T | M @ TIMeElectronic Textbook

- Configuration

M anagement

INtroducCtion e 2
At . . 2
Why this is important. 2
OB ECtIVE . . .t e e 3
Definition Of termS 4
Levelsof control and management. 5
Version Control e 6
What can be obtained 6
TECNNIUESt e e 6
Configuration Control 9
What canbe obtained. e 9
TECNNIUES . . .t e 9
Configuration Management it 12
What canbe obtained. e 12
TECNNIUES . . .t e 12
Classification of configuration managementtools 17
Introducing Software Configuration Management intoacompany.......... 18
Tools or manual ProCedUIeS? oo e 18
LISt Of fIQUIES . . oo 20
List of definitions.o e 21

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Configuration Management 19-1

Introduction Tl Me

What

| ntroduction

What

This chapter dealswith how to control asoftware product asit evolves. It describes Lev-
els of control and management (p.19-5), and describes means to cope with the
complexity of product management.

The material covered here is complementary to the theme on Process models, which
deals with the processes that |ead to changes. Both chapters present different perspec-
tives on what is generally known as configuration management.

Configuration management has hitherto been animmaturefield in software engineering.
Thereislittle consensus in terms of standards or handbooks. The most important stan-
dard, ANSI/IEEE Std 828-1983 IEEE Standard for Software Configuration
Management Plans hence states that every magjor project should define its own stan-
dards. Here we present our view on Configuration Management, which should help in
defining such plans for projects and companies.

Configuration management isacomprehensive subject: it comprisesissuesasdiverseas
identifying aspecific component in asystem, to managing error reportsfrom customers.
Between such extremes we need to describe the structuring of systemsin subsystems
and components, and how these components and subsystems shall be generated in order
to produce a system with the desired properties.

We contend that there are Levels of control and management (p.19-5) that can be iden-
tified: to achieve Configuration Management (p.19-12) we need a platform for
Configuration Control (p.19-9). To achieve Configuration Control we need a platform
for Version Control (p.19-6).

Wealso provide aClassification of configuration management tools (p.19-17), and look
at issues important when Introducing Software Configuration Management into a com-
pany (p.19-18).

Why thisis important

19-2

The “soft” in the word “ software” is intended to indicate that programs can easily
changetheir form. Thislinguistic pictureis accurate enough: we all know that software
can indeed be changed very easily.

At firgt sight, this characteristic of software seemsto match very well with one of the
key requirements for commercia success in software development:

To be able to produce and sell as many concrete systems as possible while
minimizing costs related to details of particular instances

Since softwareis* soft” and easy to change, software-based products should al so be easy
to change. Or are they?

Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| Me Introduction

Experience shows that software systems are not, in practice, so very easy to change. An
important reason for thisisthat thisvery flexibility of software aso hasits negative side:
software items not only can change but typically do change - and often. Thisleadsto

large numbers of “versions’! of software items, and there are often difficultiesin main-
taining aclear picture of:

» exactly which versions exist
» theessential characteristics of each
* inter-dependencies amongst the versions.

Thelack of effective methodsto handle variability in softwareitems can cause problems
ranging from minor frustrations to considerable devel opment and maintenance effort
being wasted through selection of incorrect versions.

A related issueis that of software reuse. The advantage of reuseis clear: development
costs are reduced through utilization of existing items instead of developing new ones.
But successful reuse adds to the problem of handling variants. In simple cases, an item
can bereused “asis’ (i.e. without any change being applied). Even this addsto the com-
plexity of variant handling, as extrainter-dependencies have to be handled. In more
complex cases, items are reused with changes to customize for the new intended use of
theitem. Thisis an added source of variability.

So: if you need to produce new system instances quickly and easily, or if you want to
re-use software components to minimize development costs, you need to have effective
ways of handling product variants.

Objective
The goals of configuration management can be summed up as follows:

* identifying the items that are to be managed

» controlling changes in terms of the change process, and registering and reporting
Status

» controlling that items are complete and correct, involving registering and reporting
item status, and controlling the distribution and use of changed items

* maintaining approved configurations of the items, implying the control of correct-
ness, completeness and consistency

» controlling which items are included in a given product

These arethe practical and pragmatic reasonsfor employing configuration management
and configuration control in asoftware engineering context. |.e. itispart of ensuring that
the products one develops, delivers and maintains adhere to the required quality w.r.t.

* the customers use of the product
 theresources used by the producer to develop and maintain the product

1. Theword “versions’ isused here in awider sense than simply file versions. For instance, asingle C source
file might contain many #ifdef directives, resulting in avery large number of semantically distinct programs
(depending on the values chosen for the parameters which control the #ifdefs).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Configuration Management 19- 3

I ntroduction Tl Me
Definition of terms
Definition of terms

Asthereisno universal consensus on the use of termsin the field of software configu-
ration management, we provide definitions of the terms we use:

Configuration Control
Configuration Management
Configuration Control Board
Configuration Management Plan
Version

Variant

Revision

[dentification

Attribute

10.Status

11.Configuration

© o N o g kM 0w DR

12.Configuration Item
13.Baseline

Note that we in configuration management are only concerned with the “physical” Con-
figuration Items that are parts of the systems and products we are building and
maintaining, as apposed to the (semantic) building blocks we deal with in the system
domain. Thereis not always a one-to-one correspondence between logical building
blocksand physical Configuration Items; you may experience never locating thelogical
building blocks when looking at the structure of the Configuration Items.

19-4 Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl M e L evels of control and management

Definition of terms

L evels of control and management

Theissuesinvolved in configuration management are many and diverse, as we have
seen. We believe that by categorizing theminto levels, where each level providesaplat-
form for the next, both talking about it and doing something with it becomes easier.

We have found the following levels to be of use:

» Version Control (p.19-6), which hasto do with describing, identifying and retrieving
any significant version of an atomic entity (item) in the (syntactic) description
domain. Included here are issues such as efficient representation and retrieval of con-
figuration items

» Configuration Control (p.19-9), which deals with controlling the development of
productsthat are composed of different parts, and where the parts (items) evolveinto
many different versions. Controlling the transformation of components by toolsinto
complete products (build support) also belongs here.

» Configuration Management (p.19-12), which deals with the management view, i.e.:
- what isdelivered to a specific customer (release support)

- which problems and discrepancies are reported for which delivery, by whom (and
what status do they currently have?)

- that improvements and changes are initiated depending on analysis of technical
and economical consequences, and only then (change control)

- that the quality of the product and development process is monitored (process
management)

Note that al three levels are often called configuration management, while we have
reserved the term Configuration Management to the managerial aspects of the broader
issues of Software configuration management.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Configuration Management 19-5

Version Control Tl Me

What can be obtained

Version Control

In this section we describe What can be obtained (p.19-6) by Version Control, and what
Techniques (p.19-6) are available.

What can be obtained

With Version Control we obtain an unambiguous identification of the (syntactic) ele-
ments that a system is built from. This provides a necessary prerequisite for building a
correct system.

Version Control isthe minimum level of control needed to manage the devel opment and
maintenance of entities that make up a product.

Version Control essentially provides an unambiguous identification of entities. It dis-
criminates between revisions and variants, thereby identifiesimproved and alternative
revisions of entities.

Furthermore it enables a customer and a producer to communicate about versions of
products, so that errors and enhancements can be performed with knowledge of the
delivered components.

Version Control must include measuresto avoid simultaneous (and destructive) updates
of entities.

V ersioning mechanisms can also be used to classify entities and to make statements
about propertiesand quality aspects of acomponent, e.g. whether it isaworking version
or amore official version.

Techniques

The following techniques for Version Control are presented:
* Revisions, Versions and Variants (p.19-6),

» Variant Production (p.19-7) and

 |dentification and selection of versions (p.19-8).

Revisions, Versions and Variants

These aretermsthat often are used in an imprecise manner. The definitionswe have cho-
sen for Version, Variant and Revision are in short that any change to a Configuration
Item produces anew version, which is either arevision (that is meant to replace the pre-
vious version), or avariant (which is meant to coexist with the previous version).

Note therefore that a variant can be modified to produce arevision of the variant (mean-
ing that it isa*“better” variant than the previous version).

19-6 Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Version Control
Techniques

Often one has a need to develop several variants (of a component or system) to satisfy
incompatible needs of customers (e.g. variants for different computer platforms) or for
reasons internal to the developing organization (e.g. maintaining several product
releases with different functionality simultaneously, with and without corrections).

Variant Production

This can very soon lead one to a situation where the number of variants of asingle com-
ponent makes management awkward, like having to performidentical changes(e.g. due
to abug fix present in many variants) to many versions. One needs to rationalize; below
anumber of alternatives are given.

1. Variants can be given different namesin their I dentification, where one can see from
the name what variant it is (e.g. file name with naming conventions to distinguish
between variants for different computer platforms).

This alternative easily gets out of hand if the variants become many and not related
to commonly understood variability such as computer platform or language, and also
requires physical storage for complete versions of all variants.

2. Variants all share the same name, but are distinguished by their revision and version
number in the Identification. Thisisthe method typically adopted in file repositories
such as RCS, CMS PV CS and SCCS, which adopt measures to reduce storage space
using some delta mechanism (only storing one “master” version and the differences
- deltas - between versions). A configuration description can determine which ver-
sion one should use of modify.

Although this saves storage space and name space, one still may have to perform
identical changesto many versions. Merge functions in the versioning tool can
reduce the number of versions one has to modify for e.g. acommon bug fix, but all
“external” variants must non-the-less be maintained in parallel.

3. Conditional text isamechanism that has been present in programming languagesfor
many decades, and which to a certain degree isfound in other sources such as text
processing systems (like FrameMaker and Word), but seldom in design tools. The
Ideaisthat to use apreprocessor on the sourcetext (containing “macros’ that indicate
inclusion or exclusion) beforeinvocation of atool (e.g. acompiler), and configuring
the tool (supplying parameters that select macros).

This mechanism, if available, is useful in situations where the number of variantsis
limited, the macros are concepts that are easily understood (e.g. “test”, “host”, “tar-
get”), and one can control the transformation process (sel ecting the correct macros
for the correct transformations). Applied in addition to versioning systems one can
reduce the number of physical variants (file versions) one has to modify.

4. Change oriented versioning isafairly new approach that is not commonly found yet,

unfortunately. Theideaisthat the repository can itself add or remove macros accord-
ing to conditions (intentions) supplied in the form of logical statements (e.g. test
AND host AND bug_fix_345 AND NOT bug_fix_211).

Change oriented versioning is the only mechanism that would significantly reduce
the number of parallel updates required to maintain many variants, and isthereforea
promising future possibility. Text processing systems implementing conditional text
are the closest one comes to change oriented versioning at present.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Configuration Management ~ 19-7

19-8

Version Control Tl Me

Techniques

The opposite function, that is merging variants to become asingle version, is supported
by many CM tools (at |east on textual sources like codefiles). The most advanced tools
offer multiple windows, showing the file versions being merged, the merged result, and
lets one select contents at the event on conflicts, aso letting one enter new input into the
merged file if appropriate.

| dentification and selection of versions

All repository tools(like RCS, CMS, PV CSand SCCS) havetheir ownway of assigning
an ldentification of a Version of a Configuration Item. For items not stored in the repos-
itory (e.g. physical items) one should adopt an identification scheme which isasfar as
possible in accordance with the repository tool’s.

Theidentification scheme typically consists of aname (e.g. file name) and a set of num-
bers, denoting revision and variant in some structured fashion.

1.3.1.1 » 1.3.1.2 Variant 1 from 1.3
1.3.1

1.1 1.2 B 13— 14—» 15 Main line of descent

1.3.2)\

1.3.21 % 1.3.2.2 Variant 2 from 1.3

Figure 19-1: Revision tree (RCStype)

Selecting a version (either one wants to modify it, smply look at it, or useit in abuild
operation) can be anon-trivial task. The simplest and most common isto select the “lat-
est and greatest”, that is along the main line of descent. But one may want one that is
identified in a configuration description for a certain product version, or one may want
some other version of particular functionality or quality.

One technique for selecting versions is based on assigning an Attribute to items. Such
attributes can denote general properties that are common for many items (e.g. quality
attributes such as “approved”, or other general attributes such as*“host”, “language”,
“author” or “modified”), or propertiesthat are particular for few or only oneitem (e.g.
attributes identifying functional changes and bug fixes).

Each attribute may have alegal value set (e.g. language = English, German, Norwe-
gian). Such attributes must be recognized by the repository, which must associate each
item version with applicable attribute values; it must be possible to uniquely discrimi-
nate each version by a combination of attribute values. Not all attribute values need to
be bound, only enough to uniquely identify aversion. Default attribute values can be
defined (e.g. approved == TRUE).

This approach is possible in some of the more advanced tools (“Views’ in ClearCase,
intentional version selection in PCL).

Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl M e Configuration Control
What can be obtained -
Configuration Control

I'nthis section we describe What can be obtained (p.19-9) by Configuration Control, and
what Techniques (p.19-9) are available.

What can be obtained

Configuration Control adds structure to Version Control: aformalized description of
how a product is composed of (syntactic) parts.

It also addsformalized proceduresfor the transformation processes, describing required
input (e.g. source code) and the resulting output of the transformation. Thisis called
Build support (p.19-10). By adhering to naming conventions, checking on the existence
of input and output entities, and checking on generation times (timestamps), transforma-
tions can be performed automatically and only when needed.

With Configuration Control we can improve system documentation by expressing the
composition of the system in a Configuration Description (p.19-10). Regeneration of a
specific configuration becomes simpler and more reliable, and automation is made
possible.

The production of new variants can be performed with greater ease, quicker and with
less probability of errors by making new versions of the configuration descriptions.
Such descriptions can be maintained independently from other version.

The combination of configuration descriptions and component classifications (see | den-
tification and selection of versions (p.19-8)) enables one to deduce the status for a
particular configuration from the individual component status, with the addition of
results from integration tests etc.

Communi cation about the system becomes easier and more secure, in that structures can
be identified and isolated, and given appropriate identity in the configuration descrip-
tion. Evolution of the system can be performed with greater control and with less
dependence on the individual developer.

Techniques

The following techniques for Configuration Control are presented:
e Product structure (p.19-9)

 Build support (p.19-10)

» Configuration Description (p.19-10)

Product structure

Maintaining aformalized description of the structure of the (semantic) parts that make
up asystem or product isinvaluable to configuration control.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Configuration Management 19-9

19-10

Configuration Control TIMe

Techniques

Product structure should not only describethis part-of structure, it should also document
interrel ationships between components. Documentation items should be linked to the
components they explain, requirements should be linked to their solutions, executable
software items should be linked to descriptions of the hardware that run them and so on.

Thelevel of detail, the granularity and the classes of components that are part of such a
description depend on the needs of the company and the system being described, but
unfortunately also very much on thetoolsthat are available. The current situation in tool
support leaves much to be desired, as typically non-software items cannot be modelled
decently, and user-defined relations are not commonplace.

Build support

An addition to the description of the product structure is the description of the transfor-
mation process carried out by software production tools like compilers, linkers and
loaders.

Such aformalization has been commonplace for the most common toolsfor many years
in the form of make-files (native to unix and PC platforms). But with integrated tool
chains as one findsin the SDL world, the transformation process can consist of many
steps: selecting an SDL component (or collection of components), generating code
using a code generator with appropriate options (e.g. determined by the software design/
framework), and then compilation and linking of the generated code. Thetransformation
description must cater for al this, and preferably be capable of automatic tool invoca-
tion. Support for defining manual steps formally is seldom afeature of CM tools.

Given that the product structure and the transformation process has been described, one
can hope for good support from the CM tool to rebuild subsystems and systems effi-
ciently, i.e. only regenerating the parts that are effected by changes since the previous
system generation (typically only generating or compiling the partsthat are affected by
arecent change). Advanced support for parallel, distributed building is offered by some
of the CM tools.

Some tools also not only rely on timestamp information to determine the need to regen-
erate, but also record which options where used for the transformation. Such
information is then stored as an attribute of the destination elements (outputs of trans-
formation tools like compilers). Thislevel of refinement is necessary where severa
components with identical names but different building rules are used in more than one
placein asystem.

Configuration Description

A configuration description is aformal description identifying exactly which versions
of which configuration items are involved in a particular system build, and how each
derived component was produced.

Thisinformationisessential for the capability of rebuilding (reconstructing) aparticular
system version, and for identifying exactly what went into the system and how transfor-
mation tools were used; all important information when analysing error reports and
change requests.

Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl M e Configuration Control
Techniques

Maintaining such configuration descriptions can render the need to store derived com-
ponents in the repository unnecessary, although the choice between saving space by not
versioning derived components must always be weighed against the time required to
rebuild them on demand (some types of system generations can take days).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Configuration Management 19- 11

Configuration Management TIMe
What can be obtained

Configuration Management

In this section we describe What can be obtained (p.19-12) by Configuration Manage-
ment, and what Techniques (p.19-12) are available.

What can be obtained

Configuration Management adds the managers view to Configuration Control. It for-
malizes the contact with customers, registering error reports and requests for new
functionality (enhancements). It initiates and controls the evolution process, and con-
trols the termination of changes and the release of new product versions.

Procedures for change management give the company a controlled, efficient and mar-
ket-driven product development throughout the product life-span. 1t helps build up a
base of customers and experience, and is a place to find market trends amongst
customers.

Configuration Management contributes to highlighting valid configurations, and lets
one define standard solutions where undesirable (conflicting) feature interaction is
avoided. A company can more easily answer tenders that do not require new (unex-
pected) development work.

Techniques

19-12

The following techniques for Configuration Management are presented:
» Managerial issues (Roles in Configuration Management (p.19-12)):
Quality Control Board (p.19-13)

Configuration responsible (p.19-14)

Configuration Management Plan (p.19-14)
Project Worker (p.19-15)

» Change control (p.19-15)

* Release support (p.19-16)

* Process management (p.19-16)

Rolesin Configuration Management

A traditional project model istaken as abasisin the following. A project isgiven a
Configuration Management Plan defining rules and procedures. The plan is defined
and controlled by the Quality Control Board (p.19-13), while the Configuration respon-

Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Configuration Management
Techniques

sible (p.19-14) performs the bureaucracy concerned with Configuration Management.

Quality Control Board

Configuration Configuration _
respgnsible management Project Manager
plan

Project Worker
Project Worker

Project Worker

Figure 19-2: Rolesin configuration management

The types of roles we thereby define are

the performing role played by the Project Worker (p.19-15)

the controlling role of the Quality Control Board (p.19-13) that makes decisions
regarding requested changes, approves of implemented changes, and determines
which choices (variants) are to be available

the registering role of the Configuration responsible (p.19-14), that isalink between
the performing and controlling roles, by maintaining lists of change requests and
making approved changes available for further development

Note that there roles will exist independent of what tool support one has; good tool sup-
port simply helps people perform these roles.

Quality Control Board

The company should have a body that is responsible for quality assurance, as required
by the 1SO 9001 standard series, both for development and manufacturing. Configura-
tion Management applies to product development, and comprises:

defining plans and standards for quality assurance and configuration management
ensuring that these plans and standards are followed

initiate development and maintenance projects according to analysis

approve development results at project milestones

Configuration Management 19 - 13

19-14

Configuration Management TIMe

Techniques

The organization of the Quality Control Board (including the Configuration Control
Board) must be tailored to the companies needs: in small-scal e situations the project
manager, quality manager, product manager and configuration responsible may beroles
played by a single person and constitute the control board; in large-scale situations a
hierarchy of responsibility and control may be appropriate.

Theimportant issueisto focuson roles, assign themin arationa way, and be conscious
of which role oneis playing at agiven time.

Configuration responsible

Thisroleis asupport function that takes care of the necessary “red tape” involved in
configuration management, the object being to alleviate the creative work of the Project
Worker (p.19-15) from such issues. Examples of the activities performed by the config-
uration responsible are:

 create, implement and manage procedures and rules, as approved of by the Quality
Control Board (p.19-13)

 register and collect problem reports (errors) and change requests (suggestions for
functional improvements), and submit these to the Quality Control Board (p.19-13)

* identify components (items) created and modified during devel opment
* identify and register approved configurations of these items

» performing regression tests and reporting results to the control board

» composing complete configurations for releases

» manage tool use (and versions of tools)

Good tools can support many of these activities.

Configuration Management Plan

Asmentioned earlier thereislittle consensusin termsof standards or handbooksfor con-
figuration management. The most important standard, ANSI/IEEE Std 828-1983 |IEEE
Sandard for Software Configuration Management Plans hence states that every major
project should define its own Configuration Management Plan.

Such aplan should be an integrated part of the quality system required by the 1SO 9001
series of standards, and typically specify:

 the organization, roles and responsibilities within quality assurance, including con-
figuration management

* proceduresto manage error reports and change requests, showing how decisions are
to be made and carried out

» proceduresto be followed when performing functional changes to products or sys-
tems, identifying quality assurance activities

» which quality assurance techniques are to be performed (e.g. walkthroughs, reviews,
testing, validation) in which situations, paying special attention to regression testing

Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T | M e Configuration Management
Techniques

* how achieving and identification of versionsisto be performed, and how to represent
variants wrt. customers

» procedures for managing deliveries to customers
» use of toolsfor configuration management

An appropriate plan will vary depending on:

- the degree of parallel development

- theratio of error correction versus devel opment
- quality requirements (risk involved)

- number of variants available for customers

- the number of configuration items

A tool with process support can define much of this; but planning is still required!

Project Worker

One should strive to relieve the individual project worker from the tedious details of
configuration management. Thisisonly partly possible, depending on what (tool) sup-
port is available.

The project worker will be involved in:

» determining which configurations of items are possible (i.e. yield avalid result) -
information which the Configuration responsible (p.19-14) must record for use by the
Quality Control Board (p.19-13)

» performing the functional changes decided by the Quality Control Board (p.19-13)
viathe Configuration responsible (p.19-14), who identifies the Baseline from which
to develop. Information about the functional properties of the baseline should be
found in the configuration description.

Change control

The management aspects of change control have already been mentioned in the previous
sections on Quality Control Board (p.19-13) and Configuration responsible (p.19-14).
There are in addition a number of technical issues that are relevant:

1. Change records:. the change history of a component should record not only the time
and date of change and the difference, but also the reason for perform the change.
Such change forms can be manual or part of CM tool functionality.

2. Change groups: a single change request as supplied by e.g. a customer will more
often than not require changes in many components, and in components of various
types (e.g. both in computer sources and documentation). The changes to the compo-
nents should be grouped to be able to initiate, monitor and report on the changes to
all affected components as a unity.

Some CM tools now provide mechanismsfor change setsor change packages, where
the tool provides support for grouping the individual items changed, and naming the
change with an identifier.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Configuration Management 19 - 15

19-16

Configuration Management TIMe

Techniques

Release support

Keeping track of which customer hasreceived what can be avery important set of infor-
mation if there are many variants of a system in the market. This should preferably be
maintained by the CM tool; at |east there must where necessary be unambiguous links
between the customer database and the version descriptorsfor the delivered systems, or
the customer should be able in some way to find version identifiers on or in the system
itself, which can be quoted when communicating with the producer or service personnel.

Process management

The Configuration Management Plan defines amongst other things a process that shall
be followed in Configuration Management activities, as mentioned before. The most
advanced CM tools can be adapted (programmed) to support many such activities, plus
other activities that are part of the software development process; we call this Process
Management.

Such tools can support the life-cycle phases which a component runs through, and can
define different schemesfor various classes of components (e.g. atextual requirements
specification and an SDL operator will typically have very different steps of quality
assurance).

Werecommend that one doesn’t invest in tools of thiskind (or use these features) unless
the software processis well defined, well understood and stable. Support inthisfieldis
a enabling technology on the higher level of maturity on the CMM capability model.

Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Classification of configuration management tools -

Techniques

Classification of configuration management tools

A useful classification of CM toolsfollows our definition of Levels of control and man-
agement (p.19-5) with some overlaps:

1. Basic versioning tools. Support Identification and selection of versions (p.19-8), Ver-
sion Control (p.19-6) and basic (not distributed) Build support (p.19-10). Simple
tools to use that solve rudimentary issues such as identifying revisions and variants,
and the automatic regeneration of a system after a change. Classic examples are the
basic use of rcs (or sccs) and make.

2. Configuration Control tools. In addition to the functionality of Basic versioning
tools, they support Product structure (p.19-9), Configuration Description (p.19-10)
and Release support (p.19-16). Tools at this level should combine the configuration
description and the transformation description when performing build support, and
offer distributed Build support (p.19-10).

3. “proper” Configuration Management tools (using our definition of the term). Sup-
ports (in addition to the above) Rolesin Configuration Management (p.19-12),
Change control (p.19-15) and Process management (p.19-16). Thisimplies handling
error reports, change requests, impact analysis, approval mechanisms etc. They are
capable of describing and formalizing processes which do not lend themselves to
automation (i.e. humans are involved).

Pleasingly enough, OVUM in their 1995 evaluation of Configuration Management
Tools[148] report that “CM tools have advanced by |eads and bounds’ sincetheir 1993
evaluation, producing some very interesting results, the most important being that sev-
eral maturetoolsinthethird level are now available (e.g. ClearCase, Continuus/CM and
PCMYS). Thisis also the conclusion of the latest SISU evaluation of ClearCase [170].

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Configuration Management 19 - 17

Introducing Softwar e Configuration M anagement into a com- Tl M e
Tools or manual procedures?

| ntroducing Software Configuration Management into a
company

I ntroducing Software Configuration Management (SCM) isand should betightly linked
with the definition of the quality system, such as defined by the 1SO 9001 standard
series. Much of what applies to introducing 1SO 9001 into an company also holds for
SCM, and involves improving the development process:

- analyseyour present situation, identify areas of improvement, select the areaswithin
which improvement is sought (priority depends on risk analysis, cost of means and
level of improvement), make a plan for introduction

- involveall levelsof the organization, especially seeking management commitment to
the plan - and involve enthusiastic promoters (look for influential individuals)

- inform all involved of the plan

- implement the plan, and measure its effects on chosen metrics
- evaluate results at predefined checkpoints, and inform all

- learn from your mistakes and successes - and document them!

- iterate all the steps above aslong asyou live

Tools or manual procedures?

19-18

Experience has shown that the main problem with introducing Software Configuration
Management (including Configuration Control) is not the use of tools, but establishing
routines and procedures. This causes us to recommend that manual procedures be an
appropriate starting point for any organization trying to swap chaos with control.

The following organizational measures are recommended:

1. Create abody responsible for quality assurance and configuration control, the Qual-
ity Control Board (p.19-13)

2. Createasupport function for filing and possibly regression testing, the Configuration
responsible (p.19-14)

3. Define a Configuration Management Plan (p.19-14) as part of the company’s quality
assurance system

Development work is performed by the developers (project workers) as usual.

Only when the organization is capable of defining, recognizing and playing these roles
will the addition of tools be of any significance.

Whether you choose to leap-frog from “no CM tool” to alevel 3 CM tool (see Classifi-
cation of configuration management tools (p.19-17)) or whether you choose a stepwize
approach is a matter you must settle in your improvement plan; note though that tools

on level 3 differ in the extent to which they let you refrain from defining your process,
so that you can make do with functionality at levels 1 and 2; it is possible to apply a step-
wize approach without changing your CM tools!

Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| M e Introducing Softwar e Configuration Management into a com- -

Tools or manual procedures?

Many find the price of advanced CM tools intimidating; it may therefore be of little
comfort to learn what experience has shown: you can count on spending more money in
terms of time and energy when introducing thetool into the company than the actual cost
of the tool.

For more about introducing CM tools into a company, refer to e.g. the 1995 OVUM
report Evaluation of Configuration Management Tools [148].

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Configuration Management 19 - 19

List of figures TI Me
Tools or manual procedures?
List of figures

Revisiontree (RCStYPE)o e e e e e e 8
Rolesin configurationmanagementt iiiiianannenenn. 13

19-20 Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe List of definitions
Tools or manual procedures?

List of definitions

AttribUte. . . 21
Basaline 21
CoNfIgUIaLiON o e 21
Configuration Control 21
Configuration Control Board.t e e 22
Configuration Item. 22
Configuration Management it 22
ConfigurationManagement Plan. i 22
[dentification 23
REVISION . . . 23
AU . . . ottt e 23
VAl ANt . . 23
1YL= £ 0 1 23
Attribute

Is an aspect of a Configuration Item that gives additional information, e.g. about its
functionality.

The attribute is not part of the Identification of the item.

Basdline

isthedesignation of a“snap-shot” (typically intime) of aproduct or system, with aspec-
ification of al Identifications of all Configuration Items that are part of it.

A baseline may also have amore specific definition, implying that al the configuration
itemsincluded in the baseline have a certain Status.

Configuration

isaparticular composition of a product or (sub)system from particular components
(items) with adefined functionality.

Configuration Control

The formal guidelines for

» describing the configuration of a system or product on the basis of the identification
and status of each Configuration Item it consists of

* describing the derivation process and rules from source components through derived
components to a complete system

 coordinating and approving changes in this description

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Configuration Management 19 - 21

List of definitions TIMe

Tools or manual procedures?

Configuration Control Board

A body whichis

» responsible for evaluating change requests
» capable of ordering their execution
 capable of monitoring their completion

Configuration Item

is an entity which is subjected to Configuration Management and is treated as atomic
(indivisible) in this respect.

A configuration item may consist of parts, but these parts are then not managed as parts
according to configuration management (e.g. a printed circuit board may be a configu-
ration item, while the components on it are not subjected to configuration management).

A configuration item is concerned with the (syntactic) descriptions that a system con-
sists of, and not the (semantic) building blocks in the system domain.

Isalso informally called part, entity or component.

Configuration Management

The formal guidelines for
* identifying and defining the Configuration Items a system is composed of

 recording and reporting the status of entities and requests for change throughout the
components life-span

» evauating and initiating changes
 controlling the change process
» verifying the release of system versions

Configuration Management Plan

19-22

A document which describes how Configuration Management shall be carried out in a
project or for a product. It describes:

» rolesand roleresponsibilities

* the process for evaluating and implementing change

It defines:

» component statuses and corresponding approval criteria
* identification criteria

* methods for inspection, approval, filing etc.

* typesof itemsto be managed

Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe List of definitions
Tools or manual procedures?
* toolsto be used

| dentification

is an unambiguous designation of a Configuration Item that is part of a system or
product.

The identification can consist of a name, type, revison number and variant.
The identification can not be changed during the life-span of the item.

Physical itemswill bear the identification.

Revision
iIsaVersion of acomponent that is derived from an earlier version, and that is designed
toreplacetheearlier version. The difference between two succeeding revisionisusually

a“small” improvement (error correction or enhancement in functionality). The latest
revision is the version one intends should be used (“latest and greatest”).

Status

isan Attribute of a Configuration Item that qualifiesit, e.g. in terms of formal approval
or what quality criteriait fulfils.

As apposed to the Identification of the item, the status will change.

Variant

isaVersion of acomponent that is designed to co-exist in parallel with other versions of
a component, as an alternative. One variant of a component is seldom “better” than
another, but offers different alternative functionality (e.g. for different computer
platforms).

Version

isacommon term for Revisons and Variants.

Isalso used to denote an identified product configuration with adefined status, typically
indicating alarger change than anew revision (e.g. version 5.0 of FrameMaker).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Configuration Management 19 - 23

List of definitions TIMe
Tools or manual procedures?

19-24 Configuration Management TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

	Introduction
	What
	Why this is important
	Objective
	Definition of terms

	Levels of control and management
	Version Control
	What can be obtained
	Techniques
	Revisions, Versions and Variants
	Variant Production
	Identification and selection of versions
	Figure 19-1: Revision tree (RCS type)

	Configuration Control
	What can be obtained
	Techniques
	Product structure
	Build support
	Configuration Description

	Configuration Management
	What can be obtained
	Techniques
	Roles in Configuration Management
	Figure 19-2: Roles in configuration management
	Quality Control Board
	Configuration responsible
	Configuration Management Plan
	Project Worker
	Change control
	Release support
	Process management

	Classification of configuration management tools
	Introducing Software Configuration Management into a company
	Tools or manual procedures?

	List of figures
	List of definitions
	Attribute
	Baseline
	Configuration
	Configuration Control
	Configuration Control Board
	Configuration Item
	Configuration Management
	Configuration Management Plan
	Identification
	Revision
	Status
	Variant
	Version

