
Content and scope

Application reference model

Itis
abstract

The application is an abstract system which provides the services that users and other
systems in the environment need. It determines the quality of the system services.

As an open systems it exists in a context where it attain purpose and meaning from an
environment. This context may again be part of an even wider context, such as an enter-
prise, where the system and its environment together serve some higher purposes.

The domain is ageneralisation of thiswider (enterprise) context. In contrast to the
domain, the system context isapart of the world being served by asystem. Thedomain
isamore genera and often wider area of concern.

In the reference model for application systems we consider the system and its environ-
ment, see Figure 6-21 (p.6-81). Both the system and the environment are decomposed
into Domain given (p.6-82), System given (p.6-83) and Interface given (p.6-83) parts:

Figure 6-21: Application system reference model

Open figure
Environment " System

Subject
entities D ¢ D \:| °ooe D

Other
yeoms L (] [] (]

Conrolled e

Coolled (] 1 -~ []
Users @1\ oo @1\ - \:l 000 l:l
Domain System Interface Interfface System Domain
given given given given given given
Service needing Service providing

» Domain given (p.6-82) parts provide functionality which iscommon to most systems
in adomain.

» System given (p.6-83) parts provide functionality which is specific to a particular
system or system family.

 Interface given (p.6-83) parts take care of the communication between the service
needing parts of the environment and the service providing parts of the system, see
Figure 6-21 (p.6-81).

These parts may have quite different characteristics and contribute to the overall func-
tionality in different ways. Note that the services are related to the domain given and the
system given parts, while the interface given parts only serve as communication media.
Interfaces have been separated from services in order to achieve protocol transparency

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 81

Application reference model TIMe
System context

and modularity. It is generally desirable that services can work over arange of commu-
nication facilities and that interfaces and services can evolve as independently as
possible.

The Environment (p.6-84) is further decomposed into:

» Subject entities (p.6-84): entities known by the system, but not directly interacting
withit. The Access Zones handled by the Access Control systemisoneexample. The
materials and products handled by a MPS system is another.

» Other systems (p.6-85): other systems communicating with the system. In the case of
an ATM machine, this would be the central bank computers.

» Controlled processes (p.6-85): equipment being directly controlled by the system.
The Doors controlled by the Access Control system isasimple example. More com-
plex examples are the mechanical parts of a paper mill or arobot.

» Users (p.6-85): human beings communicating with the system. In this category we
have end-users as well as operation and maintenance staff.

Sincethe system shall serve the environment, wewill find corresponding entitieswithin
thesystem. Infact, TIMerecommendsto “mirror” the environment by objectsinsidethe
system. Some of thesewill be active object and somewill be passive objects, see Object
Models. The active objects provide services, while the passive represent entities and
rel ationships the system needs to know.

The application system reference model has been inspired by the OOA& D method
(Mathiassen et al. 1993), but adopted and detailed to suit reactive real-time systems.
Methods like UML do not have this kind of system reference model.

We believe the reference model will help to structure system models and to give more
precise method guideance.

System context

What A system context isapart of the world containing the system itself and its Environment
(p.6-84). Thus, Figure 6-21 (p.6-81) illustrates a system context.

Symmetry Note that:

» thereis symmetry between the environment and the system: objectsin the environ-
ment are served-by and represented-by objects in the system;

» thereis symmetry of interfaces around communication links served by protocol
stacks. Sometimes the system boundary coincideswith such links and sometimes not.

Domain given

What Parts that are modelled in the domain and therefore common to most systemsin a
domain are classified asdomain given parts. The domain given parts of the environment
contain domain entitiesthat are served by the system, typically actors and processes, and
subject entities known by the system. The domain given parts of the system itself con-

6-82 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me Application reference model
System given

tain domain entities that are realised by the system, typically some domain Helpers.
They also contain passive objects representing domain given entities of the
environment.

Example ~ The users and the Access Zones of the Access Control system are examples.

Explana- Domain serviceswill be quite general and common to most systemsin agiven domain.

tion Every PBX, for instance, is able to provide normal two-party telephone calls. Any
access control system will know about users and access rights. Such parts are likely to
be stable and may potentially be reused in many systems and system families. Thisis
one reason to separate these parts from the more system specific parts.

In methods like UML and OOA&D the emphasisis on passive objects representing
knowledge about phenomena in the problem domain. In our method, we also include
active objects that perform services.

System given

What The system given parts are specific to a particular system or system family. They will
act together with domain given parts to provide the services.

Example Inthe Access Control system the operators and the objects serving the operatorsis an
example. Another exampleisthe error handling and initialisation functionality needed
INn most systems.

Explana- These parts provide the servicesthat makesthis particular system, or system family, dif-

tion ferent from other systemsin the problem domain. The System given (p.6-83) parts can
collaborate with the Domain given (p.6-82) parts of the system to accomplish the ser-
vices. They are separated from the Domain given (p.6-82) parts because they are less
stable, general and reusable. The purpose of these parts may be to:

» Perform solution dependent services, i.e. services that depend on the actual system
design. Error handling and maintenance services are typical examples.

» Attend to special needs, not solved by other systemsin the domain, i.e. to provide
some positioning properties.

I nterface given

What The interface given parts take care of the communication between the service needing
parts in the environment and the service providing parts in the system.

Explana= Communication require interfaces. In some cases the interface is simple: just hit a but-

tion ton. In other casesit involves complex behaviour, such as protocols and graphic user
interfaces. In most cases there is independence between the interfaces and the service
provided through the interfaces. It is therefore recommended to isolate what is specific
to an interface from the services provided over it. Thisis particularly true wherethereis
a complex behaviour associated with the interface.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 83

Parts

Layering

Example

Application reference model TIMe

Environment

Such separation alowsinterfaces and services to evolve independently and help to pro-
tect investment in either area from changesin the other.

The interface specific parts are subdivided into:

» User Interfaces. Partstaking care of Human Machine Interaction (HMI). These parts
are often critical for the user satisfaction, and hence the success of a product. User
Interface design is an area that require careful attention and specialist knowledge. It
will sometimesinvolve prototype building and experiments. It will therefore often be
aseparate devel opment task involving other peoplethan the other parts of the system.

* Process Interfaces. These take care of the interfaces to controlled processes. They
will involve sensors and actuators as well as interface electronics and software driv-
ers. This part will often require understanding of the technological principle of the
controlled processes, actuators and sensors. It is therefore a multidisciplinary area,
involving several technologies. It isan areawhere real-time constraints are important
and need careful consideration.

» Other System Interfaces. Thesetake care of communication with other systems. They
involve the necessary hardware, the software drivers, and the protocol stacks. Some-
times they will involve standard networking technology. In other cases special
solutions are needed.

Common to all these partsisthe Layering Principle. All interfaces will be layer struc-
tured, starting with the physical medium moving upwards to the servicesin the System
given (p.6-83) and Interface given (p.6-83) parts of the system.

In the AC system we have a user interface with aphysical layer: the Panel, and a proto-
col layer: PanelControl.

Environment

What

Example

The environment consists of the parts of the surrounding world which are either known
to the system or communicate with it.

Subject entities

Most systems will contain data representing entities, rel ationships and measures exter-
nal to themselves. The actual entities, relationships and measures represented by such
data are denoted collectively as known entities. The known entities can be seen as the
meaning (semantics) of the data. Subject entities are known entities that a system does
not interact with directly.

A salary system, for instance, needs to know about employees, but will normally not
interact with them, hence the employees are subject entities.

Subject entities will often be domain given.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me Application reference model
Environment

Other systems

What Other systems are external technical systems with which the system in question is com-
municating to accomplish its purpose.

Example A PBX for instance, will communicate with nodes in the public telephone network. An
ATM machine will communicate with the central bank computers.

Explana- Many systemswill communicate with external systems. In some cases the relationship

tion will be asymmetric, asin aclient server architecture. In other casesit will be symmetric
as between the switching nodesin a communication network. Anyhow, the relationship
with other systems may be central to the purpose of the system in question. Sometimes
the system even receives its prime purpose from external systems.

Other systems are sometimes domain given and sometimes System given.

Controlled processes

What The controlled processes are equi pment in asurrounding technical system being directly
controlled by the system in question.

Example Inthe Access Control system, the Doors are controlled processes. Inan ATM machine,
themoney-binisacontrolled process. In alift control system, the physical hoist unit and
the lift chair are controlled processes.

Explana- Controlled processes will only be present in embedded systems, where the application

tion system is controlling alarger technical system, e.g. a paper mill, atelephone exchange
or arobot. Normally thislarger technical system will rely on the application system to
behave as required. Thisistypicaly the case in so-called mechatronic systems, where
software, hardware and mechanical solutions are integrated. A mechatronic systemwill
comprise active parts which exercise control and passive parts being controlled.

System It isamatter of definition whereto put the system boundary, and hence what to consider

boundary aspart of the system in question and what to consider as controlled by the system. If we
consider acompletelift system, the physical hoist unit containing motors, brakes, wires,
etc. will be considered as part of the system. If we consider only thelift control system,
then these parts are considered as controlled by the system.

The controlled processes will often be domain given.

Users

What Usersistheterm collectively used for human beingsinteracting with the system in ques-
tion. They may play avariety of roles such as operators, service personnel or clients.
domain actors supported by the system will be domain given, while others will be sys-
tem given.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-85

Application models TIMe

Application model overview

Application models

Application model overview

Objectives First of all, application models serve three basic purposes:

What

» Todescribe behaviour at an abstraction level whereit can be understood and analyzed
independently of a particular implementation.

» Tobeafirm foundation for designing an optimal implementation.
» To be source for automatic generation of implementation code.

The purpose of the application modelsin general isto answer what systemsin thefamily
shall do.

They should support unambiguous communication among project members and in-
depth understanding by the individual. An application model is made primarily for
human communication and analysis, not for machines. But it should also be processed
by machines.

It should be readable for the human being without being vague or ambiguous and it
should express the behaviour without unwanted bias towards the physical implementa-
tion in order to allow freedom in selecting the implementation.

At the same time it should be implementable so it can be trusted as documentation. In
fact, we will generate code automatically from application models.

Once application models serve these purposes and we are able to actually engineer sys-
tems on the application level, some secondary purposes emerge. We want to further
reduce lead times and to introduce new services more quickly than before. Thereforewe
want application modelsto be:

» modular with respect to service description;
 flexible with respect to service introduction.

To achieve all these objectives, application models should be structured with the fol | ow-
ing criteriain mind:

- Clarity and simplicity of behavior interpretation by the human.

- Modularity supporting incremental service evolution and isolation/encapsulation
of change.

- Coverage of the necessary variability.
- Possibility for analysis by the machine.
- Possibility for automatic code generation.

Asillustrated in Figure 6-22 (p.6-87), the complete application system may be defined
asatype. Thiswill be anatural thing to do during thefirst time devel opment. However,
once aframework has been defined, the compl ete application system may become less

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Application models
Application model content

important, because it is the component types and not the compl ete application system,
that will be used in frameworks. Therefore the component types used to construct the
application system may be more important than the system itself.

Thisobservation is strengthened by thefact that it may be difficult to expressall the vari-
ability needed formally in one type model. It may prove more practical to develop
several component types that are easy to compose into aternative system types. Thus,
the most important part of application modelsisalibrary of (component) typesthat can
be used to define application systems using either composition or inheritance.

Application model content

Application specification and design parts

Asal other family models, application models have two main parts: the specification
part (see Application specification (p.6-93)) and the design part (see Application design
(p.6-96)). Each part consists of object models and property models asillustrated in Fig-
ure 6-22 (p.6-87):

Figure 6-22: Application specification and design

Open figure
Object models Property models
System Service-A

g(t)rﬁcture MsC

Q—Q— O—q | | Service-al

T UML
Sy nthlesi Se Context/Specification Re#li ne
+ Content/ Design
System Service-AT

Q— O— g(t)rﬁcture '\S/ltic'ce al

oo vice-
4 =
O—O+H_H ™
UML [
Instance of Instance of
Component types
BLOCK type Class-b
Component-a
Attributes
QQD‘D_’» Operations
L SDL ML

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Activities and Descriptionsin TIMe

Application models Tl Me
Application model content

1. The specification focuses on the environment and how it relates to the entity being
defined. In the object model, the entity itself is represented as a black box while the
environment is detailed. Associated property models will focus on interactions
between the entity and the environment. Every service it provides shall be described
by means of roles, text and MSC.

2. The design focuses on the content. In the design object models we will see how the
application system is composed from parts and aso how these parts behave. In the
property modelswewill see how design objectsinteract. It isof course, essential that
the properties actually provided by the design objects correspond to those requiredin
the specification. (A combination of property conserving synthesis and verification
technigues is used to ensure that.) The object model design consists of two parts:

- structure design which define the structure of objects and component aggregates;
- behaviour design that define the behaviour of objects.

Application system boundary

What should be inside and what should be outside the system is a question that often
causes high tempered and endless discussions. We contend that the decision is not very
crucial, as the method we propose will allow the boundary to be adjusted later on with
little effort.

Theimportant thing isto include either in the environment or in the system itself every-
thing the system ultimately will serve or know. In particular it isimportant to represent
al the various stake-holders needing to be served or represented by the system. These

should be placed in the environment. Other objects we are sure never will be produced
or delivered as part of a system instance, e.g. people, should be put in the environment.

This does not exclude the possibility of including some of thesein the system at alater
stage, for instance as part of a simulator.

Application services and objects

The services of a system are defined in application property models. Asin the domain,
the application service models contain atextual explanation, a role structure and an
MSC document.

In general, an object is assigned propertiesin the following three ways, see Figure 6-23
(p.6-89):

6-88 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Role sets

Application models
Application model content
Figure 6-23: Waysthat servicesarerelated to objects

Open figure

Service-A

Tole
structure MSC w

O Service-al

e— | T

Péys servicerole

Service-B

System S

structure

Service-al
==

_ \ |
Playsinterfacerole Instance of L2]

Plays servicerole

/Eﬁ_OCK typ€ B
ﬁﬂ/

1. By explicit assignment of service roles using the Plays servicerolerelation. Thisis
because the object is part of an object type to which we explicitly assign property
models.

2. By implicit assignment of service rolesfrom the object typeit isaninstanceof . This
Is because objects are instances of types that may have explicitly assigned roles.

3. By implicit assignment of interface rolesrequired by objectsin itsenvironment. This
Is because the object appears in an environment where surrounding objects will
expect the object to behave according to some interface.

Of course, al the roles that an object receives must somehow be consistent with each
other and with the properties that the object actually provides.

Therefore, care must be taken to maintain consistency between the properties specified
explicitly for the system as a whole and those received implicitly from its components
and the environment.

» Theset of rolesexplicitly assigned to an object should be a subset of those that fol low
implicitly fromits type and its environment.

The application reference model parts

Domain given

Application models are closely related to the domain and the needs of domain stake
holders. We are likely to find some of the domain actors in the system environment
(those that the system will support), and some domain hel persinside the system (in the
domain given part).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-89

Application models Tl Me
Application model content

System given

A system family may have many features that were not covered in the domain models,

eg.

e positioning properties that help this family to be awinner in a competitive
marketplace;

» properties related to issues outside the domain such as operation and maintenance
functions for the system as such.

We recommend to model the System given partsin the same general way asthe domain
given, except that the System given parts originate outside the domain and have no rela-
tions to domain models (except in cases where they lead to new understanding of the
domain).

I nterface given

It isrecommended to distinguish between the service behaviour and the interface behav-
iour by using layering asillustrated in Figure 6-24 (p.6-90).

Figure 6-24: A servicelayer and an interface layer

Open figure
—— SL,S2, .. e Further we recommend to first define the
M service behaviour separately without any
S1,s2, . s1,s2 . [referencetointerface given parts. This

means to consider only the two service
M roles xr1 and xr2 and their dashed inter-
e connection in Figure 6-24 (p.6-90). When
interfacesareintroduced, the servicesshall
ideally behave in the same way even though the interconnections go via the interfaces
and the dashed interconnection in Figure 6-24 (p.6-90) disappears.

(It may happen that interfacesinteract with the servicesin waysthat were not anticipated
In the service models, for instance that messages may be lost. In such cases the service
behaviour must be modified to take the interaction into account.)

Figure 6-25 (p.6-91) illustrates how services and service objects may relate to the inter-
face given parts. Where to place interfacesin relation to the system boundary, and how
to model them is often a difficult choice.

6-90 Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Application models
Application languages and notations
Figure 6-25: Two cases of interface given parts

Open figure

System

User
server

(Servicex r2)

User

(Servicex rl)

a) User terminal case

Terminal
server

Terminal

11,12, 11,12,

System

Ext system system
server
(Servicex rl) S1, 82, ... (Servicex r2)
S1,[S2, ...

b) External system case

In the User terminal case, we have placed the Terminal in the environment and a Termi-
nal server inside the system. Note that the User will play both a service role and an
interface role in this case. Since these roles are internal to the User object, the service
interactions S, 2,. are not visible outside the User. Inside the system however, the
roles are played by two different objects, and therefore the service interactions are visi-
blethere. Inthe Ext system case, the interface given parts are Protocol s belonging to the
two systems.

Application languages and notations

Asillustrated in Figure 6-22 (p.6-87), the main languages to use are M SC for property
models and UML combined with SDL for object models.

SDL isthe main language for control behaviour, while UML will be used for other
aspects (such asuser interfaces and data-bases). Typically UML will be used in the spec-
ification part, and possibly for top level design structuring. SDL will take over where
the main thing isto model reactive behaviour.

In some casesit will be possible to express the application object models completely in
SDL.

For description of interaction properties, we stick to MSC even if UML is used for the
Object Model.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-91

Applica-
tion
specifica-
tion
notation

Using SDL
in applica-
tion
specifica-
tions

6-92

Application models TIMe

Application languages and notations

Application specification languages and notations

Normally UML will be used for the specification object models:

In general use UML for the specification object model:

Context: model the application system as a Class. Represent the environment as
object sets with specified variability. Describe associations and communication
links in the environment and with the system.

Content: model the content (if any) as object sets inside the class.

Component types: define a class for each component in the system environment
and content. For each component class, model the context using separate
diagrams.

For property models, text, role structures expressed in UML and MSC will be used.

» There shall be a separate property model for each service and interface containing:

arole structure expressed in UML;
explaining text;
a MSCsfor every initiative and its most important responses.

If SDL is used, we recommend to model the application system as an SDL Block type
rather than as a System type. There are two main reasons for this:

1

It is possible to formally describe the environment of Block types but not of System
types.

. Block types can be used as components while System types cannot.

Where reactive behaviour isimportant and general relations (associationsin UML)
are unimportant, SDL should be used in the specification:

Context: model the application systemasa Block Typein SDL. Represent the envi-
ronment as gate constraints.

Content: model the content (if any) as Block sets.

Components: define a Block or process type for each component in the system or
the environment. For each type, define the type context.

Associate the roles of property models with the objects and types/classes of object
models.

Application design languages and notations

For reactive, state transition behaviour it is recommended to use SDL. This means that
active objectsin general should be described with SDL. One exceptionisgraphical user
interfaces. For passive objects, and especially objects going into a database, UML may
be preferred.

This means that the application design may use a combination of SDL and UML.

Activities and Descriptionsin TIMe

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Application models
Application specification

Applica- * If the specification uses SDL, then continue with pure SDL in design.
tion desi L . . .
rllgtnati?]gn « |f the specification uses UML, then continue with UML for the structure until SDL
components are reached.
» Use SDL for components and subsystems having reactive, state transition behaviour.

Of course this division may cause interworking problems between the SDL and UML
parts.

» For property descriptions, we use role structuresin UML, text and MSC.

Application specification

Objectives An application specification serves to answer fundamental questions like:
1. What services are provided?
2. What isthe environment i terms of active and passive objects?
3. What isvariable in the environment and the services?
It specify the external interfaces and behaviour properties (services) of an application.

What The application specification models are illustrated in Figure 6-26 (p.6-93)

Figure 6-26: Application system specifications

Open figure
Domain
/Q_Q\ Domain models
Application specification
System \ - ebervu:e-a
structure MSC
I O 0 Service-al
O—(CH)— MT/ [Text] E
ML
\ context
content
Consists of Refined to
System Service @
g(t)rﬁcture '\SAeSrSice al
o-oH e | F
UML |

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-93

Domain
given
specifica-
tion

Application models TIMe

Application specification

Specificationsare devel oped first for the application system asawholeand later for each
(component) type. We distinguish between domain given, System given and Interface
given parts. It is natural to use this division as a guideline in the specification:

» Domain given parts and services. These originate in the domain models and may be
used more or lessdirectly in the specification. The specification shall describewhich
parts of the domain that are supported by the system. Some of these will be in the
environment, and some inside the system, see Figure 6-26 (p.6-93). Domain given
objectsinside the system might aswell be shown in the specification. For domain ser-
vices, it may be possible to use the corresponding domain property model directly,
but it islikely that some modificationswill be needed. In any casetherelationship to
domain models shall be maintained, see Application model relationships (p.6-97).

» System given parts and services. These may be specia for the system family or they
may be shared with other families. We recommend to focus on the environment, and
avoid specifying content. The specification shall describe system given objectsinthe
environment, and the system given services. We do not include System given objects
inside the system in the specifications unless there are good reasons for it. But the
services may well specify servicerolesthat will be played by (asyet unknown) actors
in the system.

 Interface given parts and interface properties. These are introduced to provide reli-
able communication across the system boundary for domain given and system given
parts. Asthe interface given parts often coincide with the external system interfaces
they are an important part of specifications. Therefore specifications may include
interface objects both in the environment and the system. Layering should be applied
to isolate the interfaces from the other parts.

Domain given types will be quite stable, and may be reused between many systems and
system families. System given types are less stable as they provide the functionality that
Isparticular for asystem or system family. Among the interface given types, user inter-
faces can be the least stable. Protocols, on the other hand, may be quite stable.

Application specification content

Domain given specification

Onekey issuein any system development is to decide on what parts of adomain to sup-
port. (Thisistrue even if there are no explicit domain models.) Basically this means to
decide on which domain actors and which domain services to support. These shall be
represented in the specification as follows:

» Every domain actor and helper needing to be served by the system shall be repre-
sented (as active objects) in the environment.

» Every stake holder, subject entity and helper the system needs to know shall be rep-
resented (as passive objects) in the environment.

» Every domain helper the system shall implement shall be represented in the (domain
given) content.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Application models
Application specification

» Every domain relation(association) the system needsto know shall be represented in
the environment.

» Every domain communication link the system needs to handle shall be represented.

Asaresult we have a subset of the specification object model representing the domain
given parts. Inside the system (in the content) we only find domain objects (Hel pers) that
are going to be realized by the system. In the environment we find the domain objects
that are going to be supported (if they are active) or represented (if they are passive) by
the system.

» Every domain given object shall have a type (class) which is related to the corre-
sponding domain type (class).

» Each domain given service shall be described independently of interfaces using ser-
viceroles.

» Each domain given type shall have relations to the domain given servicerolesit par-
ticipate in.

In thisway there will be a separate service description (using role structures, text and

MSC diagrams) for each domain given service. Interaction with System given service

roles should be shown but interface given roles should be avoided.

System given specification

We do not include System given objects inside the system in the specifications unless
there are good reasons for it. We recommend to focus on the environment, and avoid
specifying content.

Again we recommend to separate services from interfaces.

Inan enterprise view, consider stake holders and other entitiesthat need to interact with
or be represented by the system.

System » Every entity that needs to interact with the system shall be represented in the system

given environment with a communication link to the system.

specifica- . . .

tions » Every entity and relation the system needs to know shall be represented in the
environment.

» Each service shall be described independently of interfaces using service roles.

» Each system given object in the environment shall have a type definition with rela-
tions to the system given service it takes part in.

Asaresult, we have a detailed description of the environment and the communication
links with the system. Each service has a separate description, and we know which ser-
vice roles that are going to be played by the system itself and by the objectsin its
environment.

I nterface given specification

Specifications will often be quite detailed about interface given parts. Interface given
partswill be localised somewhere on the communication links between the system and
the environment where their role is to convey the service interactions.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-95

Interface
given
specifica-
tions

Application models TIMe

Application design

Interfaceswill often have alayered structure with one or more protocol layers on top of
aphysica layer.

» For every communication link with the environment the interface given parts shall be
specified.

» For each type of interface, there shall be a property model containing:
- interfacerolesusing UML;
- atextual explanation;

- therole behaviour expressed using MSC. There should be one MSC for each inde-
pendent initiative and each main course of behaviour that may follow.

Application design

Objective

What

To describe the design part of an application that:

» satisfiesthe specification;

» hasclearly defined behaviour;

» hasamodular structure suitable for future evolution;
« fitsinto the framework when defined.

The context part of an application isfully covered in the specification. The design part
adds the content which is not covered in the specification. It defines the content struc-
turein terms of objects, and the behaviour of each object type.

The first purpose of an application design model isto describe the system behaviour at
an abstraction level, where it can be understood and analyzed independently of a partic-
ular implementation. Thisis done in terms of both an object and a property model.

The second purposeisto beafirm foundation for designing an optimum implementation
satisfying both the functional and non-functional requirements.

Object behaviours are central to the application, and the design should primarily be
structured to give clear and concise behaviour models. We contend that behaviour
should be described state oriented, see General application guidelines (p.6-102). To
achieve that, the structure should contain one object for each independent (concurrent)
thread of behaviour in the system. These objects may bethen aggregated in variousways
to suit additional purposes.

It is recommended to make alibrary of component types that can be used in arange of
application systemsto cover thefull variability needed. Some of thesewill bereal aggre-
gates containing a structure of components, and others will be object types with
behaviour. The component types designed with SDL will be organised in Packages.
(Packages are used only for types that are general enough to qualify for being part of a
package. Itis, however, possibleto start with collecting thetypesbeing used in aspecific
system in a set of packages.)

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Application models
Application model relationships

Application design content

Application design models consists of ;

1

The application modeled as a structure type. It is atype definition with context and
content that definethe overall structure of the application system and may use several
levels of real aggregation. It will be constructed using a collection of component
types and refer to the definition of these component typesfor further detail. The con-
tent structuring is primarily concerned with active objects and interconnections.
However, the active objects will contain passive objects and conceptual relations.

The component types which are either:

- structuretypesthat consist of object aggregates, defining the content asa structure
of components, or

- behaviour types, i.e. object types having a behaviour of their own, e.g. SDL pro-
cesses. Therewill be both active objects and passive objects aswell as association
between active objects and passive objects, i.e. which active objects that access
and may change the passive objects representing known entities in the context.
(For SDL, the passive objects will be variables contained in processes)

Property models for the overall content. The application content shall satisfy the
specified context properties.

Each type is defined with a context and a content with associated properties. An object
type definition consists of:

the context in terms of active objects and passive objects in the environment;
the interfaces in terms of gates (or equivalent in UML);

behaviour propertiesin terms of service roles, interface roles and MSC;
attributes;

the behaviour definition in terms of SDL process graphs or UML operations.

Application model relationships

How the application is related to the domain and the Framework isillustrated in Figure
6-27 (p.6-98).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 97

Application models TIMe

Application model relationships

Figure 6-27: External Application relationships

Open figure
Domain types Domain Properties
o —————@
satisfy
T Domain models T
L . . I
Inspires Application models Inspires
Application system Application compo- Application
types nent types Properties
<> ® >———©
satisfy
Framework models
defines
Framework sys- Framework com-
tem types ponent types

Relationships application - domain

We recommend that each domain given object has a type, with a context description.
(Each of these types will correspond to one of the component types that we recom-
mended to make in the Domain object models (p.-65)) In thisway the relations to the
domain go viathe types.

The nature of these relationship may vary from plain equality (when domain objects can
be used as-is) through inheritance (when the application objects are extensions of the
domain objects) to informal similarity (when the domain objects are just used as inspi-
rations for the application objects).

Domain relationships can thus be either Identity, Inheritance or Inspires where [dentity
and I nheritance can be expressed in the object model ling languages, while Inspiresmust
be added as annotations. In Figure 6-27 (p.6-98) we have only indicated the weakest
relationship “inspires’.

Ideally the domain given types should be identical to the domain types. Any difference
shall be due to system given or interface given aspects. As far as possible we seek to
isolate these aspects, but it cannot be avoided that the domain given objects are
influenced:

» Domain given objectswill most likely interact with System given and Interfacegiven
objects. As thiswas not accounted for in the domain models, it islikely that the
domain given objects will have additional features.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Application models
Application model relationships

» System given services will most likely interact with domain given services. These
interactions must be resolved. This means that the domain given service behaviour
must be refined to take these interactions into account, see The dialectics of
refinement.

Consequently, the domain given behaviour propertieswill be arefinement of the corre-
sponding domain properties.

Applica- » Every domain given typeinthe application models shall be related to the correspond-

tiondomain ing domain type by either:
relationship . .

- identity;

- inheritance;

- or an annotation telling that it is inspired-by.

» If it turnsout that system given properties must be handled by domain given objects,
then try to make -within the domain given objects - a separ ation between domain and

System given aspects.
Domain * |If there are communication connections between objectsin the domain object model,
communi- then there will be a corresponding communication between the design objects, pos-
cation sibly via some interface given object(s).

Harmonising application - domain

Only thedomain given parts need to be considered. When these partsdiffer from the cor-
responding domain models, the difference should be caused by System or Interface
given aspects. If they are not, it islikely that the difference is accidental and should be
removed, either by changing the domain model or the application model. (It is not
uncommon that working with the application hel ps to improve the understanding of the
domain.)

Applica- » Critically review the application looking for general aspects that are not system or

:i] ondomain interface specific. Update the domain models to capture these aspects.
armonisa-

tion
Relationships application - framework

Frameworks are composed from an infrastructure part, that come from the implementa-
tion architecture, and a redefinable application part, that come from the application.
Objectsin the application part (of the framework) are formally related to Objectsin the
application by using the same types. However, the application part of the framework
may be structured somewhat differently from the application. This meansthat the appli-
cation types need to be designed so they can be distributed in the framework and
communicate transparently with each other and the environment. It also meansthat they
must be adapted to the operation and maintenance services provided in the framework,
e.g. the methods for dynamic system configuration.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6-99

Application models TIMe

Application model relationships

Applica- » Every type used in the application part of frameworks shall be defined in the appli-

tion cation models.
framework L . .
relationship ® Every application type shall be applicable in the framework.

Harmonising application - framework

Application types are developed and maintained as part of the application, and used in
frameworks to produce executable systems. It is not necessary to develop a complete
application system each time a new executable system isto be produced. It is sufficient
that the necessary (component) types are available for use in the framework. However,
to fit into the framework, application types must comply with the framework infrastruc-
ture and interfaces.

Applica- » Whentheframework is defined, adjust all application typesto comply with the frame-

tion work infrastructure and interfaces.
framework o i
harmonisa- ¢ Maintain the relationship between framework and application by using identical

tion types.

Relationships application specification - design

We recommend that the properties of a design always shall satisfy the properties of a
specification.

Thiscan beverified to some extent using state-of-the-art tools, e.g. verifying that aM SC
specification may be executed by a SDL design.

If possible, the rules for mapping service specifications to design objects shall be
described, both for the purpose of traceability and for incremental service creation. Ide-
aly, if therulesare well defined, we may perform service evolution mainly by evolving
the service specifications. Although this cannot fully be achieved presently, being clear
about the rulesisastep in that direction.

The internal relationship of application models areillustrated in Figure 6-28 (p.6-101).

6-100 Activitiesand Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Application models
Application model relationships

Figure 6-28: Internal application model relationships

Open figure

A

Behaviour

structure

Environment Application system Context Properties
| types
relates to satisfy
o——————
? Context T
Consists of Content refinement of
Structure Structure roperties
satisfy
—— @
consists of
Environment Compoént types component
relates to satisfy context properties
o — o— e

Ingeneral, the content propertiesshall be arefinement of the context propertiessuch that
the application content model satisfies the context properties.

The application content receives properties from the component types that are used.
These component properties shall be consistent with other properties that are specified
for the content as a whole and with each other.

Harmonisation application specification - design

Top-down we seek to synthesize the content such that the context properties remain sat-
isfied. Bottom-up we compose the content using existing types such that each interface
isconsistent, and that the context properties are satisfied. Asfar as possible we use con-

structive rules.

Applica-
tion
internal
harmonisa-
tion

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

» Ensurethat the design properties satisfy the specification properties, either by using
property conserving synthesis or by verification.

Activitiesand Descriptionsin TIMe 6- 101

Application models TIMe

General application guidelines

General application guidelines

Goals

Goldenrule

Sate
orientation

Data

Resource
allocation

Concur-
rency

6 - 102

Whilewe structure domain models mainly to show the concepts and the rel ationshi ps of
the domain, we strive to achieve clarity in the behaviour description when we make
application models.

» Thegolden ruleisto partition along the lines of independence and not across
dependencies.

Themain goal isto find an object structure that will enable usto describe behaviour as

clearly and concisely as possible in state oriented fashion.

State orientation is a general principle for behaviour description that helps to make
behaviour descriptions easier to understand and analyse. The basic ideaisto unfold the
state transition behaviour as explicitly as possible in the description. In that way the
description issimilar to the real behaviour and therefore easier to follow than an action
oriented behaviour.

* Represent what the environment may distinguish as control states of the objects (Pro-
cessesin SDL) as states in the behaviour descriptions (process graphsin SDL).

« Critically review all decisionsin SDL to ensure that they are not symptoms of unde-
sirable state hiding.

* Represent what the environment may distinguish as different control signals by dif-
ferent signal types.

» Branch oninput signals rather than on decisions.

« Usedata

- when the process graph structure is not dependent on the data val ues (non-deci-
sive data);

- to keep information about the situation and structure of the environment (context
knowledge);

- to control loops that are not terminated by specific signals (loop control data).

 Introduce special processes to encapsulate shared data. Encapsulate data needing
independent access in separate processes.

 Introduce a special resource allocator process to control the access to each pool of
functionally equivalent resources.

In order to describe behaviour state oriented and clearly, it is necessary to find objects
that behave as independently as possible.

* Model independent and parallel behaviours as separate concurrent objects (pro-
cessesin SDL).

e Do not hide similar behavioursin data. Decompose such that similar independent
behaviours are described explicitly as separate instances of a process type.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Service
concur-

rency

Communi-
cation

Aggrega-
tion
purposes

Aggregates

Application models
General application guidelines
For the domain and System given parts that perform the service behaviour, thisrule
leads to:

» Theservice needing parts of the environment (i.e. the domain and System given parts
except subject entities) should be decomposed into objects such that every object has
an independent thread of behaviour and takes initiatives independently of other
objects.

This helps to find the objects that behave independently in the environment and there-
fore need to be served independently by the system.

» The service providing parts of the system should be decomposed into objects such
that there is at least one active object to serve each service needing object in the
environment.

 In other words: the service needing environment should be mirrored by correspond-
ing service providing objects in the system.

» Use one process to play each independent behaviour role required by the
environment.

» Useonechannel and/or signal routeto carry each independent and concurrent inter-
action dialogue.

» Protocols should be decomposed by layering, such that each layer hides the details
of the protocols used on that layer from higher layers. Lower layers should provide
application independent transfer services for the upper layers.

» Whereappropriate, objects should be collected in aggregated to provide one or more
of the following aggregation purposes:

- gradual approach to detail;

- separation of concerns,

- definition of a type (class) suitable for use in many places (e.g. AccessPoint);
- layering;

- encapsulation;

- similarity with the concrete system. NB this consideration should not be taken
before the framework is defined.

Aggregates are like systems, they have a context and a content. Their environment con-
sists of the entities they know and communicate with, and their content consists of the
aggregated parts.

» Every aggregate shall fulfil one or more of the aggregate purposes.
» Let each aggregate have at |east:

- one active object for each active object in the aggregate environment it communi-
cates with;

- one active object for each pool of shared resources to be dynamically allocated;

- one active object for each block of shared data accessed and controlled
independently;

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 103

Smilarity
and types

Using
library

Designing
with SDL

Variability

6-104

Application models TIMe

General application guidelines

- onhe active object for each independent routing function needed.

» For each aggregate where there is a choice between local and remote; communica-
tion, use a two-level addressing scheme and hide the routing knowledge in a routing
process.

» Thestructure imposed by the application system should be expressed as explicitly as
possible:

- either each aggregate (SDL Blocks) shall be classified asdomain, systemor inter-
face given,

- or each aggregateissubdivided into partsthat can be classified asdomain, system
or interface given.

Inmany casesit isbest to define aggregates astypes. We call such types structuretypes,
as opposed to object types that define single objects with behaviour. Look for similari-
ties, which will make type concepts. Re-examine components that are partially similar,
but partially dissimilar.

» Aggregates should be defined as types, except when they are singular and only serve
the purpose of gradual approach to detail.

* Analysethe systemsuch that it may be possible to recognise similaritieswith existing
components. This should include both conceptual, structural and behavioural
descriptions. Returnto analysisif library search failsto produce the desired building
blocks.

When designing with SDL-92 bear in mind there isno problemin thefirst round just
to identify one process type for each role that not obviously is associated with a
domain Specific object. If it turns out that thisrole is more or lessindependent of
other roles, then it may either stay asa processtype or it may beturned into a service
type in order to be combined with other service type. If it turns out that thisroleis
highly dependent on other roles, then a merge/synthesis of process propertiesis
needed (++ref 1112-5/6 - role modelling)

The variability isan important part to consider.

» Each object set in the environment and the content of a structure type shall have a
cardinality range, and a member type with sufficient variability to cover the range of
environments where it may be instantiated.

It may sometimes be difficult to capture all variability required in one formal model of
the application, because the languages we use have limitations. The way out of this prob-
lem isto model several application systems with different ranges of variability. This
may sound like a very expensive approach, but it need not be. Provided that we have
defined the various component types we need, to define another application systemisa
simple matter of defining a new top level structure. For the specification this means to
define a new context model using existing component types.

» Ensure that the variability expressed is sufficient for the range of system instances
demanded from the market.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| Me Application models
General application guidelines

 |f thefull variability cannot be modelled in one system model, make several system
models, and focus on the range of components needed.

Evolution * Ensure that the modularity is sufficient that changesin services or interfaces can be
confined in few modules.
» Ensure that services can be added or changed with minimal impact on (interaction
with) other services.

Framework The focus on components will be even more important when a framework has been

defined.
« If theframework has been defined, make application types such that they can be used
in the framework.

Object The genera guidelines for Object Modelling apply with the following additions:
modelling
in general

Object classes with attributes, relations and connections:

- Define attributes by attribute types that are either predefined or locally defined.

- Associate signal lists with communication links.

- Turn communication links into signal routes or channels when designing in SDL.
* Relations

- Stick to constructive relations.
» Aggregation

- Always use real aggregation for active objects.

- Use aggregation relations only for passive objects.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 105

Application models Tl Me
Developing applications

Developing applications

What
Figure 6-29: Developing Application
Open figure
Business plan, —— _
product strategy Domain
descriptions
Family
B statement
Family
dictionary
4 - ™
De"l‘?'(;'f.' ng Sysem
apprication studies
peCITying J—
+ — 7 ™ application
| Application
users, specification
product
manage- Designing
ment application
| »l Appll(_:atlon
* design
-
\ J
- Framework
- models
Other Families
Inputs The main sources of input information are:

» Descriptions:
- Thesystem family statement will expressoverall goalsfor the application system.

- Thesystem studies will provide some sketches of the application system and also
expressinitial requirements.

- Thedomain descriptions will describe objects and properties that will go into the
domain given parts of the application (more or less directly).

- Theframework (whenit has been devel oped), will provide structure and interfaces
that the application must abide.

- Other families will provide components and possibly ideas for structuring.

- Project documents and other documents within the company will provide addi-
tional information such as business plans and product strategies.

* People:

6-106 Activitiesand Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

What to do

Application models
Developing applications

- Usersand other domain stake holders can help to clarify what isunclear in existing
descriptionsand can help to make decisions (in particular regarding specifications
and behaviour details). They will also come up with new requirements as their
understanding and experience develops.

- Project and product management may give additional requirements and guide-
lines from the project and company point of view.

The quality of the various sources may vary alot from project to project. It is of course
recommended to put as much as possible on paper, but descriptions cannot entirely
replace interaction with other people. Two things are certain:

» additional information will be needed from people;

* needs and requirements will not be stable, but evolve during the development.

Application types are developed in two main steps: 1. the specification step and 2. the
design step. Asindicated in Figure 6-29 (p.6-106), this holds both for making the first
model and for later evolution.

The specification step devel ops the application context and the required properties,
whilethedesign step synthesizes an application content that providesthe properties. The
content will be astructure of objectswith behaviour. Thereforethe design step will have
two interrelated activities: structural design and behaviour design.

Both the specification step and the synthesis step are split into sub-activitiesthat develop
the three main parts of an application system: the domain given, the System given and
the Interface given parts. Here the general approach isto work from the domain given

towards the Interface given parts asillustrated in Figure 6-30 (p.6-107).

Figure 6-30: Developing the various parts of an application

Open figure
eveloping
Domain given
Developing
Developing Tn-

Interface given| System given | Domain given

There are good reasons for this general approach:

» The needs originate in the domain, and domain given parts can be understood and
modelled independently of the rest of the system, at least initially.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 107

6 - 108

Application models TIMe

Developing applications

» The system given parts provide services on top of the domain given parts. Therefore
the domain given partsis a precondition for the system given parts.

» Theinterface given parts are there to support communication with the environment
for the domain and System given parts. The communication needs should be known
before the Interface given parts are devel oped.

Intermsof services, agood approachisto start with the high level services (required by
the domain and the system) and work towards the low level interface protocols. This
approach is consistent with the idea of layering and separation of concerns. It will pro-
mote a structure where changes in one part may be hidden from other parts.

Of course, it may so happen that some parts are more or less given by theinitia require-
ments. For instance that an existing protocol stack or user interface shall be used. This
does not alter the general approach to be taken, but reduces the amount of work required
for that part.

Making application models

The following general approach to making application models is recommended:
Make Application

1. Making application specifications (p.6-110). This
activity resultsin a context model (i.e. an object dia-
gram, where the system environment isdetailed while
the system itself is depicted as a single entity, accom-
panied by property models specifying services and
roles) and apartial content showing the domain given
parts.

2. Making application structure (p.6-114). This activity
devel ops the content structure (i.e. object diagrams
that detail the structure of the content, supported by
property models.) The leaf componentsin the struc-
ture are objects that will have a behaviour. For each
object type continue by:

3. Making application behaviour (p.6-115) to define
object behavioursthat will satisfy the behaviour prop-
erties specified for each object type.

The approach is further detailed in Specifying applications (p.6-109) and Designing
applications (p.6-113).

Evolving application models

The reason for evolution is that some new requirements shall be satisfied.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Application models
Soecifying applications

The same overall approach is recommended for making (the first) and evolving (the
existing) application. The differenceisthat evolution isincremental and based on exist-
ing models. Our ideal goal isto be ableto specify servicesindependently and to add new
services to the system with minimal impact on existing services and objects. We will
strive to achieve solutions that are as flexible as possible, but realise that the ideal goal
is not fully achievable today. Some redesign of existing parts will often be required.
Normally new services, or service features, will interact with existing services. Feature
interaction analysis will be needed to ensure that the new properties combine with the
existing properties without any undesirable effects.

This activity isboth ssmpler and more difficult than making (the initial) application
model. It issimpler because so much isalready in place and we only need to do an incre-
mental addition or change. It is more difficult because even small changes or additions
may have profound impact on the existing parts, if not prepared for.

Evolve application

Evolution is performed by:

1. Evolving application specifications (p.6-113) in
order to update the specification and to analyse the
impact on the design.

2. Performing an incremental synthesis of the appli-
cation so that the new services are sati sfied without
undesirable interference with existing services: do
this by:

- Evolving application structure (p.6-115)
- Evolving application behaviour (p.6-116)

Specifying applications

Inputs Inputsto thisactivity are the same asfor Devel oping application modelsasawhole, see
Figure 6-29 (p.6-106). Be aware that system studies normally are performed before we
start specifying the application. During System Studies, the main decision about system
boundary, services and environment is made. As aresult we have partial answers to
questionslike:

» what parts of the domain that shall be supported by the system;

» what shall be the system environment and interfaces,

» what shall be the main services,

» what are the requirements to evolution and instantiation?

If these questions have not been answered before, perform that part of System Studies
first.

Whattodo The objectives of application specifications are:

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 109

6-110

Application models TIMe

Soecifying applications

 to specify the externa behaviour at an abstraction level where it can be understood
and analyzed independently of a particular design;

* to specify the environment and the interfaces sufficiently to make the applicability
(of instances) clear.

Therefore, acentral issueisto identify objectsin the environment that demand services
independently of each other, and to describe these services.

The overall approach is asfollows:

» Decide on what parts of the domain that shall be inside the system and what parts
shall be in the environment, and what shall not be considered at all.

* Represent the system type as one entity, and show its interconnections to entity sets
in the environment. Specify constraints and variability of the entity sets.

» Make a (passive) object model representing the entities in the environment that the
system family shall know of.

» Describe the domain specific servicesin terms of text, role diagrams and Use Cases
(in MSC).

» For each of the active object types in the environment, make a context diagram and
describe its active environment in terms of roles. Specify the corresponding service
behaviour using rolesand MSC.

» Add system specific entities to the active and the passive environment
» Only show parts of the environment that are related to the system.
 ldentify the content parts that are subject to requirements.

» SKketch or outline the system structure using UML.

» Usereal aggregationtoillustrate how entitiesin the environment relatesand are con-
nected with parts of the system.

» If possible or relevant, define the interface behaviour of each role in the system and
in the environment.

Making application specifications
As afirst step consider what language to use, see Language choice (p.6-116).

Then start to make a type model for the entire application system by representing the
system type as one entity type (Classin UML).

Specifying the domain given objects

1. Represent all the domain Actors and Helpers needing to be served by the system as
(active) objectsin the environment.

2. Represent domain Helpers to be implemented by the system as active objects inside
the system.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Application models
Soecifying applications
Make Application specification

1. Make acontext diagram wherethe systemisrepre-
sented as one unit. The environment and the
content are then detailed by:

2. Specifying the domain given objects (p.6-110).
This meansto specify domain given objectsin the
environment and in the content.

3. Specifying the system given objects (p.6-111).
This meansto analyse the need for system given
services on top of the domain given services. Spec-
ify additional system given objects needed in the
environment.

4. Specifying the services (p.6-112). Specify domain
given and system given services using service
property models.

5. Specifying the interface given objects (p.6-112).

3. Represent stake holders, subject entities and hel per s the system need to know as (pas-
sive) objects in the environment.

4. Sart to define object types for all the objectsidentified so far. For each type, make a
context diagram showing the type environment.

5. Relate domain given types to the corresponding domain types.

Asaresult we haveidentified the domain given parts of the environment and the system,
and we have started to define object types.

Specifying the system given objects

Consider the system from an enterprise viewpoint. Think of the system in the wider con-
text of an enterprise whereit operates and provide servicestogether with usersand other
systems. What are the combined services and what additional requirements to the sys-
tem family can beidentified in this perspective?

1. Add (active) objects representing system given actors and helpers needing to be
served by the system; place themin the environment and connect them to the system
by communication links.

2. Add (passive) objects representing system given objects and rel ationships the system
need to know; place themin the environment.

3. Add the context part of type models for the system given types.

As aresult we have made a context object model for the system as a whole where the
complete system environment is represented, and context models of the component
types used in the system context.

We aways consult the library of existing component types and pick existing types
whenever possible.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 111

Application models Tl Me
Soecifying applications

Specifying the services

From the domain modelswe already have domain services. But the domain serviceswill
now interact with the System given services. Our first step isto consider each domain
servicein the light of System given objects and services.

1. Refine each domain service so it takes into account interaction with System given
objects (or roles) and services.

2. Define each System given service.

3. Make new component type models more complete by specifying relations to service
roles they play.

Thisactivity shall take existing service modelsinto account. For instance, if an existing
component typeis used, the servicesit provides may be taken for granted, and the new
services may build on it. It may also happen that a new version of existing services are
needed. It isonly in rare cases oneis free to specify all servicesfrom the bottom.

Once the services are specified, we have a (complete) context model for the system
given and domain given parts of the application system. We aso have context models
for each of the object types used in the environment, and we have service models. We
may now analyse the model for completeness and consistency, and we should involve
users and other stake holdersin a validation.

Specifying the interface given objects

The Interface given parts should be kept separately from the rest by layering. Consider
the physical interfaces and add interface specific parts to the environment, or to the sys-
tem as appropriate.

1. Make a type definition for each kind of interface object.

2. Jecify the interface behaviour for each layer of interface protocols:
- define the interface roles using UML,;
- make atextual explanation;

- define therole behaviour using MSC. Make one MSC for each independent initia-
tive and describe the main course of behaviour that may follow.

It isrecommended to describe the behaviour of each interface using aninterfaceroledia-
gram and at least a number of MSCs. Wherever practical, develop a more complete
interface behaviour using SDL.

6-112 Activitiesand Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Application models
Designing applications
Evolving application specifications

Evolution may take placein all parts: domain given, system given and interface given.
The big difference from making a specification isthat we now shall add something new
or change something existing. We must therefore consider the impact on the existing.

Evolve Application specification

1. Specify the new services using property models.

2. Analysetheimpact on existing services and object
models.

3. Specify new objects required in (the various parts
of) the environment (if any).

4. Change existing services and object models as

Note that application specifications are made for the first time before any framework is
defined (normally). However, when they are subject to evolution, it is more likely that
aframework isin place. In that case we may have abandoned the complete view on
application systems in favour of a more component oriented view. This means that our
task isto find what component types are affected, and to modify each of them separately.

Designing applications

This activity takes the application specification and synthesizes a design that will pro-
vide the required properties. It consists of two parts. Designing application structure
(p.6-113) and Designing application behaviour (p.6-115).

Designing application structure

What In SDL termsthisactivity isconcerned with theidentification of blocksand block types
in order to divide the system into convenient “components’. Blocks may be used to
make a layered system. One may chose the extreme that the interface-, system- and
domain given parts are represented by one block each, but this may be too inflexible.
Blocks are aggregates and should be sel ected to fulfil the aggregation purposes, see Gen-
eral application guidelines (p.6-102).

Some of the object types and properties developed in this activity may turn out to be
quite general and common to many system families in the domain. In such cases the
domain object models and domain property models should be harmonised, i.e. updated,
to include these object types and properties.

Property descriptionswill in thisactivity be associated with the identified objects of the
system, while property descriptions in the domain analysis and requirement specifica-
tion activities more often are property descriptions of the whole system.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 113

What to do

6-114

Application models TIMe

Designing application structure

“Finding” the content objects may in some cases appear as “magic’ and may require
some experience from good design for similar systems. However, once the context is
specified with serviceroles and theinterfaceroles, thetask issimpler: just “find” actors
for al the roles. With aslight adaptation of an old saying we may say: Tell uswhoisin
your environment and we will tell you who you are (what your content is).

Making application structure

The following strategy assumes that we know the active environment and the roles that
it requires from the system.

1. Mirror the active, service needing environment. |dentify the objectsand interfacesin
the service needing part of the environment that behave independently and need to be
served concurrently by the application. Mirror each object by a serving agent inside
the application.

2. Find actorsfor all service roles. First analyse the service roles defined in the prop-
erty models and find actor objects for those that shall be played by the application.
If possible, assign the roles to objects already defined, otherwise introduce new
objects.

3. Introduce actor allocators when roles are dynamically assigned and there may be
contention for the actors. Services invoked by different, concurrent users, may con-
tend for access to the same actor and will need to be coordinated. Each set of
equivalent actors should have an actor allocator object.

4. Find types. Look for existing types that can play the roles. Use existing types if pos-
sible, otherwise identify new types to be defined in application type design.

5. Consider the interface given part of the environment and introduce correspondingly
layered interface objects inside the application.

6. Mirror the passive environment. The passive objectsin the context represent context
knowledge the system need to have. This knowledge must be mirrored by data or
active objectsinside the system. Therefore, allocate the passive objectsin the context
to active objectsin the body. This may result in some new objects being defined. The
same principle appliesrecursively for every object inside the systemtoo. If necessary
introduce new active objects to hold the data.

7. Analysethe behaviour. Make MSCsdetailing theinternal interactions and check that
the structure will give effective behaviour definitions.

8. Analyse the block structure. Find a suitable block structure that will satisfy the block
pur poSes.

9. Analyse variability and adaptations required.

10.\erify and validate. Validate the functionality against requirements using simulation
and MSC verification. Validate external and internal interfaces. Ensure that every
roleisproperly played in the system using the role analysis principles of the method.
(During type design apply the rules constructively during behaviour composition.)

11.Iterate and adjust the structure until the general rules and guidelines for application
models are satisfied (see General application guidelines (p.6-102)).

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Application models
Designing application behaviour

For each aggregate (SDL block); the same rules apply asif it was a system. The decom-
position process continues recursively until objects with behaviour (SDL processes) are
reached. The structuring of blocksresultsin atree of blocks. The leaves of thistree will
contain the real actors of our system, the processes.

The principles behind this process are elaborated in synthesis.

Evolving application structure
t.b.d.

Designing application behaviour

What Thetask at hand isto define object types where the content is abehaviour definition and
possibly some attributes. The goal is to describe the behaviour clearly and concisely in
state oriented form.

Object design tries to synthesize object behaviours that will satisfy the desired behav-
lour properties (services). It will, however, often be so that several objects must be
involved in satisfying a single property (service) of the system.

whattodo Making application behaviour

The central issue isto synthesize the behaviour. This can be done in three ways:
» Synthesizing behaviour from properties (p.6-115);

» Synthesizing behaviour from environment behaviours (p.6-115);

» Synthesizing behaviour from informal requirements (p.6-115)

Synthesizing behaviour from properties

The behaviour properties express fragments of behaviour that somehow shall be part of
the final object behaviour. Behaviour design will compose these behaviour fragments
into complete behaviours. This may be donein two steps, see M SC to object behaviour:

1. composition of behaviour fragments from MSCs to more complete role behaviours,

2. composition (with a certain amount of adaptation) of object type behaviour fromrole
behaviours.

Synthesizing behaviour from environment behaviours

In some cases the behaviours of objects in the environment are defined, and the task is
to design a behaviour that will serve these. The resulting behaviour shall be akind of
“mirror” image of the environment behaviours.

Synthesizing behaviour from informal requirements

Sometimes no behaviour propertiesare formally expressed, only someinformal descrip-
tion of functionality exists. In this case, the preferred approach isto first formalise the
regquirements in M SCs and then synthesi ze the behaviour as described above. Alterna-
tively, produce state transition diagrams (SDL process graphs) directly:

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 115

Application models Tl Me
Summary of static application rules

1. Identify the main control statesthat can be distinguished form outside. At least iden-
tify aninitial state.

2. Link the main states together by transitions.

3. Consider each servicethat shall be performed and defineits external statetransition
behaviour. Add states if necessary.

4. When all the services are defined, go through the diagram state by state and check
that all possible inputs are properly treated. Apply the rules for input consistent
behaviour, see ++

5. Add the necessary data declarations and parameter handling.

Evolving application behaviour
t.b.d.

Summary of static application rules

Language choice
* Ingeneral use UML for the context object model:

- Model the application systemasa Class. Represent the environment as object sets
with specified variability. Describe associations and communication links in the
environment and with the system.

- Model the content (if any) as object sets.

- Model the Class context for objects in the system environment and content using
separate diagrams.

» Wherereactive behaviour isimportant and general relations (associationsin UML)
are unimportant, SDL should be used:

- Model the application system as a Block Typein SDL if SDL isused for the com-
plete application system. Represent the environment as gate constraints.

- Model the content (if any) as Block sets.
- Model the types context for Block types in the environment ant the content.
» There shall be a separate property model for each service and interface containing:
- arole structure expressed in UML;
- explaining text;
- aMSCsfor every initiative and its most important responses.

» Associate the roles of property models with the objects and types/classes of object
models.

6-116 Activitiesand Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| Me Application models
Summary of static application rules

Domain given parts

» Every domain Actor and Helper needing to be served by the system shall be repre-
sented as an (active) object in the environment.

» Every stake holder, subject entity and helper the system need to know shall be repre-
sented (as a passive object) in the environment.

» Every domain helper the system shall implement shall be represented in the (domain
given) content.

» Every domain relation(association) the system need to know shall be represented in
the environment.

» Every domain communication link the system need to handle shall be represented.

» Every domain given object shall have a type (class) which is related to the corre-
sponding domain type (class).

» Each domain given service shall be described independently of interfaces using ser-
viceroles.

» Each domain given type shall have relations to the domain given servicerolesit par-
ticipate in.
System given parts

» Every entity that need to interact with the system shall be represented in the system
environment with a communication link to the system.

» Every entity and relation the system need to know shall be represented in the
environment.

» Each service shall be described independently of interfaces using service roles.

» Each system given objects in the environment shall have a type definition with rela-
tions to each system given serviceroleit participate in.

I nterface given parts

» For every communication link with the environment the interface given parts shall be
specified.

» For each type of interface, there shall be a property model containing:
- interface rolesusing UML;
- atextual explanation;
- therole behaviour expressed using MSC. There should be one MSC for each inde-

pendent initiative and each main course of behaviour that may follow.
General considerations

» Every object in the environment shall have an independent threads of behaviour and
take initiatives independently of other objects.

» Every aggregate in the environment shall fulfil some of the desired aggregate
pur poses.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 117

Application models TIMe

Summary of dynamic application rules

» Eachobject set in the environment shall have a specified cardinality range, and mem-
ber types with sufficient variability to cover the range of environments to be
supported by members of the family.

 |f thefull variability cannot be modelled in one system model, make several system
models, and focus on the range of components needed.

System Content

» Avoid to reveal more content in a specification than necessary for the external use.

 If more content need to be specified, then split the specification into an external part
and an internal part. The external shall be sufficient for assessment and use.

 If the system body shall be described in some detail, then use the guidelines for
Object Modelling. Use the same notation for content structure as for context struc-
ture (most likely UML) in specifications.

Summary of dynamic application rules

6-118

Domain mapping

» Relate domain given types to the corresponding domain types.

Domain relationships can be either Inheritance or Inspired-by. Inheritance can be
expressed in the object modelling languages, while Inspired-by must be added outside
the languages as annotations.

Domain stake holders

» Consider all domain stake holders:

- Represent all the domain Actors and Helpers needing to be served by the system
as active objects in the environment.

- Represent domain Helpers to be implemented by the system as active objects
inside the system.

- Represent stake holders, subject entities and hel pers the system need to know as
passive objects in the environment.
I nterface layering

» Usealayered approach to behaviour properties. Separate the interface given parts
from the domain and System given.

- make property model sthat abstract fromthe interface given partsand focus on the
domain and system given parts;

- make additional property models where the interface given parts are included.

Environment

» Decompose the environment into objectsthat have independent threads of behaviour
and take initiative independently of each other.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Application models
Summary of dynamic application rules
« Organise the environment in aggregates that fulfils the desired aggregate purposes.

SDL system and environment

For the elements at the periphery of your concern, place theminside the systemif you
wish to describe their behaviour in detail. If you are merely interested in their signal
interface, place them in the environment which means they will not be identified explic-

itly in SDL.
1

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 119

Framework T I M e
Content and scope
Framework

K

Content and scope
A framework isan abstract system or acollection of (large) system component with two
parts:
» aredefinable application;

» aconfigurable infrastructure that takes distribution into account, and contains all
additional behaviour and supporting functionality needed to support the application
in the concrete system.

The application part is normally rudimentary in the framework. To make a complete
abstract system from aframework the application is redefined and the infrastructure is
configurated.

In this chapter we shall describe:

* What isaframework (p.6-121): an introduction to the notion of aframework.

» Framework reference model (p.6-122): the system model assumed in frameworks.
» Framework models (p.6-126): how to describe frameworks.

» Developing framework (p.6-143): how to develop framework models.

Framework models are important because:

» they model implementation dependent behaviour and distribution common to many
applications (the infrastructure);

« they support reuse of high level designs and not only single classes;

* they contain the common infrastructure in away that can be easily reused with a
range of applications,

* they allow application development to be separated from infrastructure devel opment
(akind of layering);

» they areinstantiated into complete abstract systems that:
- document the compl ete system behaviour asit will be (or has been) implemented;
- are complete sources for automatic code generation.

Once aframework is defined, application development may proceed as an independent
activity concentrating on application issues.

Says the people at Sesam Sesam: “We have languages, but we guess frameworks are not for
seen frameworkswork for window systemsand us, now that we have chosen SDL ...
implemented in object oriented programming

6-120 Activitiesand Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Framework
What is a framework

What is a framework

The Free On-line Dictionary of Computing defines a“framework” as:

“1n object-oriented systems, a set of classes that embodies an abstract design for solu-
tions to a number of related problems.”

A tutoria on designing frameworks says:

“ Framewor ks are reusable designs for an application or a subsystem expressed as a set
of classes and the way that instances of these classes collaborate.

A framewor k describes not only how to partition the responsibilities of a system among
its components, but also how to think about a problem. It is therefore not only a way to
reuse code, but a way to reuse design and analysis information, as well.

Frameworks are difficult to design because they are abstract. Framework designers
must look at many concrete applications to ensure that the abstractions that they are
designing make sense. Frameworks are difficult to learn because the user of a frame-
work must adopt the collaborative model of the framework. It is usually not possible to
learn a framework one class at a time, but instead several classes have to be learned
together.

Nevertheless, there is a great advantage to learning a well-designed framework, and
matur e framewor ks (like some of the user interface frameworks) can provide order of
magnitude increases in programmer productivity.”

The main property that distinguishes alibrary from a framework is that a framework
embodies adesign of atype of systems, while alibrary just is a collection of related
classes. An elaboration of thisdistinction is givenin Table 6-1 (p.6-121).

Table 6-1: Differences between libraries and frameworks

Library Framework

The application uses
library classes, but the
library knows noth-
ing about the
application

The framework knows
about the application
and uses application
classes.

No predefined system
structure. The system

Provides structure. The
system is (partialy)

isentirely defined in | defined in the

the application. framework

No predefined Defines object

interaction interaction

No default behaviour | Provides default
behaviour

Examples on these differences will be given below.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Activitiesand Descriptionsin TIMe 6- 121

Framework TI Me

Framework reference model

Classical examples of frameworks like window systems are defined as a set of related
classes, and are normally implemented in C++. The structure of these frameworks
resultsfrom dynamically created objectsthat are kept together by object references. The
event loop that dispatches mouse and keyboard events to window objects will use alist
of currently active window objects. Thislist will typically contain different window
objects, with the common property that they react on these events. By calling virtual pro-
cedures, it is then up to the user of the framework to redefine these procedures to what
is special for the application.

The notion of framework isnot special for TIMe. What is special for TIMe, however, is
that thisideais adapted to SDL. TIMe advocates the structuring of systems into frame-
works and gives guidelines for how frameworks can be defined in SDL. TIMe puts a
little more into frameworks than the definition above, and one reason isthat SDL can
specify the static structure of systems and not just a set of types.

In TIMe aframework is a system type/class or a collection of (large) component types/
classes, with predefined structure so that a specific system only hasto provide the spe-
cific “contents’ of part of this structure. Frameworks often come about because an
abstract (application specific) system hasto be supplemented by alarge infrastructure
part in order to be executable on a given platform. Instead of making the infrastructure
part again and again for each new system with the same infrastructure on the same plat-
form, aframework that embodies both the application- and the infrastructure part is
defined. In aframework the infrastructure is stable, while the application part may vary
from system to system.

The structuring of aframework may have one or more of the following goals:

« simply to give the system a generic structure, allowing all parts of the structure to
have specific contents provided in a specific system;

* to structure the system so that the application specific and the implementation spe-
cific parts are separated allowing special applications to be “plugged” into the
framework by providing the contents of the application parts.

TIMe emphasises the second goal. How this may be done for designs madein SDL, is
explained in How to define a framework using SDL (p.6-132).

Onereason for designing frameworks isthat this has turned out to be the most effective
way of reuse. Another isthat the framework helpsto simplify application evolution and
system instantiation.

Framework reference model

Applica-
tion and
infrastruc-
ture

6-122

In the Application reference model (p.-99) the “pure” application isin focus without
considering how it will be implemented. When the system is implemented, the applica-
tion system may be distributed over several physical nodes and needs to be supported
by an infrastructure with functionality for:

» distribution;
e communication;
 error handling;

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Complete
abstract
system

Model

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Framework
Framework reference model

This additional functionality may be modelled in a complete abstract system which can
be seen as having two layers: an infrastructure layer and an application layer. In the com-
plete abstract system the application has been distributed in the same way asin the
concrete system. In the Infrastructure part we find objects that support distribution, sys-
tem administration and other facilities not directly related to services provided by the
application. The infrastructure part contains additional behaviour needed to fully under-
stand, simulate and analyse what the system does (the complete system behaviour).

* €fc.

A reference model that takes these aspects into consideration is shown in
Figure 6-31 (p.6-123).
Figure 6-31: Application framework reference model

Open figure

redefinable

" Application

configurable

@ 000
0000

Infrastructure |«€® Infrastructure ' |«

physical node

Infra-
structure

- (- — —
Infrastructure [«4»t Infrastructure |«

Here the Application reference model (p.-99), described in Figure 21 (p.-99) [openfig] IS
distributed on top of an infrastructure.

It isnormally the case that different systems within afamily will have the same Infra-
structure but slightly different application parts, and when making systems with
different applicationsit isdesirable not to change or even consider the Infrastructure part
(besideswhat it offers). Adding or changing services should mainly be performed in the
application, leaving other parts unchanged.

Onthe other hand it is sometimes desirable to change the implementation platform with-
out needing to modify the application. It is desirable that an application may survive
severa platform generations and thereby provide better return of investment.

Activitiesand Descriptionsin TIMe 6 - 123

6-124

Framework TI Me

Framework reference model

A framework definesthe composition of the Infrastructure parts and application partsin
such away that they can be changed independently.

Framework infrastructure

The Infrastructure is structured similarly to the concrete system. If the concrete system
is distributed, the infrastructure will be distributed too. If the concrete system is centra-
lised, then the Infrastructure will be centralised too. (Therefore, the Infrastructure
cannot be designed before the Architecture (of the concrete system) has been designed.)
There are several reasons for this similarity:

» The underlying architecture has a strong impact on the infrastructure functionality
and must therefore be reflected in its description.

» By identifying physical nodes, it will be easier to see how the application is distrib-
uted, and to generate complete code for the framework (infrastructure and
application) running on each physical node.

» The underlying architecture will have some impact on the application too. Physical
nodes may for instance, fail independently. They are linked by unreliable channels,
and the message routing in the system must take distribution into account.

In general an Infrastructure will contain abstractions of::

e The structure of physical nodes.

» Networks for communication between physical nodes.
» Protocols for communication between physical nodes.

* Routing facilities that enable application objects to communicate transparently
across the physical nodes.

» Facilitiesfor initial configuration and later reconfiguration of the system.
» Error handling facilities.

Inaninitial development theinfrastructure aspect may not be obvious. Frameworkswill
often comeasaresult of a(successful) initial devel opment, whichisto beused asabasis
for anew system.

For the Access Control system the fact that validation shall be performed by a central
computer isan infrastructureissue, like the need to support remote communication, with
additional protocols.

Framework application

The framework will contain redefinable application objects. In aframework instance
these are redefined using application types that shall be defined in the Application mod-
els (p.-106).

When the application is developed for the first time, the Infrastructure is normally not
known, and therefore not taken into account. As soon as the infrastructure is known,
application development shall take the infrastructure into account. This means that:

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl M e Framework
Framework reference model -

» signa sending must use the addressing scheme and routing facilities of the infrastruc-
ture. To achieve distribution transparency the application objects must communicate
viathe infrastructure and not directly with each other, even when they are localised
on the same physical node;

 theerror possibilities of the infrastructure is taken into account;
» error handling uses the facilities of the infrastructure, if they exists;
» That configuration is solved using infrastructure facilities, if they exists.

» That the application types have a size and content suitable for instantiation within
physical nodes in the framework. They should not be too large for that.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 125

Framework models Tl Me

Framework reference model

Framework models

Objectives

Frame-
work rule

What

6 - 126

The purposes of framework models are to:
* describe the architectural context for applications:
- how the application is distributed;
- what the communication interfaces are;
- how routing and addressing of application messages (SDL signals) are done;

- additional facilities available to the application, e.g. error handling, dynamic
configuration;

- how application behaviour must be adapted;
* describe the infrastructure:

- show the overall communication links and routing;

- describe protocols;

- describe additional facilities like error handling, configuration support, etc.
« smplify application evolution;

» simplify definition of complete abstract systemswith the sameinfrastructure, but dif-
ferent applications.

Framework instances serve to:
» be asource for complete code generation (of the application and the infrastructure);

* beadocumentation of the complete behaviour and to enable analysis and simulation
of the complete behaviour.

Framework models serve to define complete behaviour when taking implementation
specific features into account. Framework models are made once for afamily, and
applied many times (one for each different application).

» Whenever an abstract systemcan be split into an application layer and an infrastruc-
ture layer, a framework model should be developed that servesto simplify the
definition of new systems.

Framework models contain different kinds of object type models:

» Framework types:

- System types. These are structure types defining the overall framework structure.
They areformalised whenever it ispossible and practical to do so and will contain
both infrastructure and application parts.

- Component types. These are structure types for components that are used within
framework systems. They may contain both infrastructure and application parts.

 Infrastructuretypes. These are structure and behaviour typesfor “pure” infrastructure
components, i.e. components without application parts.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Framework models
Framework model content

The application part of the framework typeswill be virtual application components. All
the application types are defined in the Application models (p.-106).

Framework models, as other models, have a specification part and adesign part, see Fig-
ure 6-32 (p.6-127).

Figure 6-32: Framework models

Open figure
Object models Property models
FW System
D FW Service-A
role
MSC
physical nodes stDructureD Service-al

[. '

Synthesise Context Re*llne

Content |
FW System v

FW Service-Al

() R

D g(t)rﬁcture MSC

physical nodes O | | Service-al
,_Iﬁt_| -_E

-/
! DL orf
ﬂ UML
se —
U Component types

Infrastructure FwW Applicatione
component type component type
<-><-|:| ---\:|<—"> - - <-E| --|:|<—>
SDL or SDL or
UML UML

It may sometimes be difficult to express all the variability needed formally in one type
model. It may also happen that some components are defined using SDL and other com-
ponents are defined using UML. In such casesit may prove more practical to emphasise
component types that are easy to compose rather than complete framework system
types.

When necessary, rulesfor mapping applications to the framework shall also be defined.

Framework model content
Framework specification

The specification part shall concentrate on the context of the framework and the external
framework properties, see Framework specification (p.6-128).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 127

Framework models Tl Me

Framework languages and notations

Framework design

The design part shall concentrate on the content of the framework, see Framework
design (p.6-129).

Framework languages and notations

Asillustrated in Figure 6-32 (p.6-127), the main languages to use are M SC for property
models and UML combined with SDL for object models.

SDL isthe main language for control behaviour, while UML will be used for other
aspects (such asuser interfaces and data-bases). Typically UML will be used in the spec-
ification part, and possibly for top level design structuring. SDL will take over where
the main thing isto model reactive behaviour.

In some casesit will be possible to express the framework object models completely in
SDL.

For description of interaction properties, we stick to MSC even if UML is used for the
Object Model.

Framework property models will focus on the infrastructure properties. In addition to
specifying theinfrastructure services and interfaces using text, role diagramsand M SC,
they will specify requirements to physical distribution, routing, configuration and simi-
lar issues that are better expressed in text and illustrative figures than in MSC and role
diagrams.

Framework specification

Objectives A framework Specification servesto answer questions like:

What

6-128

1. What infrastructure services are provided?

2. How isthe environment physically distributed?
3. How isthe content physically distributed?

4. What isvariable?

5. How are instances defined.

Specificationsare devel oped first for the framework system asawhole and later for each
framework- and infrastructure component type.

For the framework as a whole the following issues shall be considered:
» thephysical distribution of the environment, if any;
* requirementsto physical distribution of the application system;
* requirements to the infrastructure part:
- network requirements,
- protocol regquirements;

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Framework models
Framework design
- communication and routing requirements;
- configuration requirements;

- error handling requirements;

the variability in the system family, and how system instances are to be configurated
and built. Thisincludes variability in the application as well asin the infrastructure;

requirements to dynamic change.

Framework specification content

Framework object model

The object model will describe:

1

3.

the system context detailing the environment and the interfaces using physical group-
ing and distribution as main structuring criteria.

. the parts of the content that are externally visible and relevant to the specification,

also structured according to the physical world.
component type specifications for component types that are identified.

Framework property model

The framework property models will contain:

1
2.
3.

service models for infrastructure services,
interface models for infrastructure interfaces,
textual specification of other properties:

- network requirements,

- protocol requirements;

- communication and routing requirements;
- configuration requirements;

- error handling requirements;

- thevariability in the system family, and how system instances are to be configu-
rated and built.

Framework design

Objectives To describe the design part of framework models that:

satisfies the specification;

has structural similarity with the architecture;

supports a (layered) separation between infrastructure and application;
can be easily instantiated to perform different applications.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 129

Framework models Tl M e
Framework relationships

What The context part isfully covered in the specification. The design part define the content

structure and the types of framework component and infrastructure componentsthat are
specific to the framework.

Framework relationships

How the application is related to the domain and the framework isillustrated in Figure
6-33 (p.6-130).

Figure 6-33: External Framework relationships

Open figure

Application Application
system types component types

<—=e0

Application models

Framework models

deﬂnes
Framework Framework
system types component types
Architecture models is implemented on is implemented on
® .
Architecture Architecture
system types component types
Physical node Software node

Relationships framework - application

The application part of the framework should use types that are defined in the Applica-
tion models (p.-106).

6-130 Activitiesand Descriptionsin TIMe

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Frame-
work
application
relationship

Frame-
work
application
harmonisa-
tion

Frame-
work
architec-
ture
relationship

Frame-
work
architec-
ture
harmonisa-
tion

Framework models
General framework guidelines
» Useonly types defined in application models in the application part of a framework.

Harmonising framework - application

Theapplication will not bevisibleasasystem in theframework, but its component types
will beused. However, if the application types shall be applicablein theframework they
must obey the rules of the infrastructure. This may require some adjustment compared
to the types initially developed (before the infrastructure was known).

» Make sure all application parts of the framework are defined using “ pure” applica-
tion types.

* Make sure the infrastructure is transparent to the application parts.
* Make sure every application type:

- compliesto the infrastructure requirements,

- isasuitable distribution unit in the infrastructure.

Relationships framework - architecture

» There shall be a one to one relationship between physical nodes in the Architecture
and corresponding components in the framework.

Harmonising framework - architecture

» Whenever thereis any changein the Architecture (due to platform changes or struc-

tural changes) update the framework structure accordingly.

Relationships framework specification - design

The considerations here are the same as for Rel ationships application specification -
design (p.-124).

Harmonising framework specification - design

The considerations here are the same as for Harmonisation application specification -
design (p.-126).

General framework guidelines

While the application models are structured primarily to achieve readability for the
human, framework models are structured primarily to:

« reflect the Architecture;
* describe the complete behaviour;
« smplify evolution and production after the initial development.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 131

Frame-
work
system type

Dynamic
change

Dynamic
configura-
tion

Distribu-
tion
transpar-
ency

Framework models Tl Me

How to define a framework using SDL

The General application guidelines (p.-126) hold also for framework models. But there
are additional rules.

» It will often be difficult to define a complete framework for the entire system family
which will be easy to configurate in SDL. In those cases, do not consider the entire
systemexcept for simulation or analysis. In stead define a block type for each kind of
configuration unit (e.g. a physical node) and configure these separately. Perform
configuration and building of complete systems at the implementation (design) level.

e Use SDL system types only when
- context parameters are sufficient for instantiation;
- theblock structureis static;

- and the need for dynamic configuration and change can be fully handled by pro-
cess behaviours.

» Otherwisefocus on Block types, and use these either to compose a set of different sys-
temtypes using SDL or to compose systems outside SDL (using either UML, a
configuration language, or implementation level mechanisms like UNIX make.)

» Dynamic changes are not supported by SDL (apart from dynamic creation of pre-
defined process types within predefined process sets). Therefore, dynamic changes
must be handled outside SDL, in the implementation. For systems where dynamic
changes are important, the framework will consist mainly of a library of typeson a
granularity suitable as change units.

» Every substructure that may be changed or moved dynamically should be defined as
a structure type and be addressable as a unit.

» |f members of a component set (block set or process set in SDL) need to be configu-
rated differently, then either split the set into subsets with identical members or use
dynamic configuration.

Introduce routing objects and addressing that hide the physical location from appli-
cation objects.

» Ensure that application objects communicate using this scheme.

How to define a framework using SDL

6-132

The distinction between alibrary and aframework isin SDL directly reflected by the
concepts of package and systemtype. In SDL termsalibrary can be expressed by aPack-
age, while aframework must be defined by a System type. The essential differenceis
that alibrary only definestypesand not instances (and this holdsfor aPackagein SDL),
while a System type can have both.

A System type defining aframework will typically have instancesthat cover parts of the
structure, and it will assume that the actual application of the framework will provide
application specific instances. A framework can be based upon libraries, and the system
type will be part of a Package.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Framework models
How to define a framework using SDL

System types and Block types have so much in common that if the desired approach is
to develop Block types and use these for composing systems, then many of the frame-
work techniques explained below also apply to Block types.

A framework system typeis defined by a system type or block type in SDL, see Figure
6-34 (p.6-133). Thistype will have virtual types for the application components, and
these will be redefined when defining a compl ete abstract system.

Figure 6-34: Framework definition and use

Open figure

system type FrameWork
virtual BT1 ‘ ‘virtual BT2 ‘

fl—— Framework definition

FrameWorksSpecific

system type Application

inherits FrameWork < - Sysie e using

framework

redefined BT1 || redefined BT2 |

System inst
system MyAppl:Application | ag}— SYystem instance

Normally the framework system type will have framework components that are blocks
with some framework specific structure. The block type BT1 may e.g. consist of an
infrastructure part and a virtual type that represent the application specific part of BT1.

How then are application specific parts included in the framework? In general thisis
done by redefining virtual types, e.g. virtual block types, virtual processtypeand virtual
procedures. There are two different waysto treat application specific instances:

» Application specific instances are specified as part of the framework (p.6-133), as
fixed instances/instance sets of the virtuals;

» Application specific instances not specified as part of the framework (p.6-136), but
their generation is anticipated.

Application specific instances are specified as part of the framework

Inthiscaseit is only necessary to redefine the virtual application types - the instances/
set of instances and their position in the system structure is already part of the frame-
work definition.

Theframework system typeinthiscase hastheformillustrated in Figure 6-35 (p.6-134),

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 133

Framework models Tl M e

How to define a framework using SDL

Figure 6-35: Framework definition with predefined instances

Open figure

system type FrameWork

virtual BT1 ‘ ‘virtual BT2

—ap» B1BTl <w»—|B2BT2 e

T

FrameWorkSpecific

and it is repeated for the block type BT1 (Figure 6-36 (p.6-134)) in order to show pre-
defined process (sets).

Figure 6-36: Virtual block type as part of framework, with application specific instance

specificed

Open figure

virtual block type BT1

virtual PT1
aPT1:
™ fwl PT1 >

In this case the frameworks definesthe structure of instances and instance setswith their
connectionsin terms of channelsand signal routes. In acomplete application system the
propertiesof theinstancesare provided by redefining the virtual types (using application
types).

In order to define the structure of instances and their connections in the framework,
some minimal interface definition for the instances must exist that cannot be redefined
when redefining the virtual types. The rule of SDL isthat redefinitions of the virtual
types (here BT1, BT2 and PT1) must be subtypes of the constraints of the virtual types.
Thedefault isthat the constraints of the virtual types are the type definitions themsel ves.
Thisis, however, not enough to assure that the interfaces are the same, asit would then
be possible to add new gates and new signals to the signal list of existing gates. Addi-

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Framework models
How to define a framework using SDL

tional rules state that aredefinition of avirtual type must have exactly the sameinterface
asthe constraint of the virtual type. Before using this approach you should be sure that
one can live with thisrule.

A typical example on thiskind of framework is the handling of protocols. The fwl pro-
cess will be the interface to the protocol, and it will present itself to the application
specific PT1 process independently of the protocol. This scheme may be generalised: if
e.g. both block type BT1 and BT2 will have the same protocol handling part, then this
may be expressed in a common super block type of BT1 and BT2.

If the structure is so that the same virtual process typeis used to make process setsin
many parts of the system structure, then the virtual process type should be moved to the
system type, see Figure 6-37 (p.6-135). In thisway it can be redefined at one place as
part of the system subtype and have implication on many parts of the system.

Figure 6-37: Application specific virtual type at system type level

Open figure

system type FrameWork

virtual PT1

block type BT
- -~

' «—p» B1.BT [<«—»{B2BT e

: i

FrameWorkSpecific

An alternative structuring of the system is provided in Figure 6-37 (p.6-135).

A framework example for the Access Control system is given in Figure 6-50 (p.6-150)
and Figure 6-51 (p.6-151).

We know that AccessPoint is used both in LocalUnit and ClusterUnit (see Figure 6-51
(p.6-151)). By defining it at system type level, aredefinition in a system subtype will

imply that (asdesired) AccessPoint in both LocalUnit and ClusterUnit will get the same
redefinition. With the AccessPoint asavirtual type at system level and Cluster asanon-

virtual type we expressthat the AccessPoint of Cluster objects can be redefined, but not
other parts of Cluster.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 135

6 - 136

Framework models Tl Me

How to define a framework using SDL

Application specific instances not specified as part of the framework

In this case the framework only consists of general types that may be used for the con-
struction of the application part. The framework specific parts may either be instances
or also just represented by types. Framework components will then need to create
objects (in this case processes) according to application specific classes.

SDL is specia in the sense that processes are part of process sets and that creation of
processes is done by referring to the name of the set and not to the name of the process
type. It istherefore not enough that the framework specific processtypes are defined in
the same scope (e.g. apackage or asystem) as the application specific typesfor themto
create instances application specific instances - they must have means for referring to
the process sets to come.

Thismay be done in two different ways: by using context parametersor by using virtual
procedures.

Context parameters

The general types of the framework that have to create process instances according to
application specific types do this through process context parameters. Thisworksin
SDL because an actual process context parameter isa process set and not a processtype.

The schemeisillustrated in Figure 6-38 (p.6-136), Figure 6-39 (p.6-137) and Figure 6-
40 (p.6-137).

Figure 6-38: Framework with no instances

Open figure

system type FrameWork2

virtual BT1 ‘ ‘ virtual BT2

system type Application2
inherits FrameWork?2

‘ redefined BTll redefined BT2

system SpecAppl:Application2

Within the block types, therewill be general processtypes (framePT and applicationPT)
that are used as supertypesin specific systemsinheriting from FrameWork2. In addition
the block types may specify instances of other processtypes, and these are the only pre-
defined instances of this kind of framework.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Framework models
How to define a framework using SDL
Figure 6-39: Virtual block type

Open figure

virtual block type BT1

[[appl icati onPTjj

The framePT process type will have a process context parameter that is constrained by
applicationPT, see Figure 6-40 (p.6-137). The ideais that a particular system will pro-
videits specialisation of applicationPT and its process set, and by the context parameter
the framePT processes will create instances of the specialisation of applicationPT.

Figure 6-40: Creation of application specific processes

Open figure

process type framePT
<process cp atleast applicationPT>

...createcp(...)

Thefinal system type will introduce the redefined block types with appropriate process
sets, see Figure 6-41 (p.6-138) (both for framePT and applicationPT processes) and pro-
vide these as the actual context parameters.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 137

Framework models Tl Me

How to define a framework using SDL

Figure 6-41: Redefined block type with process set and actual context parameter

Process
type as con-
text
parameter

6-138

Open figure

redefined block type BT1

process type special applicationPT
inherits applicationPT

process type specialframePT
inherits framePT <actual PT>

actual PT:
applicationPT

The difference from the case with application specific instances as part of the frame-
work is not so big: the process set must be foreseen (the context parameter must be
defined - and that corresponds to a process set), but the name of it and its position in the
application part is not determined. Its position will, however, be constrained by the fact
that it shall be visible from the place where the actual context parameter is provided.
This means that everything will take place with the virtual block typesimmediately
enclosed by the system type.

Another constraint with this approach isthat it is not possible to specify instance sets of
the framePT. The reason is that this process type has context parameters. In total this
means that the approach with context parameters works only partially: you cannot spec-
ify the actual instance sets before the last system subtype.

This approach should only be used in cases where it isimportant that the framework
specific and application specific process types can be defined within the same enclosing
block type and wher e the framework specific types must specify the creation of applica-
tion specific processes.

A final constraint with this approach isthat it is not supported by tools (yet).

Virtual creation procedures

This approach is even more general in the sense that it does not have to be decided if
there is one or several process sets in the final system type. In the general types where
thereisaneed to create application specific processes, thisisrepresented by correspond-
ing virtual procedures. Inthefinal system type these are redefined to create processesin
the right process sets.

This approach is aso constrained by the fact that all processes must be within the same
block, so the framework will be defined by a system type with one or more block sets of
virtual block types, the extreme case being just one block of one virtual block type.

This approach also has the property that instance sets of the application specific types
arefirst introduced in the final system subtype.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Framework models
How to define a framework using SDL

In order to provide an example on this way of making frameworks, we have to change
the structure of the Access Control System somewhat.

Asthe structure of the system is specified above, the number of clusters and thereby of
access pointsisfixed at the time of specification. With clusters defined as above, each
cluster will have AccessPoints with the same properties (of the same type).

Supposethat it isarequirement that the system shall start by creating processesfor each
of the actual access points and that changes to the number of access points shall be
reflected while the system is running. Still we would like to define the system as a
framework in the sensethat it will consist of acentral unit and anumber of clusters. We
assume that the division of responsibility between the two are determined, the commu-
nication is fixed and that the functionality of both clusters and central unit is specified -
the only thing that is not specified is the types and numbers of clusters. The configura-
tion of the system isinitiated by anew signal (setUp, with appropriate parameters)
coming to the central unit.

For the purpose of this example we assume that it is possible to define both the Central -
Unit and Cluster as processes.

The framework system type then is defined as in Figure 6-42 (p.6-139).

Figure 6-42: Framework with virtual creation procedures

Open figure

SYSTEM TYPE AccessControl

VIRTUAL BLOCK TYPE AccessControl

virtual
[Cluster] [CentralUnitj
oP
CU:Centralunit O ke

ACB: AccessControl OP —d—p—1

The setUp signal is supposed to come to the CentralUnit and imply the creation of Clus-
ter processes in the right process sets. Depending on the desired number and types of
Cluster processes, the signal will carry enough parameters for the CentralUnit to create
the right instances.

The Cluster and CentralUnit types can now be defined as before, the only difference
being that CentralUnit will be virtual, that it will have avirtual procedure setUp and that
it will communicate with possible Cluster processes via a gate that is constrained by
Cluster - that is only process sets of Cluster or subtypes of Cluster can be connected to
the gate, see Figure 6-43 (p.6-140).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 139

Framework models Tl M e
How to define a framework using SDL

Figure 6-43: Setup asa virtual procedure of CentralUnit

Open figure

VIRTUAL PROCESS TYPE CentralUnit op

VIRTUAL PROCEDURE setUp

/* Thisis redefined to [E—
reflect the set up of the

C
ATLEAST
| Cluster

* In addition to the normal behaviour of the
Central Unit, the procedure setUp is called
upon the reception of the signal setUp from

In addition to the normal behaviour and the creation of Cluster processes, the Central-
Unit may have behaviour that contributes to the definition of the framework. Asan
example there may be alimit on the total number of Cluster processes, independent of
type of Cluster. The behaviour that ensures thiswill either be part of the Central Unit,
€.g. some action executed each time setUp isexecuted, or it may beaconstraint on setUp
which all redefinitions will inherit.

An actual system consisting of two types of Cluster processesis specified as a subtype
of the system type AccessControl, redefining the setUp procedure to cater for this and
introduce the two process sets, see Figure 6-44 (p.6-141).

6-140 Activitiesand Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Framework models
How to define a framework using SDL
Figure 6-44: Actual Access Control System

Open figure

SYSTEM TYPE actualAccessControl INHERITS AccessControl

REDEFINED BLOCK TYPE AccessControl

REDEFINED PROCESS TYPE CentralUnit

REDEFINED PROCEDURE setUp

PROCESS TYPE AccessCluster INHERITS Cluster

PROCESS TYPE DoubleCluster INHERITS Cluster

ac(0,):AccessCluster

dc(0,):DoubleCluster

e c _\\
L CU:CentralUnit J

B S

The names of the process sets are used in the redefined setUp procedure for the specifi-
cation of the creation of processinstances. A fragment of the redefinition isillustrated
in Figure 6-45 "Fragment of redefined setUp" (p.6-141).

Figure 6-45: Fragment of redefined setUp

Open figure

REDEFINED PROCEDURE setUp

yes no

Double?

yes no

dc

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 141

Framework models Tl M e
How to define a framework using SDL

6-142 Activitiesand Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Developing framewor k
How to define a framework using SDL

Developing framework

What

Inputs

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Thisactivity devel opsthe Framework models (p.6-126) which consists of object models
and property models organised as a Framework specification (p.6-128) and a Frame-
work design (p.6-129).

Figure 6-46: Developing Framewor k

Open figure

Business plan, Family
product strategy statement
Sysiem
- studies
Application
models
(" Developing Framework] —_—
ompleting complete abstract
abstract system sysemmodel [P
Production
people, \/ pecitying Framework
architectur- » < T specification »
al design-
ers
Designing Framework
P framework %t design »
\ J
-
< Architecture
models
Other Families

The main sources of input information are:
» Descriptions:

Application models describe the application system that the framework shall
support.

Architecture model sdescribe the underlying platform, which gives structureto the
complete abstract system and requirements to the infrastructure.

Business plans and product strategy will give high level goals concerning produc-
tion volumes, service flexibility, evolution and anticipated lifetimes.

Other familiesand especialy their frameworks may provide valuableinput. It may
even happen that the infrastructure and the overall framework structure may be
reused from another family even if the application is different.

System Studies may provide additional information about possible solutions,
future evolution, etc.

Activitiesand Descriptionsin TIMe 6 - 143

Who to
involve

When to do
it

6-144

Developing framework TI Me

How to define a framework using SDL

- Thefamily statement should be consulted, although we should expect that the
other sources mentioned above contain the same information (but more precise
and detailed).

* People:

- Product management can give additional requirementsand guide-lines concerning
the needs for variability and flexibility in production and evolution.

Thisisprimarily atask for abstract system designers, but they need to work closely with
architectural designers and production people. Frameworks are devel oped primarily for
the purpose of simplifying evolution and production after theinitial development. It is
therefore essential that people with such responsibility are engaged so that their require-
ments become clear. It is particularly important to clarify if dynamic changesto a
running system shall be supported or not.

It is not always obvious what implementation dependent functionality to include in the
framework and what to “hide” in the implementation. This must be agreed with the
Architectural designers. It may also happen that framework considerations have an
impact on the architecture.

Framework design depends on the underlying architecture (implementation) design and
is therefore made after the architecture.

This activity isonly performed when the framework is undefined or needsto be
changed. Thisoccursduring theinitial development of asystem family and during main-
tenance when changes in the framework are needed e.g. because of changesto the
infrastructure.

During normal application evolution the framework will stay the same. Theideaisthat
new services of an existing system can be designed in terms of the application without
considering details of the framework.

Interfaces are sometimes elaborated in this activity. The reason being that the interfaces
depend on the architectural design decisions:

» User interfaces depends on the basic technol ogy (e.g. visual interface or mechanical)
as well as the support software (e.g. Mac OS or DOS).

 Internal interfacesand external interfaces depend on the interconnecting network and
the protocols.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Developing framewor k
How to define a framework using SDL

whattodo Making frameworks

The following strategy may be used when making the first framework model for a new

system family:

Make Framework

1.

Start by Making framework specification (p.6-148).
(Thismay be done beforethe architectureisdesigned,
during requirements analysis).

When the architecture is designed, then the physical
structureimplied by the implementation platform and
additional functionality needed to support the appli-
cation is considered when Completing the abstract
system model (p.6-145).

Then analyse the complete abstract system model,
trying to isolate the infrastructure. Transform the
completeabstract system model into aframework and
aframework instantiation. Do this by Making frame-
work design (p.6-149).

Harmonising application - framework (p.-124) isthen
performed (described under Developing Application
Models).

An so is Harmonising framework specification -
design (p.6-131) to make a complete and precise
Framework specification for the purpose of |ater

Completing the abstract system model

This activity assumes that the architecture has been defined. The goal isto restructure
the application and to add the necessary infrastructure functionality. Thisis atypical
intermediate step on the way towards a framework. Once the framework has been
designed, this model isreplaced by aframework instance. However, if it is decided not

to develop aframework the complete abstract system must be maintained.

As an example the compl ete abstract system model for the Access Control systemis
presented in Figure 6-47 (p.6-146), Figure 6-48 (p.6-146) and Figure 6-48 (p.6-146).

Strategy:

1. Consider the structure of computational nodesin the architecture, and make a corre-
sponding abstract system structure.

2. Localise all the application components (instances of structure types and behaviour
types (objects)) in this structure.

3. Add infrastructure components needed to support communication within the

application.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Activitiesand Descriptionsin TIMe 6 - 145

6 - 146

Developing framework TI Me

How to define a framework using SDL

system tem the channels between
the AccessPoints and the
Open fi CentralUnit are candidates
Cpentigure for distribution. We there-
fore decide to let these
SYSTEM AccessControl channel's be the ones that

cover distances.

Cluster There will be at |east one
of central computer and
from zero up to 100 local

clusters(100): compuiters. In this archi-
CE Cluster CD tectureweshall implement
< > < > the AccessPoint and Cen-
GE tralUnit processes in soft-
GC ware running on the
computers. We structure
4 the system accordingly: a
C block set Cluster for the
Y part of the application run-

ning on the local comput-
ersand the CentralUnit for
the part running on the
central computer.

OP

CentralUnit

A
A\ 4

Notethat thisdistributed architectureisdifferent in structure from the application
design, and that some communication protocols will be needed to support the
communication between the local and central hardware.

Figure 6-48: Cluster with LocalUnitsand

Cluster Units In this solution the vali-
dation database will be
pen figure distributed. There will
be a copy of the central
BLOCK TYPE Cluster Validation process (and
its database) in each
essPoi Protocol cluster. Thismeansthat
Aco nt the CentralUnit must
_ handle updatesin adis-
LocalUnit ClusterUnit tributed database. This
introduces a new prob-
lem to solveinthe func-
localunits d tional design, but the
€ (10):LocalUnit Access Points and the
PR Validation processesin
each cluster may (hope-
GE 4 GD fully) work just as be-
fore.
A 4
PR))
applica- infrastruc-
clustercon'trol: tion spe- | ture spe-
e ClusterUnit cific parts | cific parts
CE access protocol
jt point
y cluster unit
validation
GC local unit

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl M e Developing framewor k
How to define a framework using SDL

Figure 6-49: AccessPoint used in both \y/e see that AccessPoint
L ocalUnit and Cluster Unit will be used both in the

LocaUnitsaswell asin
the ClusterUnits. Thosein
BLOCKTYPE LocalUnit the ClusterUnitswill have
direct, local accessto the
L Validation process,
e [P 1 cpoint [PLiProtocol whereas those in the
L ocalUnits must commu-

4 nicate via physical links
and protocol s (represented
by the block P1 of type
d PR Protocol), but the signals

PR to and from the Access-
BLOCKTYPE ClusterUnit P0| nt b| OCkS W|” be the
Lo same. In order to achieve
e % AccessPoint Y distribution transparency
P2:Protocol the way of accessto Vali-

+ dation should be hidden
d from the AccessPoints.
Therefore arouting func-

tion must be added to the
structure.

Open figure

A\ 4

Validation

A

P3:Protocol

A 4

A
applica- infrastruc-
v tion specif- | ture specif-
CE ic parts ic parts

access protocol
point

4. Add additional infrastructure components needed to support services stated in the
framewor k specification (Use the same approach as for application design synthesis
here):

- support for distribution transparency, object relocation , dynamic configuration
and change;

- support for error handling.

5. Check that the compl ete application functionality can be provided in the new
structure.

6. Define the infrastructure component types that have been identified.

Define the method for instantiating frameworks with an application.

Thisisatextual description telling how to instantiate the framework both statically and
dynamically.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 147

Developing framework TI Me

Foecifying frameworks

Evolving frameworks

Use the following strategy when evolving a framework:

Evolve Framework

1. First add new properties and change existing proper-
tiesasrequired by Evolving framework specification
(p.6-149).

2. Then analysetheimpact on the framework design and
perform the necessary changes.

3. If the changes have any consequences on the existing
applications then ensure that these applications are
updated by Harmonising framework - application
(p.6-131).

Specifying frameworks

Inputs

Soecify
framework
context

6-148

Inputsto thisactivity are the same asfor Developing framework models asawhole, see
Figure 6-32 (p.6-127). However, theinitial specification is made before there any
architecture.

Making framework specification

Theinitial framework specificationisnormally developed before the architecture during
requirements specification. What can be said at that stage is often limited, and therefore
theinitial framework specification is usually quite open. Typical items are:

Requirementsto distribution imposed by the physical environment, e.g. that services
must be provided at different locations. In the Access Control example, services must
be provided in the vicinity of doors which are physically scattered around in
buildings.

Requirements to distribution and communication infrastructure. It may for instance
be arequirement that distribution shall be supported using CORBA and that TCP/IP
shall be the protocols.

Requirementsto error handling services. Should there be alarm and diagnostic func-
tions? Should it be possible to block units for repair?

Requirements to dynamic configuration services and dynamic change. Should it be
possibleto change or relocate application objects? Should it be possible to extend the
system during operation?

Guiddlines:

Consider the physical distribution of the environment. If the distribution is known,
make a context model where the environment is structured to show physical distribu-
tion of the environment and the interfaces.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me Developing framewor k
Designing framework structure

» Consider framework specific services. Specify each service using text, role structures

and MSC.
Specify » Consider the physical distribution of the content. If it is known, make a correspond-
framework ing content structure.
content

» Consider requirements to the infrastructure and add corresponding objects to the
framework object model.

» Soecify the behaviour of infrastructure services and interfaces.

» describein text requirements to configuration, evolution and dynamic changes.

Evolving framework specification

Framework evolution is not due to application services, but to changesin the architec-
ture or the infrastructure services. It may also be due to a better understanding of how
the framework should be. Finally the specification isinfluenced by the framework
design since it should always be harmonised with that.

Infrastructure services are evolved in the same general way as application services:
1. Specify the new services using property models.

2. Analyse the impact on existing services and object models.

3. Specify new objects required in (the various parts of) the environment (if any).
4. Change existing services and object models as required.

Changesin the architecture are more likely structural changes that will affect the object
model.

Designing framework structure

Making framework design

It is an advantage to make a complete abstract system model before starting to make a
framework, because then we have something tangible to start from. Our goal isto trans-
form the complete model into:

1. aframework design that is easy to use with different applications;

2. aninstantiation of the framework that replaces the original compl ete abstract system
model.

Asan example we consider the Access Control system again. The system description of
Figure 6-47 (p.6-146) isturned into aframework simply by defining it as a system type
and defining the application specific typesasvirtual types(inthiscase AccessPoint), see
Figure 6-50 (p.6-150).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 149

Developing framewor k TI M e
Designing framework structure

Figure 6-50: Access Control System typeasa
framewor k

Open figure

SYSTEM TYPE AccessControl

VIRTUAL Cluster
Access-
clusters(100):
ICEI | Cluster ICDI
GE GD
GC
C

OP
CentralUnit |———-——m»——

6-150 Activitiesand Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Developing framewor k
Designing framework structure

The Cluster block isamost as before: it uses the virtual block type Access Point (but it
does not contain its definition), and it embodies the infrastructure parts needed for dis-

tribution (ClusterUnit, LocalUnit and Protocal), see Figure 6-50 (p.6-150).
Figure 6-51: Block type Cluster as part of framework for Access Control

Systems

Open figure

GE

BLOCK TYPE Cluster

Protocol

LocalUnit

ClusterUnit

localunits d

€ (10):LocalUnit

PR

PR
clustercontrol:

e ClusterUnit d

CE

!

GC

GD

BLOCK TYPE LocalUnit
|t | <« _a | P1:Protocol
AccessPoint |
A
v
d PR
PR

BLOCK TYPE ClusterUnit

4>

K

L2:

AccessPoint

v

y

P2:Protocol

e

Validation

A

v

P3:Protocol

A

v

CE

An actual system based upon aframework definition is described by defining a subtype
of the framework system type and redefining the virtual, application specific types, see
Figure 6-52 (p.6-151). The rulesfor redefinitions of virtual typesin SDL ensures that
the redefined AccessPoint will have the same interface as specified in the virtual defini-
tion (as a constraint) and thereby assumed by the rest of the system type.

Figure 6-52: An actual system based upon a
framework

Open figure

SYSTEM TY PE actual AccessCon-
trol INHERITS AccessControl

REDEFINED BLOCK TYPE AccessPoint

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Activitiesand Descriptionsin TIMe 6- 151

6 - 152

Developing framework TI Me

Designing framework structure

In the compl ete abstract system we need not worry too much about variability. The goal
isto understand the overall structure and to identify the infrastructure components. In
the Framework design, however, we must seriously consider the requirements to
dynamic configuration and change. I's each system Instance to be statically configured
for itslifetime, or shall it be possible to make dynamic changes? If the answer is yes,
then we must design the framework so it contains suitable dynamic change units.

Is the configuration support we get by using system types with context parametersin
SDL sufficient or do we need more flexibility? If the answer to the latter isyes, then we
must turn to what can be supported by SDL behaviour, i.e. dynamic process creation and
value assignments. If we need even more flexibility, for instance to create blocks
dynamically, then this must be handled outside SDL. In such cases, it will not be very
useful to cover the entire system formally as asingle SDL system type - or block type
(except for simulation purposes). In stead we should develop framework components
that can be used to compose and configurate systems more freely, possibly using means
that we provide outside SDL. In the Access Control example, it will be difficult to
achieve full flexibility using the system type defined in Figure 6-50 (p.6-150) as each
LocaUnit and ClusterUnit may need to be configurated differently. What is possible,
however, isto use these components to compose many different SDL systems. There-
fore framework components will sometimes be more useful than complete framework
systems.

There are some trends in system development that should be considered:

» Serviceflexibility. The ability to provide new services fast and safely, even in exist-
ing systems, isincreasingly important.

 Distribution flexibility and transparency. It isincreasingly common to allow objects
to be distributed freely and even to be relocated in the system.

» Standard platforms. There isastrong drive towards using standard computation plat-
forms and communication infrastructure. New standards for distribution support,
such as CORBA are emerging.

These trends point towards:
1. that much infrastructure functionality will be standardised;

2. that the system structures will change dynamically so that components are more sta-
ble than systems.

Guidelines:

» Consider the components of the application part alone. Make a “ pure”’ application
type for each kind of application components.

» Consider theinfrastructure part alone. Make a “ pure” infrastructure type for each
kind of infrastructure component.

» Consider the overall structure of “ mixed” application and infrastructure compo-
nents. Find framework components where the application part will vary while the
infrastructure part is stable. Define corresponding types where the application is
redefinable (using virtuals) and the infrastructure (sufficiently) configurable.

» Note that the component types found above should not be too large, they should be:

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me Developing framewor k
Designing framework behaviour

- running entirely within one computation node;
- bea configuration unit;
- be a change unit;

 |ffeasible and useful, define the entire system framewor k as a structure type (a block
type or systemtypein SDL).

Designing framework behaviour

Thisiscarried out in the same general way as Designing application behaviour (p.-142).

D]

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 153

Architecture Tl Me
Content and scope
Architecture

[

Content and scope

An architecture is an abstraction of a concrete system representing:

» theoverall structure of hardware identifying at least all physical nodes and intercon-
nections needed to implement an abstract system;

» theoverall structure of softwareidentifying at least all software nodes, software com-
munications and relations needed to implement an abstract system (in terms of
processes, procedures and data).

In this chapter we shall describe:

» Architecture reference model (p.6-154): the system model assumed in the
architecture.

» Architecture models (p.6-164): how to describe architectures.

» Developing architecture (p.6-173): how to develop architecture models.
Architecture models are important because:

* they help to design the physical implementation in the first place;

* they serve to document how the system isimplemented.

Documen- Together the application, the framework and the architecture complement each other to
tation form a complete documentation.

Architecture reference model

In the system reference models we distinguish between abstract systems and concrete
systems as illustrated in Figure 6-53 (p.6-155).

6-154 Activitiesand Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| Me Architecture
Architecture reference model

Figure 6-53: Reference modelsfor abstract and concrete system

Open figure

Framework
Application

Interface System Domain
given given given

Infrastructure

abstract system

concrete system

Framework-implementation v
Application-implementation

Interface System Domain
given given given

Infrastructure implementation

Platform

Support software

Hardware

Concrete system

The architecture is asimplified model of the concrete system. Concrete systems are
composed from real hardware and executable software that provide servicesto real
users.

While abstract systems, described in application and framework models, are composed
from abstract components, concrete systems are composed from physical components
and software. It is the concrete system that really matters to the users, but it isthe
abstract systemsthat enable us to understand what it does and to ensure that its function-
ality hasthe desired quality.

Asillustrated in Figure 6-53 (p.6-155), concrete systems consist of :

» Framework implementations. Here we find implementations of the abstract systems
in hardware and software:

- the application implementations.
- theinfrastructure implementation.
* The Platform, which consists of:

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 155

What

6 - 156

Architecture

Architecture reference model

TIMe

- the support software, which normally is alayered structure containing operating
systems, middelware for distribution support, runtime systems for the languages
used (SDL), DBMS and interface support;

- the platform hardware, which typically is an network of computers.

For every new system development, the platform is an important design issue, as it
determinesimportant propertiessuch ascost, reliability and flexibility. It also influences
the way that applications and frameworks are implemented.

What is an architecture?

The architecture is an abstraction of the concrete system that emphasises high level
hardware structure and software structure. It will not go into the implementation details
but focus on the implementation principles and how functional and non-functional prop-
erties are satisfied. It will often be distributed and have additional support for internal
communication, as illustrated in Figure 6-54 (p.6-156).

Open figure

Figure 6-54: Architecturereference model

@ 000

Infrastructure SW|

Infrastructure SW

Support SW

o

QDDD

Support SW

nfrastructure sSwW

Infrastructure S

Support SW

Support SW

physical node

Activities and Descriptionsin TIMe

Platform

HW Sup- Infra
port | structure
SwW SW

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| Me Architecture
Architecture reference model

Objectives

By identifying key architectural elements, the reference model helps to structure archi-
tecture models and to guide their development. Although the model in Figure 6-54 (p.6-
156) is quite coarsely grained, it identifies elements that come from different domains
where the driving forces behind change and evolution are quite different. Application
evolution, for instance, may be dueto new service requirements (market pull), whilethe
reason for platform changes may be performance and price (technology push). Keeping
such parts separate and asindependent as possible, we believe, isakey toflexibility and
profitability.

The architecture reference model contains the following main parts:

1. Hardware. It contains the underlying structure of physical nodes and interconnec-
tions that may be classifies as:

- Genera platform hardware. Thisis hardware that is not application framework
specific. It will typically consist of general purpose computersin a network.

- Application framework specific hardware. Thisis hardware needed for the partic-
ular application or infrastructure that the system implements. Here we find
peripheral equipment, such as the panels in the AccessControl system, and other
special purpose hardware.

2. Support software, which contains such elements as:
- the operating system;
- middleware (e.g. CORBA) that supports distribution;

- support for application framework programming, for instance: user interfacetools
(GUI), database management tools (DBMS), language runtime support (for SDL);

- support for application framework input/output (1/0) (that is for interaction with
hardware).

3. Infrastructure software, which implements the necessary interface between the appli-
cation and the support software.

4. Application framework software. Thisis the software part of the framework imple-
mentation. It contains implementations of the:

- Framework application (p.-154).
- Framework infrastructure (p.-153).
The application framework software can be further classified as:
- automatically generated code;
- manually generated code (handmade code).
5. Foreign code, code that isimported from other sources, legacy code, €tc.

In real-time systems a central software design issue is how to handle concurrency, tim-
ing and communication. To this end it isimportant that the architecture manages to
model the organisation of concurrent software processes (also called tasksin some oper-
ating systems), how they communicate and how they are scheduled.

Other important issues are:

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 157

Generality

Architecture Tl Me

Differences between abstract and concrete system

 the practical organisation in software modules that can be developed by separate
teams;

* how to generate framework implementations;
» how to configurate and build concrete (executable) systems.

In the family area, architectures are supposed to be quite general and contain the vari-
ability needed in different system instances. As a minimum they must support the
variability needed in applications.

It isgenerally agood ideato use the same basic principle we used to make frameworks
from applications:. to define alayered framework structure.

Applied to the hardware part, the architecture may be seen as a hardware framework
made up by some (stable) general hardware and some (redefinable) application frame-
work hardware.

In the software part, we find the basic operating system at the bottom, with the other
parts as successive applications on top of that. We may organise this as several software
frameworks on top of each other. Ideally the result is a high level software framework
where all we need to do to generate a particular application is to supply the application
specific code.

Differences between abstract and concrete system

6 - 158

A good designer must be well aware of the differences between the concrete and the
abstract world. There are two main categories of such differences:

1. Fundamental differences (p.6-158) in the nature of components. Physical compo-
nents are rather imperfect compared to the more ideal components of abstract
systems. They develop errors over time, they are subject to noise, and they need time
to perform their processing tasks.

2. Accidental differences (p.6-160) in the functioning of components. In both worlds
there are concepts for concurrency, communication, sequential behaviour and data,
but they are not necessarily the same.

Fundamental differences

The fundamental differences are related to: Processing time (p.6-158), Errors and noise
(p.6-159), Physical distribution (p.6-160) and Finite resources (p.6-160).

Processing time

An abstract system is not limited by processing resources. Consequently the balance
between the traffic load offered to the system and its processing capacity need not be
considered. One ssmply assumes that the system is fast enough to processthe load it is
offered.

Thereal world isvastly different on this point. Each signal transfer, and each transition
of a process, will take some time and require some processing resources. Due to these
differences, the focal point of implementation design is quite different from that of the

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Architecture
Differences between abstract and concrete system

functional specification. The challengeisto find implementationsfor the abstract (SDL)
conceptsthat are sufficiently fast to meet thetraffic load and response time requirements
without destroying the validity of the abstract system models.

One major issueisto balance the processing capacity of the implementation against the
offered traffic load.

In the Access Control system, for instance, the average peak load is 600 validations a
minute. Thismeansthat acentral computer must process each validation inlessthan one
tenth of a second. How much lesswill depend on the other tasks the computer hasto do
and the margin one wants against overloading the system.

A related issueisto bal ance the processing capacity against the requirementsto response
times. Again the abstract (SDL) system has no problems, but the implementation may
be highly pressed to meet response time requirements. One must be ableto performtime
critical processing, e.g. fetching input samples, process the sampled information, and
respond in a feedback loop, all within a maximum time frame. Such requirements may
increase the demands on processing speed beyond the speed required to handle the traf-
fic load.

The hardware software interfaces need special consideration. It is not unusual that the
larger part of a computers capacity is spent doing input-output. Much can therefore be
achieved by carefully designing the input-output interface.

A special class of time constraints originates from channels assuming time dependent
synchronization. This means that the receiver hasto be fast enough to catch all relevant
signal information at the speed it is passed over the channel.

Since SDL descriptions clearly specify the external and internal interactions needed to
perform given functions, they provide an excellent basis for estimating the processing
capacity needed to meet load and timing requirements.

Errorsand noise

Abstract systems may suffer from specification errors, but the abstract world does not
suffer from physical errors. It issimply assumed that processes and channels always
operate according to their specification. It is not assumed that processes will stop from
timeto time, or that channels will distort the content of signals. But in the real world
such things happen. From time to time errors will manifest themselves as faultsin the
operation of channels and processes.

In addition to the logical errorsintroduced in the implementation, we will have to cope
with physical errors. Hardware errors, physical damage, and noise are caused by physi-
cal phenomena entirely outside the realm of abstract systems.

The effect of errorsand noise will often need to be handled explicitly in the abstract sys-
tem models, however. One must consider what may happen, how it can be detected and
how the damages may be limited. If one active object fails, for instance, how should the
environment react? One must consider what an object should do if it never getsa
response to arequest, or if it gets an erroneous response. What should be the reaction to
achannel going down?What if an object startsto produce crazy signals? What if asignal
IS sent to a non-existing receiver?

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 159

6 - 160

Architecture Tl Me

Differences between abstract and concrete system

To some extent the answers depend on the physical distribution of abstract objectsinthe
concrete system, and the physical distances that abstract channels must cover.

Physical distribution

Physically separate processes and channels may fail independently of each other. Chan-
nels covering long physical distances are subject to more noise and errors than channels
implemented in software within one computer.

An SDL description does not tell anything about the physical distance covered by a
channel. In reality, however, there may (or may not) be large physical distances. This
means that transmission equipment and protocol s are needed to implement the channel
reliably. Thus physical distance may introduce new functions needed to support the
implementation of channels.

In the AccessControl system we can expect AccessPoints to be distributed physically
and to be far away from the central unit. Thus there will be a need for communication
protocols on the channel s between them.

A positive effect of physical separationisthat errorsareisolated. Errorsin one unit need
not affect the other unitsin the system, provided that erroneousinformation is not prop-
agated into them. Thus, physical separation may improve the error handling. But there
iIsno free lunch. Errors need to be detected and isolated to allow the operational partsto
continue operation with the error present. Proper handling of this aspect can be quite
complex, and will normally require additional functionality in the abstract models. This
Is one of the issues that we seek to isolate in the infrastructure.

Finite resources

All resourcesin areal system arefinite. There may be a maximum number of processes
the operating system can handle, or a maximum number of buffers for sending mes-
sages. Theword length isrestricted, and the memory space too. Even primitive datalike
integers are finite.

SDL, on the other hand, has an unbounded queue in the input port of each process, and
alows infinite data to be specified. Hence the designer must find ways to implement
potentially infinite SDL systemsusing finite resources. One way isto restrict the use of
SDL such that all values are certain to be bounded. Another isto deal with resource lim-
itations in the implementation, preferably in a manner transparent to the SDL level. In
caseswhere transparency cannot be achieved, one must either accept deviation from the
SDL semantics, or explicitly handle the limitationsin the SDL system.

Accidental differences

The accidental differences hasto do with: Concurrency (p.6-160), Communication (p.6-
161), Synchronization (p.6-162) and Data (p.6-163).
Concurrency

The model of concurrency used in SDL assumes that processes behave independently
and asynchronously. Thereis no relative ordering of operationsin different processes
except the ordering implied by the sending and reception of signals.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Architecture
Differences between abstract and concrete system

This permits SDL processes to be implemented either truly in parallel on separate hard-
ware units, or in quasi-parallel on shared hardware.

Physical objectsin the real world behave truly in parallel. This means that operations
within different objects proceed in parallel to each other at the speed of the performing
hardware.

A “natural” implementation istherefore to map each SDL processto aseparate physical
object. Thisis not aways cost-effective. An aternative approach isto implement many
processes in software sharing the same computer hardware. The implications of thisare
twofold:

1. The processes and channels will not operate truly in paralel, but in quasi-parallel,
meaning that they will operate one at the time, according to some scheduling strategy.

2. Additional support will be needed to perform scheduling and multiplexing on top of
the sequential machine.

Normally, scheduling and multiplexing are handled by an operating system. The oper-
ating system can be seen as alayer that implements a quasi-parallel virtual machine on
top of the physical machine.

Communication

Very basically there are two different classes of information one needs to communicate:
1. sequences of symbols, or values, in agiven order;

2. symboals, or values, continuously for the time they are valid.

In the first case, the sequential ordering isimportant. In the second case, the sequence
does not matter, only the current value at each instant in time.

Thetwo communication formsare dual in the sense that one form may be used to imple-
ment the other. Consider the need to communicate a continuous value: the most direct
implementation is to use a communication medium that will transmit the value contin-
uously, such as a shared variable in software, or an electrical connection in hardware.
But one may alternatively use asequential medium, such asamessage queue, to transmit
a segquence of symbols representing the sequence of changes (events) in the continuous
value. Thiswill introduce overhead to reconstruct the continuous value.

Both forms may be used in abstract as well asin concrete systems, but it is not always
the casethat the sameformisused. Thereforeit may be necessary to make the necessary
adaptations in the implementation.

Input from a keypad may serve as an example. The output signal from each button is
basically acontinuous*“1” when pushed, and acontinuous*®0” when not pushed. But the
system needs to know the sequence of key strokes, and not the instant values. Thus the
value changes (events) need to be detected and converted to symbols representing com-
plete key strokes. Event detection like thisis often needed at theinterfaces of areal-time
system. It may either be performed in software or in hardware.

Visual signalson adisplay screen are another example. The user wantsinformation pre-
sented as continuous values, and not as messages flickering across the screen. Hence the
event oriented SDL signal has to be converted to a continuous value on the screen.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 161

6 - 162

Architecture Tl Me

Differences between abstract and concrete system

Channels crossing the hardware-software boundary need special attention. An atomic
channel, represented by alinein SDL/GR, may turn out to beamixture of physical lines,
electronic equipment and software in the real system. The communication and synchro-
nization primitives used in hardware will often differ from those used in software.

To sum up: we cannot expect to find SDL-type signals at all interfaces, and must there-
fore be prepared to adapt and convert. Conversion from one form to another will be
necessary. Thisis often atime critical task needing careful optimization.

Synchronization

The act of aligning the operations of different concurrent processes in relation to each
other is generally called synchronization. Synchronization is necessary not only to
achieve correctnessin communication, but also to control the accessto shared resources
in the physical system.

In SDL, synchronization is achieved by means of the signal queues of processes and
channels.

Consider two SDL processes that communicate. The sending process may send asignal
at any time because it will be buffered in the input port of the receiving process. The
receiving process may then consume the signal at alater time.

Thisis a buffered communication scheme in which the sender may produce infinitely
many signals without waiting for the receiver to consume them. It isoften referred to as
asynchronous communication.

Asynchronous communication may be contrasted with so-called synchronous commu-
nication, in which the sending operation and the consuming operation occur at the same
time. In this case there is no buffer between the processes.

Synchronisation may befurther classified into time dependent synchronization, in which
the operations are not explicitly synchronized, and time independent synchronization,
which depends on an explicit synchronization of operations (some kind of semaphore).
In time dependent synchronisation the correctness of an interaction depends on the rel-
ative timing of operations. Thisis afrequent source of so-called hard real-time
requirements. It isquite common in communication channels (e.g. Asynchronous Trans-
fer Mode, ATM).

One will often find mechanisms that differ from the SDL mechanisms at the physical
interfaces to the system. It is quite typical to find time dependent synchronization on
physical channels. Thisimpliesthat time critical event monitoring and event generation
will be necessary.

A designer will befaced on one hand by the synchronization primitives availablein the
real system, and on the other hand by the synchronization implied by the SDL specifi-
cation. Additional functionality will often be needed to glue the various forms together.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| Me Architecture

Differences between abstract and concrete system

Data

SDL datais based on the notion of abstract datatypes where operations may be defined
by means of axioms. An implementation will normally need concrete datatypes where
the operations are defined operationally. Therefore, the designer may need to transform
the abstract data types of SDL into more concrete data types suitable for
implementation.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 163

Architecture models TI Me

Differences between abstract and concrete system

Architecture models

Objectives

What

6-164

Architecture models are intended to answer how a system is (going to be/has been) real -
ised. Their focusis on the concrete system construction in terms of hardware and
software components, and how it implements the abstract systems defined in the appli-
cation framework. While the application framework has focus on functional properties
and behaviour, the architecture has focus on non-functional properties and physical
structures. The purposes of architecture models are:

 to support the high level implementation design activity through models that facili-
tate communication and analysis,

» toserveasprecise high level documentation of the implementation (using a unified
notation);

* to document how the application framework is implemented;
* to specify the implementation (non-functional) properties;

 tofacilitate the generation of implementations and the production of system
instances;

* toserveasan entry to complete system documentation. Thisis possible since all
aspects of a concrete system come together in the Architecture.

The concrete system modelled by the architecture shall behave as defined in the frame-
work and application models and satisfy the non-functional properties.

Architecture models describe the:

» overal architecture of physical nodes and software nodes that actually perform sys-
tem behaviour and satisfies user needs,

* relationshipsto the application framework components (and thus application compo-
nents) that each software node and physical node implements, see Figure 6-33 (p.6-
130);

» non-functional properties.

In the architecture object models, the hardware and software architectures will be
defined to alevel of detail from which implementation iswell defined. They should be
organised into a generic platform specific part and a framework specific part which is
adaptable to different applications.

The architecture contains variability that needs to be bound in system instances. In fact,
configuration of systeminstances may take place at the architecturelevel, if suitabletool
support is available.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Qualities

Documen-
tation

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture models
Differences between abstract and concrete system

Figure 6-55: Architecture models

Open figure

Object models Property models

Arch System System properties
D Availability:
< Capacity:
Response times: ...
D_. OMT/ Hardware: ...
| UML Software: ...
Synthesise Context
Content v
Arch system Node properties
— Availability:
D !) - Capacity:
Response times: ...
Hardware: ...
[\ MT/
D f L/ UML Software: ...
— — Use — execute
/ / Component types
Hw component SW system type SW component
type type
e O T
OMT/ 7
physicd — ymL software — OMT/ OMT/
nodes nodes UML UML

In the architecture property models, the non-functional properties are expressed.
The architecture models are organised into a specification part, and a design part, as
illustrated in Figure 6-32 (p.6-127).

The following qualities are sought:

» Functional equivalence between the abstract and concrete system.

* A mapping that is simple and easy to understand.

» Satisfaction of non-functional requirements.

» Automation of the realization process.

Together the application, the framework and the architecture complement each other to
form acomplete documentation. Aslong asthe framework and the architectureisstable,
only the application need to be supplied for each new system.

Note that the architecture serves as our (only) entry point to acomplete description of a
given concrete system. By following the relationships “upwards’ to the framework we
find models of the abstract functionality it provides, and by following the relations
“down” towards the Implementation we find al the implementation detail.

Activitiesand Descriptionsin TIMe 6 - 165

Derivation
of concrete
systems

Architecture models TI Me

Architecture model content

Itisrecommended to define aMethod for framework code generation (p.-96) (automatic
and manual), and aMethod for system instantiation (p.-97) which define the procedures
and tools for configuration and building of system instances. (The configuration and
building of system instances shall be as easy as possible.)

Architecture model content

6 - 166

The architecture property models describe non-functional properties and the architec-
ture object models describe hardware structure, software structure and relationships.

Architecture property models (non-functional properties)

Non-functional properties are more physical in nature than the functional properties.

They express features of a concrete system that are not modelled by a corresponding

abstract system, typically features related to performance, error handling, power con-
sumption and physical construction. See Architecture non-functional properties (p.6-
168) for details.

Architecture object models

Object models should be layered according to the Architecture reference model (p.6-
154), see Figure 6-54 (p.6-156) and consist of Hardware models (p.6-166), Software
models (p.6-166) and Implementation relations (p.6-167).

Hardware models

Hardware models describe the hardware on a high level. Here we find a description of
the overall hardware structure aswell asthetypes of hardware components used to com-
pose the structure. Hardware models shall identify at least all physical nodes needed to
implement the abstract system. Whenever possible and practical one should make a
hardware framework that separates between:

- genera platform hardware;

- application framework specific hardware.

Software models

These are models of the software. Here we describe the overall structure in terms of pro-
cesses, procedures and data as well as the component types used in the structure.
Whenever possible and practical one should make software frameworks that separates
between:

1. Support software:
- the operating system;
- middleware (e.g. CORBA) that supports distribution;

- support for application framework programming, for instance: user interfacetools
(GUI), database management tools (DBMS) , language runtime support (for
SDL);

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me Architecture models
Architecture model languages and notations

- support for application framework input/output (1/0) (that is for interaction with
hardware).

2. Application framework software. It contains the application and the infrastructure
(software) implementations, and may be classified as. automatic and hand written.

3. Foreign code, code that isimported from other sources, legacy code, €tc.

Software modelswill often be organised with one (framework) type model for each type
of computer (address space).

I mplementation relations

I mplementation relations are used to describe which parts of the application frameworks
that are implemented-by the various physical nodes and software nodes, and where
detailed hardware descriptions and source code can be found.

Architecture model languages and notations

Object modelswill be used to express the hardware and the software models. In the old
SISU methodol ogy two special diagram types were used for this. Asit seems, the forth-
coming UML will contain notations intended for similar purposes. If they prove
adequate, they will be adopted by TIMe.

For property models a combination of text, mathematics and figures will be used.

Architecture specification

Objectives While the application specifications describe abstract system properties related to the
system behaviour (functional properties) the architecture specification describe concrete
system properties (non-functional properties) related to the physical construction.
Application specifications serve several purposes:

1. Beforethe architecture is designed it serves to specify required properties that the
concrete system shall satisfy. Such requirements are sometimes called design con-
straints, because they constrain the possible design space.

2. After the architecture has been designed, to document its provided propertiesin a
way suitable for assessment, retrieval and (re)use.

What Specifications apply to the physical architecture as awhole aswell asto each type of
component in it. Hardware components and software components are normally charac-
terised by different properties. (Power consumption, for instance, is a hardware
property, while code size is a software property.) Asfor other specifications, the main
thing isto describe propertiesthat are important for the external use of the system. Con-
sequently the context model ismost important, but internal aspects may also berelevant.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 167

6 - 168

Architecture models TI Me

Architecture specification

Architecture specification object model

Specification object models will not always be needed, and may be omitted when they
follow from the non-functional requirementsin an obvious way. However, object mod-
els are good at describing objects and relationships, and should be included whenever
that kind of information is important.

1. Hardware specification. This may possibly be split into a specification of the general
hardware and specification of the application framework hardware:

» Context models that describe the physical structure of the environment:
- (distributed) hardware units;
- connections and interfaces in hardware.

» Content models that describe:

- (distributed) hardware units directly linked to the environment, and therefore vis-
ible by the environment;

- other hardware units that needs to be mentioned in the specification;

- connections and interfaces in hardware (note that the physical distribution of a
system may be important, and the interfaces between these distributed units may
be of interest).

2. Software specifications; that may possibly be split into alayered structure according
to the Architecture reference model (p.6-154).

+ Context models that describe:
- software in the environment and external software interfaces.
+ Content models that describe :

- software units directly linked to the environment, and therefore visible to the
environment,

- other software units that need to be mentioned in the specification. This may typ-
icaly be support software of various kinds and existing application software that
shall be used.

- internal software interfacesif appropriate.

For hardware as well as software there may be genera policies and engineering prac-
tices. These must be mentioned in the property models.

Note that variability isimportant. Try to express variability both in the number of com-
ponents and in their types. One should for instance specify what range of platformsthat
shall be supported, and the maximum number of computers the system may contain.

Architecture non-functional properties

User and customer related properties (p.6-169) are important for the user (or the cus-
tomer/owner) while Company internal properties (p.6-170) are more important for the
company itself (see also Dimensions of the property concept):

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Some properties applies generally to the architecture while other properties can be

Architecture models
Architecture specification

Having specified the services of the Access Control system, the Sesam-
Sesam people began wondering if that was all a customer would be
interested in? Wouldn'’t the number of users that could be handled at the
same time matter? What about the response times? And not the least -
what if anything go amiss? They aso started to consider their own prob-
lems. How to produce the system? What about maintenance and service?
Did they have any components ready made? After some thinking they
came up with aninitial list of non-functional requirements:

1. Physical distribution. The system shall be ableto serve abuilding com-
plex where the distance between doorsis up to 1km measured as the
cableslie.

2. Processing capacity. The system shall be ableto serve 6 usersaminute
at each Access Point, and up to atotal continuous peak load of 600
users aminute for the total system. Higher input rates shall not lead to
loss or corruption of data, only to longer delays.

3. Error handling. A single error shall not affect the (normal) operation
of more than 10 Access Points.

4. Security. The authentication and authorization information shall be
secured against unintended access.

5. Hardware. Standard plastic cards shall be the meansfor identification.
Standard card readers shall be used.

linked with specific parts of the object models.

User and customer related properties

These are;

1
2.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Genera properties.

Properties related to the hardware context:

The physical environment:

temperature;

humidity;

vibration;

physical distribution and distances, etc.;

interfaces;

performance:

response times;
load capacity;
overload handling;

reliability and error handling;

Activitiesand Descriptionsin TIMe 6 - 169

Architecture models Tl Me
Architecture design

e Security.

3. Propertiesrelated to the hardware content:
e useof platform hardware;

» use of ready-made components, €tc.

4. Properties related to the software context:
» software environment;

» software interfaces.

5. Propertiesrelated to the software content:
e support software;

» application framework software.

Company internal properties
These are such as:

* production aspects;

* service and maintenance aspects;
» hardware requirements;

» software requirements.

Non-functional properties are expressed in a mixture of text, figures and mathematics.
The preciseform variesbetween different kinds of properties. Non-functional properties
are to be associated with the object models.

Architecture design

Objectives To describe the design parts of architecture models that:
» satisfy the specification;

» show every physical node and software node where application and framework
objects are implemented;

 define hardware and software architecturesto alevel of detail from which implemen-
tation iswell defined and sufficient as high level documentation.

What Architecture design determinescritical architectural issuessuch asphysical distribution,
communication schemes, support software and physical interfaces. Some of these may
subsequently bereflected in the Framework model in order to describe the complete sys-
tem behaviour.

The design will cover the overall structure as well as each type of component in it.

Architecture relationships
The external relationships are presented in Figure 6-33 (p.6-130).

6-170 Activitiesand Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Open figure

Architecture models
Architecture relationships

Figure 6-56: Architecturerelationships

Framework system
types

Framework com-
ponent types

Framework models

ﬁ?—\

Architecture models

is implemented by

hardware descrip-
tion

Relationship architecture - framework

SWsystem types SW component
types
<>—e
S
is implemented by executing on
HWsystem types HW component
types
<>—e
Implementations représents represents

source code

Nodes in the architecture will implement components of the framework. It is recom-
mended that the framework structureissimilar to the structure of the architecture so that
there is a one-to-one correspondence between the two structures (at a suitable aggrega-

tion level).

Harmonising architecture - framework

Normally the framework isharmonised to reflect the architecture, while the architecture
need not take the framework into account, see Relationships framework - architecture

(p.-162).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Activitiesand Descriptionsin TIMe 6- 171

Architec-
ture
implemen-
tation

Architec-
ture
specifica-
tion

Architecture models TI Me

Summary of static architecture rules

Relationships architecture - implementation

The architecture is an abstraction of the concrete system intended to give overview and
promote understanding of its construction. It should cover al parts of the implementa-
tion so it can be trusted as afaithful representation of it. At the same time it should not
go into details that are better described using hardware description languages and pro-
gramming languages. Such detail shall be found in implementation descriptionsthat are
referenced from the architecture.

Architecture models give added value to the low level implementation descriptions
through overview and by providing asingle entry point to the entire documentation.

Harmonising architecture - implementation

» Ensure that the architecture covers the implementation down to a level of detail
where the remaining detail iswell taken care of by reference to implementation
descriptions.

» Ensure that names and references are updated when changes are made.

Harmonising architecture specification - design

When the architecture has been designed, the architecture specification shall be harmo-
nised. It shall be correct with respect to the actually provided properties, and it shall
cover every property of importance for external assessment and use. Properties not
needed for that purpose should be removed even if they were included in the initial
specification.

» Thearchitecture specification surviving after the architecture design is made should
provide exactly the properties needed for external assessment and use.

Summary of static architecture rules

Documen-
tation

Hardware
models

6-172

The architecture models serve several purposes, see Architecture models (p.6-164), and
should be structured to fulfil as many of those as possible. In addition the Architecture
reference model (p.6-154) should be used to make alayered structure that facilitates
evolution.

* Fromthe architecture entities there shall be a clear relationship to detailed imple-
mentation descriptions either through naming conventions or explicit references.

» All detailed implementation descriptions shall be covered by the architecture.
» Hardware models shall identify at least all physical hodes needed to implement the
abstract system.

» Whenever possible and practical one should make a hardware framework that sepa-
rates between:

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me Architecture models
Developing architecture

- General platform hardware. Thisis hardware that is not application framework
specific. It will typically consist of general purpose computersin a network.

- Application framework specific hardware.

» Hardware models should define all hardware interfaces used to compose hardware
systems, and in particular those used by application frameworks and software.

» Hardware models shall be sufficiently detailed and completeto providethe high level
hardware documentation needed in addition to other hardware descriptions.

Software ¢ Software models shall identify at least all software nodes needed to implement the
models abstract system.

Software ¢ Whenever possible and practical one should make software frameworks that sepa-
framework rate between:

- Support software, possibly with sub-layers: operating system, middleware; appli-
cation programming support, application 1/O support.

- Application framework software. It containsthe application and theinfrastructure
(software) implementations, and may be classified asautomatically generated and
hand written code.

- Foreign code, code that isimported from other sources, legacy code, etc.

» Software models should identify at |east every concurrent thread of behaviour, called
a software process, and its communication links.

» Software models should define all softwareinterfaces used by each layer of software.

» Software models shall be sufficiently detailed and complete to provide the high level
software documentation needed in addition to source code.

Developing architecture

What Thisactivity devel opsimplementation Architecture models (p.6-164) which consists of
object- and property models organised as an Architecture specification (p.6-167) and an
Designing architecture (p.6-177).

It also develops a Method for framework code generation (p.-96), and aMethod for sys-
tem instantiation (p.-97), see Figure 6-29 (p.6-106).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 173

Architecture models Tl Me
Developing architecture

Figure 6-57: Developing Architecture

Open figure
Business plan, System family
product strategy statement
Applicaiion
et models
Framework
models
[Developing Architecture Y —
peCITying Architecture
(Laire J=—#] wesfiaon [
% % \J Designing Architecture >
Architecture)%t ;
product A design
manage-
R - o
., i
production, methods auxiliary
SW/HW L)y
designers
-t
< Impl_emen-
L tations
Other Families

Inputs The main sources of input information are:
» Descriptions:

- Application models describe the application systems that the architecture shall
implement.

- Business plans and product strategy will give high level goalsfor the concrete
system.

- Other families and especially their architectures may provide valuable input. It
may even happen that an architecture can be (re)used even if the applications are
different.

- Thefamily statement should be consulted.
* People:
- Product management can give additional requirementsand guide-lines concerning
the concrete system.

Outputs Architecture devel opment results in an implementation architecture that will behave as
defined in the Application models (p.-106) and satisfy the non-functional properties. It
will also define amethod for (automatic) generation of application implementation code
and for configuration and building of system instances.

6-174 Activitiesand Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me Architecture models
Developing architecture

Who to Concrete system design involves specialists in electronics, mechanics and software

involve design. Such specialists tend to have alimited ability to perform high level system
design. Asthisisvery important in architectural design, an interdisciplinary team is
required unless people with sufficiently broad system design experience are available.
The team should not be biased towards a particular technology, but be able to perform
trade offs wherever the solution is open. Such openness in design solutionsis often
essential in order to achieve innovation.

Usersare normally not much concerned about architecture. But for the customer and the
manufacturer it matters quite adeal. Not the least because it determines lifetime cost,
the ability to evolve and the ability to interoperate with other systems.

Architectural designers need to work closely with production people, and specialistsin
software, electronics and mechanics.

Whentodo Thisactivity isonly performed when theimplementation mapping isundefined or needs

it to be changed. This occurs during theinitial development of asystem family and during
maintenance, when changes in the Platform are needed e.g. because of changesin the
support software.

Inan initial development, architecture design will come before framework/infrastruc-
ture design. During normal application evolution, the generic architecture will stay the
same, and system evolution can take place mainly at the application level.

whattodo Making architectures

Thefollowing strategy may be used when making the first architecture model for anew
system family:

Make Architecture

1. First theinitial specification is created by Making
architecture specifications (p.6-176). Thiswill nor-
mally take place during requirements analysis.

2. When the application is designed, time is ready for
Making architecture design (p.6-177). Use the appli-
cation design and the architecture specification as
input, and design the hardware and the software parts
of the architecture.

3. Perform Harmonising architecture specification -
design (p.6-172) to make a complete and precise
architecture specification for the purpose of later
(re)use.

4. Define aMethod for framework code generation (p.-
96) in order to simplify and streamline the generation
of application system implementations.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 175

Architecture models TI Me

Soecifying architectures

Evolving architectures
The following strategy may be used when evolving an architecture:
Evolve Architecture

1. Add new properties or change existing propertiesin
the architecture specification asrequired by Evolving
architecture specifications (p.6-176).

2. Analyse the impact that the new or changed proper-
ties have on the design and perform the necessary
changes by Evolving architecture design (p.6-177).

3. Evolve the Method for framework code generation
(p.-96) if affected.

4. Evolvethe Method for system instantiation (p.-97) if

Specifying architectures

Inputs

Architec-
ture
specifica-
tion
approach

6-176

Inputsto thisactivity arethe same asfor Devel oping architecture modelsasawhole, see
Figure 6-29 (p.6-106). There are two main sources of inputs: the market (represented by
users and other domain stake holders) and the company itself (represented by product
owners, production departments and service responsibles). Technology (that iswhat
technology and solutions are feasible today) may be considered a third source.

Making architecture specifications

Theinitial architecture specification isnormally made at an early stage before there are
any application designs or frameworks. It shall express theinitial requirements on the
concrete system.

A possible approach is the following:

1. Consult the market and write down the general non-functional propertiesthat it
requires, see User and customer related properties (p.6-169).

2. Consult the various company departments and write down the company internal
requirements, see Company internal properties (p.6-170).

3. Make the hardware specification object model.
4. Make the software specification object model.

5. Soecify the non-functional propertiesthat shall apply to each object and interfacein
the object models.

Evolving architecture specifications

The reason for evolving an architecture specification is that some properties are to be
added or changed.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me Architecture models
Designing architecture

1. Soecify the new or changed properties.
2. Analyse itsimpact on the architecture design and the specification object model.
3. (If theimpact is acceptabl e then) make the changes to the specification object model.

Designing architecture

Making architecture design

The main inputs are: (1) the Application models (p.-106) (in SDL or UML) and (2) the
Architecture specification (p.6-167). When the architecture is made for the first time,
there is normally not any framework.

The following step-wise procedure takes both hardware and software into account:
Make Architecture design

1. Perform Trade-off between hardware and software
(p.6-177)

2. Make Hardware design (p.6-178)
3. Make Software design (p.6-178)

Evolving architecture design

Thisactivity makesan incremental evolution of the architecture so that it satisfiesanew
specification increment. It involvesthe same basic activities as making architecturesfor
the first time, only that the existing architecture is taken into account. At this stage of
development an application framework may exist.

Evolve Architecture design

1. Analyse the impact of the specification increment
on the Architecture design. Identify which parts
that are affected and change them accordingly:

2. Evolve the Hardware design (p.6-178) if affected.
3. Evolve the Software design (p.6-178) if affected.

Trade-off between hardware and software
Guiddlines:

Physical * Analyse requirementsto physical distribution of interfaces and services.
distribution

Meanpeak ¢ Calculate the mean peak load for each SDL process, channel and signal route. Allo-
load cate SDL processes to computer s such that the sum peak load for each computer is
less than a given load limit (typically 0.2-0.3).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 177

Architecture models Tl Me
Software design

Real time * Calculate the response timesfor time-critical functions and check that requirements
response will be satisfied. Use priority to ensure fast response. Isolate time-critical parts as
much as possible.
Reliability * Consider the need for redundancy. Add redundant units and restructure the system
until requirements can be met.
Hardware design

Thetask hereisto define the overall (architectural) hardware design. It is based on the
division into hardware and software where the main hardware units were identified.

A possible strategy:

1. Describe the overall structure of general hardware, i.e. computers, networks.

Ea N

Describe the application framework specific hardware.
Describe the physical interconnections between the hardware units.

Describethe signal synchronisation schemesand protocolsto be used on the physical
interconnections, to the extent they are not already covered in the specification.

Some guide-lines:

Physical
distribution

Hardware *
similarity

Distribute processesin a way where the bandwidth needed over physical channelsis
minimised.

Look for similarities between hardware modules. Increase cost—benefit by using sim-
ilarity to minimise the number of different component types needed and maximise the
reuse of each.

Software design
See Software design (p.6-178) for further details.

I mplementation relations
Guidelines:

Implemen-
tation
mappings

Define the implemented-by relations from software nodes to the application frame-
work objects they implement.

Define the implemented-by relations from physical nodes to the application frame-
work objects they implement.

Define the executes-on relationship between software units and computers.

Software design

Guidelines:

Implemen- e
tation
mapping

Map the SDL description as directly as possible into the software implementation.

6-178 Activitiesand Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me Architecture models
Software design -

1/0 » Look at the physical interfaces and design software modul esthat can take care of the
software physical layer, i.e. synchronisation, event detection, timing and format conversion.

» Tryto hide the physical details of input—output in separ ate software modules that
handle the physical layer and provide an DL-like signal transfer service to the
application software.

* When input—output modules are time-critical or need to perform event detection or
need to wait, they should be implemented in software processes that may be sched-
uled independently from the application software.

» Always specify a max waiting time when waiting on external eventsin order to avoid
infinite waiting in error situations. This applies to the input—output modules as well
as SDL processes.

Software * Look at theinternal interfaces and choose a suitable communication mechanism for

communi- each, i.e. procedure calls, message buffers and continuous values.
cation
» Prefer to use the most general and flexible communication scheme for SDL signals,

i.e. buffered communication, except when performanceiscritical and direct proce-
dure calls/method invocations are obviously sufficient.

Support » Useageneral operating system that supports concurrent processes and buffered
software communication except when a simple sequential program structure is obviously
sufficient.

* Select the implementation method for each SDL process. Use general support sys-
tems, RTS, whenever possible, to ease the implementation of application functions
and to increase reliability.

External Give time-critical external events priority over internal processing.
signal

priority

Inter nal Give the processing of internal signals priority over the processing of external signals
processing

priority

Load When overload occurs, give priority to service requests already in progress and delay

control fresh requests.

Free-pools Limit the size (the number of free buffers) of free-pools where it helps to control the
internal load in a system, in particular at the input side.

Use a separate message buffer free-pool for each consumer of message buffers.

Generality ¢ Preferably use the most general and flexible implementation techniques wherever
they satisfy the design constraints, i.e. implement :

- communication by messages,
- DL processes by FSM-Support;
- basic support by a general operating system.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 179

Ar chitecture models TIMe
Software design

Optimisa- ¢ Confine time-critical functions to modules that can be optimised separately. Do not
tion optimise more than necessary.

Summary of dynamic architecturerules
t.b.d.

6-180 Activitiesand Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| Me List of figures

Software design

List of figures
Themaindescriptionsused iNTIME.ot e 3
Thefacetsof atypemodel i 5
Specificationand designrelated 6
Themaindevelopmentcycle. 8
Elementsof theDomain. i 10
Parts of the (application) domain will be realised in the domain given part of
S S EIMNS. . . 13
ThemainactivitiesSin TIMe. e 20
ANAlYSING . .o 24
Domain - system iterationsov it 26
AnalySIngdomain 29
AnalySINg reqQUIrEMENtS.ot 32
DESIgNINGttt 39
Softwareimplementation. 42
Domain ModelS oo 53
Domainmodel notations i 54
Domain Object ModelS 55
Theaccesscontrol domain.t e e 57
Theclassdefinitionof ACCESSZONEot e 57
Developingdomainmodels. 62
Softwareimplementation. e 76
Application systemreferencemodel 81
Application specificationand design. i 87
Waysthat servicesarerelatedtoobjects i 89
A servicelayer and aninterfacelayer i 90
Two casesof interfacegivenparts. 91
Application system specifications. 93
External Applicationrelationships. 98
Internal application model relationships L. 101
Developing Application.o 106
Developing the various partsof anapplication 107
Application framework referencemodel L 123

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 181

6-182

List of figures TIMe

Software design

Framework models. 127
External Framework relationships. 130
Framework definitionand use. i 133
Framework definition with predefined instances. 134
Virtual block type as part of framework, with application specific instance

SPECITICE . . . oo 134
Application specific virtual type at systemtypelevel 135
Framework withnoinstanCes e 136
Virtual block type. 137
Creation of application Specific processes. 137
Redefined block type with process set and actual context parameter 138
Framework with virtual creationprocedures., 139
Setup asavirtual procedureof CentralUnit. 140
Actual AccessControl System. 141
Fragment of redefined setUp 141
Developing Framework 143
Redesigned Access Control System. ...t 146
Cluster with LocalUnitsand ClusterUnits., 146
AccessPoint used in both LocalUnit and ClusterUnit 147
Access Control Systemtypeasaframework. 150
Block type Cluster as part of framework for Access Control Systems.......... 151
An actual system based uponaframework oL 151
Reference models for abstract and concretesystem 155
Architecturereferencemodel. 156
Architecturemodels. 165
Architecturerelationshipst 171
Developing Architecture 174

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe List of definitions
Software design -

List of definitions

A GOl . e e 183
APPHCALION. . . . e 183
ATCNItECIUNE e 183
Completeabstract system e 183
Domain Statement e e 184
FramewWorK . . . 184
HEl DS, o 184
Physical NnOde. 184
SOftwarenNOde 184
Stake holder e 184
SUbJECt ENtItIES. . . . ot 185
Systemfamily statement 185
TraNSACtI ONS . . . o ottt e 185

Actor

An actor is astake holder that takes actively part in the services or work processes of a
Domain.

Application

An application is an abstract system that provide the main services of asystem and is
therefore the most valuable part of a system from a user point of view.

Architecture

An architecture is an abstraction of a concrete system representing:

» theoveral structure of hardware identifying at least all physical nodes and intercon-
nections needed to implement an abstract system;

» theoverall structure of softwareidentifying at least all software nodes, software com-
muni cations and relations needed to implement an abstract system (in terms of
processes, procedures and data).

Complete abstract system

A complete abstract system models as compl etely as practically possible the abstract
functionality implemented in a concrete system.

It coversthe Application and the infrastructure functionality supporting the Application.
Its behaviour is avalid model of the real behaviour and its structure is similar to the
structure of physical nodes in the concrete system.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6 - 183

List of definitions TIMe

Software design

Domain Statement

A (problem) domain statement is a concise description of the problem domain with
focus on stakeholders and their needs, the essential concepts, functions and work pro-
cesses, rules and principles. It should also clearly state the nature of the problem, i.e.
what one wants to achieve.

Framework

Helpers

A framework is an abstract system or acollection of (large) system component with two
parts:

» aredefinable application;

» aconfigurable infrastructure that takes distribution into account, and contains all
additional behaviour and supporting functionality needed to support the application
in the concrete system.

These are general tools that are used by the actors to provide the services of a Domain.
Examples are communication systems, radar equipment and keys.

Physical node

A physical nodeisadistinct physical entity, such asacomputer, that implements one or
more abstract system objects.

A physical node operates concurrently with other physical nodes.

Physical nodes may be aggregated and decomposed, but always in such away that
abstract objects are contained within physical nodes.

Software node

A software node is a distinct software entity, such as a software process (a concurrent
thread), that implements one or more abstract system objects.

A software node will often operate concurrently with other software nodes, but not
aways.

Software nodes may be aggregated and decomposed, but always so that abstract objects
are contained within software nodes.

Stake holder

A stake holder is someone or something holding an interest in something.

In TIMe, astake holder is any person, institution or system with direct or indirect inter-
est in the Domain, a Family or a System instance.

Activities and Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe List of definitions
Software design -

Typical examples are companies, users, operators, owners, and systemsin the
environment.

Subject entities
These are entities that are subject to manipulation, representation or control in the
Domain. They may be materialsin the case of a material transformation domain, e.g.
moulding, or they may be entities represented in an information system, e.g. flights and
seats, or they may be controlled machinery, e.g. a paper mill.

System family statement
The system family statement isaconcise description of the system family with emphasis
on specifications, i.e. the external properties.

Transactions

These are entities representing transactions or events in the dynamic behaviour of the
Domain, e.g. the purchase of a car, or auser passing a door.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Activitiesand Descriptionsin TIMe 6- 185

List of definitions TIMe
Software design

6-186 Activitiesand Descriptionsin TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

	Content and scope
	Description overview
	The main descriptions
	Figure 6-1: The main descriptions used in TIMe
	Model organisation
	Figure 6-2: The facets of a type model
	Specifications
	Figure 6-3: Specification and design related
	Some specification rules
	Development steps
	Figure 6-4: The main development cycle

	Domain descriptions
	What is a domain?
	Figure 6-5: Elements of the Domain
	Why make domain descriptions?
	Domain description content
	Domain relationships
	Figure 6-6: Parts of the (application) domain will be realised in the domain given part of systems
	Harmonising domain descriptions
	Within domain
	With family

	Family descriptions
	What is a family?
	Why make family descriptions?
	Content of family descriptions

	System studies
	Instances
	Relations and traceability

	Activity overview
	Figure 6-7: The main activities in TIMe
	Activity categories
	Making family
	Evolving family
	Harmonising family

	Analysing
	Figure 6-8: Analysing
	What to do
	Figure 6-9: Domain - system iterations
	Analysing from scratch
	Analysing from scratch (new domain)
	Analysing from existing domain
	Analysing from existing domain
	Analysing domain
	Figure 6-10: Analysing domain
	Making domain descriptions
	Make domain descriptions (new domain)
	Evolving domain descriptions
	Evolve domain descriptions (existing domain)
	Summary of dynamic domain rules

	Analysing Requirements
	Figure 6-11: Analysing requirements
	Making requirements
	Make requirements
	Evolving Requirements
	Evolve Requirements
	Summary of dynamic requirements rules

	Analysing solutions
	Specifying
	Making specifications
	Make specifications
	Evolving specifications
	Evolve specifications
	Summary of dynamic specification rules

	Designing
	Figure 6-12: Designing

	Implementing
	Figure 6-13: Software implementation

	Instantiating
	Instantiation

	Domain statement
	Domain statement outline
	Executive summary
	Area of concern/context
	Stake holders
	Subject entities
	Helpers
	Services
	Work processes and materials
	Rules and principles
	Trends
	Existing systems
	Problems - improvements needed

	Domain statement relationships
	Harmonising domain statement

	Developing domain statement
	Making domain statement

	Make Domain Statement
	Make executive summary
	Describe area of concern/context
	Describe stake holders
	Describe subject entities
	Describe helpers
	Describe services
	Describe work processes and materials
	Describe rules and principles
	Describe trends
	Describe existing systems
	Describe problems and improvements needed
	Evolving domain statement
	Summary of dynamic domain statement rules

	Domain dictionary
	Domain dictionary content
	Relationships
	Harmonising domain dictionary
	Summary of static domain dictionary rules
	Developing domain dictionary
	Making domain dictionary
	Evolving domain dictionary
	Summary of dynamic domain dictionary rules

	Domain models
	Figure 6-14: Domain Models
	Figure 6-15: Domain model notations
	Domain object models
	Figure 6-16: Domain Object Models
	Figure 6-17: �The access control domain
	Figure 6-18: The class definition of Access Zone
	Domain object model languages and notations
	Abstract domain object models
	Concrete domain object models
	Domain object model relationships
	Harmonising domain object models
	Summary of static domain object model rules

	Domain property models
	Abstract domain properties
	Concrete domain properties
	Domain property model relationships
	Harmonising domain property models
	Summary of static domain property model rules

	Developing domain models
	Figure 6-19: Developing domain models
	Summary of static domain model rules

	Developing domain object models
	What to do?
	Making domain object models
	Make Domain Object Model (new Domain)
	Evolving domain object models
	Evolve Domain Object Model (existing Domain)
	Summary of dynamic domain object model rules

	Developing domain property models
	Making domain property models

	Make Domain Property Models
	Evolving domain property models

	Evolve Domain Property Models
	Summary of dynamic domain property model rules

	System family statement
	What is a system family statement?
	System family statement outline
	Executive summary
	How it relates to the domain
	How it relates to the environment
	What services it provides
	Interfaces
	Other properties
	Variability and evolution
	Technology issues

	System family statement notations
	Family statement relationships
	Harmonising system family statement

	Summary of static family statement rules
	Developing system family statements
	Making system family statement

	Make system family statement
	Evolving system family statement

	System family dictionary
	What is a system family dictionary?
	System family dictionary content
	System family dictionary relationships
	Relationships system family dictionary - domain
	Harmonising system family dictionary - domain
	Relationships system family dictionary - rest of family
	Harmonising system family dictionary - rest of family

	Summary of static system family dictionary rules
	Developing system family dictionary
	Making system family dictionary
	Evolving system family dictionary
	Summary of dynamic system family dictionary rules

	Family implementations
	Implementations
	Figure 6-20: Software implementation

	Family auxiliary
	Why family auxiliaries?
	Method for evolution
	Method for framework code generation
	Method for system instantiation

	Application
	Content and scope

	Application reference model
	Figure 6-21: Application system reference model
	System context
	Domain given
	System given
	Interface given
	Environment
	Subject entities
	Other systems
	Controlled processes
	Users

	Application models
	Application model overview
	Application model content
	Application specification and design parts
	Figure 6-22: Application specification and design
	Application system boundary
	Application services and objects
	Figure 6-23: Ways that services are related to objects
	The application reference model parts
	Domain given
	System given
	Interface given
	Figure 6-24: A service layer and an interface layer
	Figure 6-25: Two cases of interface given parts

	Application languages and notations
	Application specification languages and notations
	Application design languages and notations

	Application specification
	Figure 6-26: Application system specifications
	Application specification content
	Domain given specification
	System given specification
	Interface given specification

	Application design
	Application design content

	Application model relationships
	Figure 6-27: External Application relationships
	Relationships application - domain
	Harmonising application - domain
	Relationships application - framework
	Harmonising application - framework
	Relationships application specification - design
	Figure 6-28: Internal application model relationships
	Harmonisation application specification - design

	General application guidelines
	Developing applications
	Figure 6-29: Developing Application
	Figure 6-30: Developing the various parts of an application
	Making application models
	Make Application
	Evolving application models
	Evolve application

	Specifying applications
	Making application specifications
	Make Application specification
	Specifying the domain given objects
	Specifying the system given objects
	Specifying the services
	Specifying the interface given objects
	Evolving application specifications
	Evolve Application specification

	Designing applications
	Designing application structure
	Making application structure
	Evolving application structure

	Designing application behaviour
	Making application behaviour
	Synthesizing behaviour from properties
	Synthesizing behaviour from environment behaviours
	Synthesizing behaviour from informal requirements
	Evolving application behaviour

	Summary of static application rules
	Language choice
	Domain given parts
	System given parts
	Interface given parts
	General considerations
	System Content

	Summary of dynamic application rules
	Domain mapping
	Domain stake holders
	Interface layering
	Environment
	SDL system and environment

	Framework
	Content and scope
	What is a framework
	Table 6-1: Differences between libraries and frameworks

	Framework reference model
	Figure 6-31: Application framework reference model
	Framework infrastructure
	Framework application

	Framework models
	Figure 6-32: Framework models
	Framework model content
	Framework specification
	Framework design

	Framework languages and notations
	Framework specification
	Framework specification content
	Framework object model
	Framework property model

	Framework design
	Framework relationships
	Figure 6-33: External Framework relationships
	Relationships framework - application
	Harmonising framework - application
	Relationships framework - architecture
	Harmonising framework - architecture
	Relationships framework specification - design
	Harmonising framework specification - design

	General framework guidelines
	How to define a framework using SDL
	Figure 6-34: Framework definition and use
	Application specific instances are specified as part of the framework
	Figure 6-35: Framework definition with predefined instances
	Figure 6-36: Virtual block type as part of framework, with application specific instance specificed
	Figure 6-37: Application specific virtual type at system type level
	Application specific instances not specified as part of the framework
	Context parameters
	Figure 6-38: Framework with no instances
	Figure 6-39: Virtual block type
	Figure 6-40: Creation of application specific processes
	Figure 6-41: Redefined block type with process set and actual context parameter
	Virtual creation procedures
	Figure 6-42: Framework with virtual creation procedures
	Figure 6-43: Setup as a virtual procedure of CentralUnit
	Figure 6-44: Actual Access Control System
	Figure 6-45: Fragment of redefined setUp

	Developing framework
	Figure 6-46: Developing Framework
	Making frameworks
	Make Framework
	Completing the abstract system model
	Figure 6-47: Redesigned Access Control system
	Figure 6-48: Cluster with LocalUnits and ClusterUnits
	Figure 6-49: AccessPoint used in both LocalUnit and ClusterUnit
	Define the method for instantiating frameworks with an application.
	Evolving frameworks
	Evolve Framework
	Specifying frameworks
	Making framework specification
	Evolving framework specification

	Designing framework structure
	Making framework design
	Figure 6-50: Access Control System type as a framework
	Figure 6-51: Block type Cluster as part of framework for Access Control Systems
	Figure 6-52: An actual system based upon a framework

	Designing framework behaviour

	Architecture
	Content and scope
	Architecture reference model
	Figure 6-53: Reference models for abstract and concrete system
	Concrete system
	What is an architecture?
	Figure 6-54: Architecture reference model

	Differences between abstract and concrete system
	Fundamental differences
	Processing time
	Errors and noise
	Physical distribution
	Finite resources
	Accidental differences
	Concurrency
	Communication
	Synchronization
	Data

	Architecture models
	Figure 6-55: Architecture models
	Architecture model content
	Architecture property models (non-functional properties)
	Architecture object models
	Hardware models
	Software models
	Implementation relations

	Architecture model languages and notations
	Architecture specification
	Architecture specification object model
	Architecture non-functional properties
	User and customer related properties
	Company internal properties

	Architecture design
	Architecture relationships
	Figure 6-56: Architecture relationships
	Relationship architecture - framework
	Harmonising architecture - framework
	Relationships architecture - implementation
	Harmonising architecture - implementation
	Harmonising architecture specification - design

	Summary of static architecture rules
	Developing architecture
	Figure 6-57: Developing Architecture
	Making architectures
	Make Architecture
	Evolving architectures
	Evolve Architecture

	Specifying architectures
	Making architecture specifications
	Evolving architecture specifications

	Designing architecture
	Making architecture design
	Make Architecture design
	Evolving architecture design
	Evolve Architecture design
	Trade-off between hardware and software
	Hardware design
	Software design
	Implementation relations

	Software design
	Summary of dynamic architecture rules

	List of figures
	List of definitions
	Actor
	Application
	Architecture
	Complete abstract system
	Domain Statement
	Framework
	Helpers
	Physical node
	Software node
	Stake holder
	Subject entities
	System family statement
	Transactions

