Efficient Representation of Timed UML 2 Interactions

Alexander Knapp
Universität Augsburg
Harald Störrle
Danmarks Tekniske Universitet

Traces (of Untimed Interactions)

- Direct enumeration of traces of occurrence specifications
 - 6 traces
 - (a)(b)(c)(d)
- a c b d
- \bigcirc a d b
- **a c d b**
- \bigcirc dab

[St. 2003]

Phase Automata

- Traces captured by runs from initial to final state
 - ▶ 9 states, 12 transitions

[K., Wuttke 2006]

Prime Event Structures (1)

- ► Traces captured by linearisations of maximal configurations
 - Events: $E = \{(a, b, c, d)\}$
 - Set of events (occurrence specifications), which may occur
 - ► Causality relation on events: (a) < (b), (c) < (d)</p>
 - Partial order, describing which event must occur before which other
 - - Symmetric exclusion relation with: if $e \sharp e' \preceq e''$, then $e \sharp e''$
 - Maximal configuration
 - maximal downwards closed set of events not containing conflicting events

Prime Event Structures (2)

- ightharpoonup Events: $E = \{a, b, c, d\}$
- Causality relation: (a) \prec (b), (c) \prec (d)
- Conflict relation w.r.t. <: (a) # (c)

Prime Event Structures (3)

Consider

strict(alt(a, b), c)

For prime event structure representation

- ▶ a and b are in conflict
- a and b are before c

Leads to duplication of © into ©1 and ©2

- ▶ (a) and (b) are in conflict
- ▶ a before c1, b before c2

In strict(alt(@, b), T) all of T has to be duplicated.

Also problems with expressing asymmetric conflicts, like for break.

Approach

Keep constraints approach of event structures

- direct representation of basic interactions
 - partially ordered occurrence specifications
- compact format for par, strict, seq

Avoid necessity of duplication and symmetric conflicts

asymmetric event structures, flow event structures

Integrate timing constraints

- ▶ duration constraints $o_2 o_1 \bowtie d$ with $\bowtie \in \{<, \leq, \geq, >\}$
- duration constraints $\ell \bowtie d$ for an interaction fragment

Example

▶ Interaction structure (O, R, X, Θ)

$$\begin{split} O &= \{ @, @, @, @, @ \} \\ R &= \{ @ \to @, @ \to @ \} \\ X &= \{ @ \leadsto @, @ \leadsto @, @ \leadsto @, @ \leadsto @ \} \\ \Theta &= @ - @ \leq 1 \end{split}$$

▶ Traces of (O, R, X, Θ)

$$\begin{split} & \left\langle \text{SND}(\mathbf{A}, \mathbf{B}, \text{ring}), t_1 \right\rangle \left\langle \text{RCV}(\mathbf{A}, \mathbf{B}, \text{ring}), t_2 \right\rangle, \quad t_1, t_2 \in \mathbb{R}_{\geq 0}, \quad t_2 - t_1 \leq 1 \\ & \left\langle \text{SND}(\mathbf{A}, \mathbf{B}, \text{bang}), t_3 \right\rangle \left\langle \text{RCV}(\mathbf{A}, \mathbf{B}, \text{bang}), t_4 \right\rangle, \quad t_1, t_2 \in \mathbb{R}_{\geq 0} \end{split}$$

Interaction Structures

- ► Finite set of occurrence specifications *O*
 - events conforming to these occurrence specifications are allowed to be observed
- ▶ Binary relation $R \subseteq O \times O$ specifying a causality relation
 - ▶ partial order \leq_R
 - event ordering on a trace must not contradict \leq_R
- ▶ Binary relation $X \subseteq O \times O$ specifying an inhibition relation w.r.t. R
 - ▶ irreflexive relation $\triangleright_{(R,X)}$ with $o_2 \triangleright_{(R,X)} o_3$ iff there is an $o_1 \in O$ with $o_1 \preceq_R o_2$ and $(o_1,o_3) \in X$
 - for a trace, $o_1 \rhd_{(R,X)} o_2$ inhibits an event conforming to o_2 to occur after an event conforming to o_1
- Timing constraint Θ
 - conjunctive or disjunctive combination of timing constraints of the form $o_2 o_1 \bowtie d$

Traces of Interaction Structures

Interaction structure (O, R, X, Θ)

Sequence of occurrence specifications $o_1 \ldots o_k$ conforms to R and X if o_j minimal element of $(O_j, \preceq_R \cap (O_j \times O_j))$ with

$$O_j = O \setminus (\{o_1, \dots, o_{j-1}\} \cup \{o \in O \mid \exists 1 \le i \le j-1 . o_i \rhd_{(R,X)} o\})$$

each o_i minimal w.r.t. causality, and not inhibited

 $o_1 \, \ldots \, o_k$ allowed by (O,R,X,Θ) if it conforms to R and X and it is maximal

▶ no $o \in O \setminus \{o_1, \dots, o_k\}$ such that $o_1 \dots o_k o$ conforms to R and X

Trace of timed events $e_1 \ldots e_k$ for (O, R, X, Θ) if

- ▶ there is a trace $o_1 \ldots o_l$ allowed by (O, R, X, Θ)
- lacktriangle the events e_i can be correctly labelled with occurrence specifications o_j
- \blacktriangleright the timing constraint Θ is satisfied w.r.t. to the labelling

Examples (1)

Interaction structure (O, R, X, Θ) for strict(alt(@, b), @)

$$O = \{(a, b, c)\}$$

$$R = \{ (a) \rightarrow (c), (b) \rightarrow (c) \}$$

$$X = \{ (a) \leadsto (b), (b) \leadsto (a) \}$$

 $\Theta = \text{true}$

Sequences of occurrence specifications allowed by (O, R, X, Θ)

- ac
- **b c**

Examples (2)

▶ Interaction structure (O, R, X, Θ)

$$O = \{ (\mathbf{a}, (\mathbf{b}), (\mathbf{c}), (\mathbf{d}) \}$$

$$R = \{ (a) \rightarrow (b), (c) \rightarrow (d) \}$$

$$X = \{ (c) \leadsto (a), (c) \leadsto (b), (d) \leadsto (a), (d) \leadsto (b), (b) \leadsto (c), (b) \leadsto (d) \}$$

$$\Theta = \text{true}$$

- ▶ Sequences of occurrence specifications allowed by (O, R, X, Θ)
 - (a)(b)
 - a c d
 - (c)(d)

12/18

Deriving Interaction Structures (1)

Basic interactions

$$\mathcal{S}[\![(O,\rightarrow)]\!]=(O,\rightarrow,\emptyset,\mathsf{true})$$

▶ Strict sequencing of $\mathcal{S}[\![T_i]\!] = (O_i, R_i, X_i, \Theta_i)$ $\mathcal{S}[\![\mathsf{strict}(T_1, T_2)]\!] = (O_1 \cup O_2, R_1 \cup R_2 \cup \{o_1 \rightarrow o_2 \mid o_1 \in O_1, \ o_2 \in O_2\}, X_1 \cup X_2, \Theta_1 \land \Theta_2)$

▶ Weak sequencing of $S[T_i] = (O_i, R_i, X_i, \Theta_i)$

$$\begin{split} \mathcal{S}[\![\mathsf{seq}(T_1,T_2)]\!] &= (O_1 \cup O_2, \\ R_1 \cup R_2 \cup \{o_1 \to o_2 \mid o_1 \in O_1, \ o_2 \in O_2, \ o_1 \not \approx o_2\}, \\ X_1 \cup X_2, \\ \Theta_1 \wedge \Theta_2) \end{split}$$

• where $o_1 \times o_2$ holds if o_1 and o_2 are on the same lifeline

Deriving Interaction Structures (2)

▶ Parallel composition of $\mathcal{S}[\![T_i]\!] = (O_i, R_i, X_i, \Theta_i)$ $\mathcal{S}[\![\mathsf{par}(T_1, T_2)]\!] = (O_1 \cup O_2, R_1 \cup R_2, X_1 \cup X_2, \Theta_1 \wedge \Theta_2)$

 $\Theta_1 \wedge \Theta_2$

- ▶ Alternative composition of $\mathcal{S}[\![T_i]\!] = (O_i, R_i, X_i, \Theta_i)$ $\mathcal{S}[\![\mathsf{alt}(T_1, T_2)]\!] = (O_1 \cup O_2, R_1 \cup R_2, X_1 \cup X_2 \cup \{o_1 \leadsto o_2 \mid o_1 \in O_1, \ o_2 \in O_2\} \cup \{o_2 \leadsto o_1 \mid o_1 \in O_1, \ o_2 \in O_2\},$
- ▶ Breaking of $\mathcal{S}[\![T_1]\!] = (O_1,R_1,X_1,\Theta_1)$ by $\mathcal{S}[\![T_2]\!] = (O_2,R_2,X_2,\Theta_2)$ $\mathcal{S}[\![\mathsf{break}(T_1,T_2)]\!] = (O_1 \cup O_2, \\ R_1 \cup R_2, \\ X_1 \cup X_2 \cup \{o_2 \leadsto o_1 \mid o_1 \in O_1, \ o_2 \in O_2\} \cup \\ \{o_1 \leadsto o_2 \mid o_1 \in \mathsf{Max}(O_1, \preceq_{R_1}), \ o_2 \in O_2\}, \\ \Theta_1 \land \Theta_2)$

Deriving Interaction Structures (3)

▶ Timing constraints for $\mathcal{S}[\![T]\!] = (O, R, X, \Theta)$

$$\mathcal{S}[\![\mathsf{tmconstr}(T,\Gamma)]\!] = (O,R,X,\Theta \wedge \Theta_{\Gamma})$$

with expansion of $\ell\bowtie d$ for $\bowtie\in\{<,\leq\}$ into

$$\bigwedge\{o_2 - o_1 \bowtie d \mid o_2 \in \operatorname{Max}(O, \preceq_R), o_1 \in \operatorname{Min}(O, \preceq)\}$$

and of $\ell\bowtie d$ for $\bowtie\in\{>,\geq\}$ into

$$\bigvee \{o_2 - o_1 \bowtie d \mid o_2 \in \operatorname{Max}(O, \preceq_R), o_1 \in \operatorname{Min}(O, \preceq)\}$$

$$(b - a \ge 2) \lor (b - c \ge 2) \lor (d - a \ge 2) \lor (d - c \ge 2)$$

Performance

Conformance Checking

17/18

Conclusions and Future Work

- Efficient representation of UML 2 interactions
 - based on asymmetric event structures
 - declarative format using constraints
- Handling of empty traces, like for opt
 - "virtual" occurrence specifications for start and end of an interaction fragment
- Inclusion of negative behaviour, i.e., neg and assert
 - In fact, a trace violating a timing constraint is negative (invalid).
- Run-time verification