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Schedulmg the SDL System Overview

» tasks of an SDL scheduler
» serialize SDL transition executions
» deliver SDL signals inter and intra SDL systems
» manage SDL timers

» integration approach
» single task scheduling
— PragmaDev'’s rtosless template

» adoption of PragmaDev's CPPScheduler for intra-task scheduling
— BiPS SDL Scheduler (BSS)

» signal-based (FIFO)
> non-preemptive execution of transitions

» scheduling of BSS as application of BAS

» SDL system runs with lower priority than BCS
> interruptible execution of the SDL system in favor of BiPS protocols
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Interfacing the SDL Environment — Overview

» tasks of the SDL environment
» providing access to hardware peripherals from within SDL systems
» transfer data to/from peripherals
» trigger the execution of the system in consequence of external events

» realization as SDL process — Environment Core Process (ECP)

» runs under control of BSS
» sub-divided into Environment Core Components (ECCs)
> access to BiPS functionality (drivers, protocols)
> interaction with SDL system via SDL signals
> consists of interface definition (SDL package) and implementation (C++)
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SDL Process P1 ECP BIPS
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registerSignal(UART_Init,this)

registerSignal(UART_Send,this)

UART Init(port1) H

notifySignal(UART _Init(...))

>
registerCallback
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1. ECP creates required ECCs depending on declared SDL signals
2. ECC registers responsible signals at ECP
3. ECP forwards signal to registered ECC
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Evaluation — Scenario

» objectives
1. functional evaluation
2. quantification of integration’s advantage over
pure SDL solution

» Scenario

slave 1 transmission slot synch phase

1 I |

master ' 50ms ' 100ms
slave 2 ' 1s

» realizations

1. SDL only (w/o BBS and MAC protocols of BiPS)
2. full SDL/BIPS integration
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» future work
» more sophisticated scheduling strategies
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BiPS — Multiplexer with Transmission Opportunities (

TXTO TXTO id=0 TXTO id=2
id =10 id=3 id=4
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SDL Environment: Class Diagram with Observer Pattern

notify observer
RTDS_Env_proc EnvSubject - EnvObserver
+registerSignal(signallD, observer) register +notifySignal(signal)

i 7 T3

. ECP . o o ECC
+forwardSignal(processID, signal) * |+execute()
+scheduleWakeup() _
+registerForExecution(ecc) 1 forwardSignal 0.
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