SDL Implementations for Wireless Sensor Networks
Incorporation of PragmaDev’s RTDS into the Deterministic Protocol Stack BiPS

Tobias Braun, Dennis Christmann, Reinhard Gotzhein, Alexander Mater
{tbraun, christma, gotzhein, a_mater09}@cs.uni-kl.de

http://vs.cs.uni-kl.de

Group m TECHNISCHE UNIVERSITAT

Nelworked Systems —-
I m KAISERSLAUTERN

2014-09-30 — SAM 2014, Valencia, Spain

Introduction BiPS
fore) oo

@ Introduction

© BiPS

© Incorporation of SDL into BiPS
@ Scheduling the SDL System
@ Interfacing the SDL Environment

ion of SDL into BiPS Evaluation Conclusions

O Evaluation

© Conclusions

1/22

Introduction BiPS Incorporation of SDL into BiPS Evaluation Conclusions
®0 3

» challenges of modern (wireless) sensor systems
» efficiency

> energy
> storage

predictability
» communication: Transfer rates, delays, ...
» software implementations: Run-time, waiting times

v

» complexity
> reuse

» determinism
>

« 2/ 22

Introduction BiPS Incorporation of SDL into BiPS Evaluation Conclusions
0 oo > oo

» challenges of modern (wireless) sensor systems
» efficiency — manual implementation

> energy
> storage

predictability — manual implementation

v

» communication: Transfer rates, delays, ...
» software implementations: Run-time, waiting times
» complexity — model-driven implementation
» reuse — model-driven implementation
» determinism — manual implementation
>

- 2 /22

Introduction BiPS
0

» challenges of modern (wireless) sensor systems
» efficiency — manual implementation

of SDL into BiPS Evaluation Conclusions

> energy
> storage

predictability — manual implementation

v

» communication: Transfer rates, delays, ...
» software implementations: Run-time, waiting times

» complexity — model-driven implementation
» reuse — model-driven implementation
» determinism — manual implementation
>

objective: Find a trade-off combining the benefits of manual and
model-driven implementations

« 2/ 22

Introduction B i PS

of SDL into BiPS E\/aluatlon Conclusions
oe o [e

Hybrid DeS|gn I\/Iodel driven vs. Hand-written

SDL (RTDS) » Specification and Description Language (SDL)
» language for the specification of distributed
BiPS systems

» tool support for model-driven implementations

hardware = use for applications and higher-layer protocols

- 3 /22

Introduction BlPS of SDL into BiPS E\/aluatlon Conclusions

oe

Hybrid DeS|gn I\/Iodel driven vs. Hand-written

SDL (RTDS) » Specification and Description Language (SDL)
» language for the specification of distributed
BiPS systems

» tool support for model-driven implementations

hardware = use for applications and higher-layer protocols

» Black burst-integrated Protocol Stack (BiPS)
» protocol framework for wireless sensor nodes
» operating system functionalities
» manual bare implementation for Imote2

= use for hardware-related functionality and
time-critical (MAC) protocols

- 3 /22

Introduction BIPS of SDL into BiPS E\/aluatlon Conclusions

oe

Hybrid DeS|gn I\/Iodel driven vs. Hand-written

SDL (RTDS) » Specification and Description Language (SDL)
—t—t » language for the specification of distributed
; systems
BiPS . . .
» tool support for model-driven implementations
hardware = use for applications and higher-layer protocols

» Black burst-integrated Protocol Stack (BiPS)
» protocol framework for wireless sensor nodes
» operating system functionalities
» manual bare implementation for Imote2

= use for hardware-related functionality and
time-critical (MAC) protocols

- 3 /22

Introductlon BIPS

Black burst- mtegrated Protocol Stack

ion of SDL into BiPS Evaluation Conclusions

© BiPS

'

4/22

Introduction BiPS Incorporation of SDL into BiPS Evaluation Conclusions

[e]e] [Je} 0000000000 oo

BiPS — (Deterministic) Protocols

» BBS - Synchronization protocol with bounded offset SDL (RTDS)
> RB — reservation-based MAC (TDMA) a
> CB — contention-based MAC (CSMA/CA)
> . hardware
A ‘ sensor application, control algorithm, ... ‘ 4 - applications
oW
Q_< p "TTTTTTTTTmmmmmmmmmmmmmnn ¢'"'""'"""'"""""""""" N
©cm: - - : 3 - higher-layer
vé ‘ clustering, rOLitIng, middleware... ‘ protocols
MAC -
‘ multiplexer ‘

[
BBS | [AcTP|| RB | CB | MB |
black burst

schedulers

communication
(BCS)

HW timers, GPIO, DMA,...
software

- 5/ 22

Introduction BiPS Incorporation of SDL into BiPS Evaluation Conclusions

BiPS — Operating System Functionalities
» hardware drivers SDL (RTDS)
» schedulers a
» BiPS Communication Scheduler (BCS)
» BiPS Application Scheduler (BAS) hardware

sensor application, control algorithm, ... 4 - applications

X0}
-] [— 1 T
© o - - - 3 - higher-layer
= ‘ clustering, rOLitIng, middleware... ‘ protocols
%]
o MAC :
% S ‘ multiplexer
T 5 ¥
U © -
S 2@l [88s|[acTp|[RE | CB [M8 | 2 - protocols
E @} | black burst
<
T — e
| transceiver (CC2420) | uART,LED,... | 1 - drivers
_________________________ e e R
o - 0 - system
BiPS | HW timers, GPIO, DMA, ... | S,

[6 /22

Introduction BiPS
fore) oo

Incorporation of SDL into BiPS

@ Introduction

© BiPS

© Incorporation of SDL into BiPS
@ Scheduling the SDL System
@ Interfacing the SDL Environment

ion of SDL into BiPS Evaluation Conclusions

O Evaluation

© Conclusions

7/ 22

Introduction BiPS Incorporation of SDL into BiPS Evaluation Conclusions
oo oo ©000000000 oo

Incorporation of SDL into BiPS — Integration Steps

SDL (RTDS)
> integration steps —Ft+—
1. schedule the SDL system with BAS i
2. interface the SDL environment with BiPS o
araware

4 - applications

T I o oY IS~ S SrS— —
) 3 - higher-layer
protocols
o =x_ 2 >— 71\
‘0 o
i3.8
‘0 ® 2 - protocols
=R} p
{02
{73
g

E —M——m—m@/ ¥ /4 1 N7

S

1 - drivers
BiPS | W Amers, PO DA | O-system

I ! ! r software

GE—— 8 /22

Introduction BiPS Incorporati
oo oo ©®0000c¢

Incorporation of SDL into BiPS

© Introduction

O BiPS

© Incorporation of SDL into BiPS
@ Scheduling the SDL System

f SDL into BiPS Evaluation Conclusions

O Evaluation

© Conclusions

9/ 22

Introductlon BIPS f SDL into BiPS Evaluation Conclusions

Schedulmg the SDL ystem Overview)

» tasks of an SDL scheduler

» serialize SDL transition executions
» deliver SDL signals inter and intra SDL systems
» manage SDL timers

GEE 10 / 22

Introductlon BIPS i of SDL into BiPS Evaluation Conclusions

Schedulmg the SDL System Overview

» tasks of an SDL scheduler
» serialize SDL transition executions
» deliver SDL signals inter and intra SDL systems
» manage SDL timers

» integration approach
» single task scheduling
— PragmaDev'’s rtosless template

» adoption of PragmaDev's CPPScheduler for intra-task scheduling
— BiPS SDL Scheduler (BSS)

» signal-based (FIFO)
> non-preemptive execution of transitions

» scheduling of BSS as application of BAS

» SDL system runs with lower priority than BCS
> interruptible execution of the SDL system in favor of BiPS protocols

G 10 / 22

Introduction BiPS Incorporation of SDL into BiPS Evaluation Conclusions

[e]e] ©000@000000 oo

Scheduling the SDL System — BSS in BiPS

: : || 3/4 - higher-layer protocols / applications
»
: :|| | SDL system =)
; m
0 Process | [Process s
P A B <
: E=E 3
o 4 g
2 G BiPS -
;8 SDL Scheduler g
o (BSS) 8
O E o
M OS template P
2- t |
n: protocois
O T T T
o
: | 1-drivers
Bi PS 0 - system software

o 11 /22

Introduction BiPS Incorporation of SDL into BiPS Evaluation Conclusions
oo 0000800000 oo

Scheduling the SDL System — Comments on BSS

» realization of SDL time (NOW)

» derivation from hardware clock TIMER ti; N

. . DCL p Duration := 100;
» fine-grained (1 pus) DCL t Time:

t:=NOW + p;
SET(t, ti);

[
/*
Perform operations

*/

o 12 /22

Introductlon BIPS of SDL into BiPS Evaluatlon Conclusions

Schedulmg the SDL ystem Comments on BSS

» realization of SDL time (NOW)

» derivation from hardware clock TIMER ti; AN
. . DCL p Duration := 100;
» fine-grained (1 pus)

DCL t Time;
» incorporation of SDL timers
» SDL SET with absolute time values
» delegation to timer system of BAS t:= NOW + p;
. SET(t, ti);
— setup of hardware timer |
» expiration of timer by hardware interrupt 7%
— execution of BSS after interrupt mode Perform operations
*/

o 12 /22

Introductlon BIPS of SDL into BiPS Evaluatlon Conclusions

Schedulmg the SDL ystem Comments on BSS

» realization of SDL time (NOW)

» derivation from hardware clock TIMER ti; AN
. . DCL p Duration := 100;
» fine-grained (1 pus)

DCL t Time;
» incorporation of SDL timers
» SDL SET with absolute time values
» delegation to timer system of BAS t:= NOW + p;
. SET(t, ti);
— setup of hardware timer |
» expiration of timer by hardware interrupt 7%
— execution of BSS after interrupt mode Perform operations
*/

» processing of external events

» announced by hardware interrupts

» execution of BSS via BAS after interrupt mode

o 12 / 22

Introduction BiPS

[e]e]

Scheduling the S

Incorporation of SDL into BiPS

Evaluation
©0000e0

oo

— Mode of Operation

Conclusions

BAS

% wakeup

BSS

(ExecuteSDLSystem
update
SDL time

create
timer signals for
expired timers

execute
signal transition

timers expired?

enqueue into SDL

h execute
signal queue

scheduled
Environment

from can-
celled timer?

get signal from
signal queue

signal queue empty?

false true

timer queue empty?
schedule wakeup timestamp get timestamp of
at timestamp next timer

| N

13/ 22

Introduction BiPS tion of SDL into BiPS Evaluation Conclusions
[e]e] oo oo

@000

corporation of SDL into BiPS

© Introduction

O BiPS
© Incorporation of SDL into BiPS

@ Interfacing the SDL Environment
O Evaluation

© Conclusions

14 / 22

Introduction BiPS

ion of SDL into BiPS Evaluation Conclusions
[e]e) [e]e)

@00

Interfacing the SDL Environment — Overview

» tasks of the SDL environment

» providing access to hardware peripherals from within SDL systems
» transfer data to/from peripherals
» trigger the execution of the system in consequence of external events

[15 / 22

Introduction BiPS

oration of SDL into BiPS Evaluation Conclusions
oo oo

000®00

Interfacing the SDL Environment — Overview

» tasks of the SDL environment
» providing access to hardware peripherals from within SDL systems
» transfer data to/from peripherals
» trigger the execution of the system in consequence of external events

» realization as SDL process — Environment Core Process (ECP)

» runs under control of BSS
» sub-divided into Environment Core Components (ECCs)
> access to BiPS functionality (drivers, protocols)
> interaction with SDL system via SDL signals
> consists of interface definition (SDL package) and implementation (C++)

[15 / 22

Introduction BiPS Incorporation of SDL into BiPS Evaluation Conclusions
oo oo 0000000080 oo

3/4 - higher-layer protocols / aBEIications

SDL system Environment|: UART-ECC
Core UART-ECC TO-ECC

Process § | P(rgéiis interface i interface
A B §: i definition i definition
A — : =

- i ; .
BiPS UART-ECC TO-ECC
SDL Scheduler [f: *| implementation |ii| implementation
(BSS) ; ;

OS template

SRR —

A
|
v

Mmaweld JusWuUoIIAUg 1dS!

schedulers

2 - protocols | multiplexer

Bi PS 0 - system software

GEEE———— 16 / 22

Introduction BiPS Incorporation of SDL into BiPS Evaluation Conclusions
oo oo ©000000000e oo

Interfacing the SDL Environment — Initialization of ECCs

SDL Process P1 ECP BIPS
| - _n?Vll yéR_T__E(_:C_(t_hI_S)_ > UART-ECC |
! ir [uarr-ecc | .

1. ECP creates required ECCs depending on declared SDL signals

[17 / 22

Introduction BiPS Incorporation of SDL into BiPS Evaluation Conclusions
oo oo ©000000000e oo

Interfacing the SDL Environment — Initialization of ECCs

SDL Process P1 ECP BIPS
new UART-ECC(this) -
—————————————— UART-ECC

registerSignal(UART_Init,this)

registerSignal(UART_Send,this)

1. ECP creates required ECCs depending on declared SDL signals
2. ECC registers responsible signals at ECP

[17 / 22

Introduction BiPS

ation of SDL into BiPS Evaluation Conclusions

oooe

Interfacing the SDL Environment — Initialization of ECCs

SDL Process P1 ECP BIPS
| _ hew UART-ECC(this) o ore o

registerSignal(UART_Init,this)

registerSignal(UART_Send,this)

UART Init(port1) H

notifySignal(UART _Init(...))

>
registerCallback

T L1 (UART_REC, portl) [::l

1. ECP creates required ECCs depending on declared SDL signals
2. ECC registers responsible signals at ECP
3. ECP forwards signal to registered ECC

G 17 / 22

Introduction BiPS Evaluation Conclusions

[e]e] oo oo

Evaluation

O Evaluation

18 / 22

Introduction BiPS Incorporation of SDL into BiPS Evaluation Conclusions

[e]e] oo 0000000000 0

Evaluation — Scenario

» objectives
1. functional evaluation
2. quantification of integration’s advantage over
pure SDL solution

» Scenario

slave 1 transmission slot synch phase

1 I |

master ' 50ms ' 100ms
slave 2 ' 1s

» realizations

1. SDL only (w/o BBS and MAC protocols of BiPS)
2. full SDL/BIPS integration

G 19 / 22

Introduction BiPS of SDL into BiPS Evaluation Conclusions
oo oo c > oce
Evaluation — Results

o _|

® T

o _| |

N '

0
|

synch offset [us]
10
|
-4

o
e
I
a
SDL SDL/BiPS SDL SDL/BiPS
w/o load w/ load

synchronization offset (slaves only)

G 20 / 22

Introduction BiPS Incorporation of SDL into BiPS Evaluation Conclusions

[e]e] oo 0000000000

oce

Evaluation — Results

20
1

synch offset [us]
10
|
-4

O i === v
] ey ' pry
o 1
.
i
1
e H
e

I 1
a

SDL SDL/BiPS SDL SDL/BiPS

w/o load w/ load

synchronization offset (slaves only)

3
« T
1
1
o 1
S | -
o
= =
- 1 1
o - 1
Zo i
e
9o
T
= o
S
©
o _|
v
—— —
O
SDL SDL/BiPS SDL SDL/BiPS
w/o load w/ load

temporal deviation of data frames

G 20 / 22

Introduction BiPS Evaluation Conclusions

[e]e] oo oo

Conclusions

© Conclusions

21 /22

Introduction BiPS Incorporation of SDL into BiPS Evaluation Conclusions

[e]e] oo 0000000000 oo

Conclusions

» results of incorporating SDL into BiPS

» BSS: extended SDL scheduler under control of BiPS
» extendible and modular environment framework

O 22/ 22

Introduction BiPS

oo

Conclusions

» results of incorporating SDL into BiPS

» BSS: extended SDL scheduler under control of BiPS
» extendible and modular environment framework

f SDL into BiPS Evaluation Conclusions

> lessons learned

1. hybrid approaches have advantages w.r.t. efficiency and predictability
2. BiPS is an adequate framework and basis for SDL
3. RTDS provides a flexible interface for new software platforms

o 22/ 22

Introduction BiPS

oo

Conclusions

» results of incorporating SDL into BiPS

» BSS: extended SDL scheduler under control of BiPS
» extendible and modular environment framework

f SDL into BiPS Evaluation Conclusions

> lessons learned

1. hybrid approaches have advantages w.r.t. efficiency and predictability
2. BiPS is an adequate framework and basis for SDL
3. RTDS provides a flexible interface for new software platforms

» future work
» more sophisticated scheduling strategies

o 22/ 22

SDL Environment — Signals from External Events

SDL Process
P1

EVENT_emit

Interrupt Context

wakeup

1

I
J.

I
|
U
i
I
I

1/3

BiPS — Multiplexer with Transmission Opportunities (

TXTO TXTO id=0 TXTO id=2
id =10 id=3 id=4
prio=0 prio=1 prio = 0

\}
<N
é&% virt. slot BBS
e region synch phase
: macro slot

super slot

SDL Environment: Class Diagram with Observer Pattern

notify observer
RTDS_Env_proc EnvSubject - EnvObserver
+registerSignal(signallD, observer) register +notifySignal(signal)

i 7 T3

. ECP . o o ECC
+forwardSignal(processID, signal) * |+execute()
+scheduleWakeup() _
+registerForExecution(ecc) 1 forwardSignal 0.

	Introduction
	BiPS
	Incorporation of SDL into BiPS
	Scheduling the SDL System
	Interfacing the SDL Environment

	Evaluation
	Conclusions
	Appendix

