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SnT Software Verification and Validation Lab 

•  SnT centre, Est. 2009: Interdisciplinary, 
ICT security-reliability-trust 

•  230 scientists and Ph.D. candidates, 20 
industry partners 

•  SVV Lab: Established January 2012, 
www.svv.lu 

•  25 scientists (Research scientists, 
associates, and PhD candidates) 

•  Industry-relevant research on system 
dependability: security, safety, reliability 

•  Six partners: Cetrel, CTIE, Delphi, SES, 
IEE, Hitec … 
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An Effective, Collaborative Model of Research 
and Innovation 

Basic&Research& Applied&Research&

Innova3on&&&Development&

•  Basic and applied research take place in a rich context  

•  Basic Research is also driven by problems raised by applied 
research, which is itself fed by innovation and development 

•  Publishable research results and focused practical solutions that 
serve an existing market.  3 

Schneiderman, 2013 



Collaboration in Practice 

•  Well-defined problems in context 
•  Realistic evaluation 
•  Long term industrial collaborations 
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Motivations 

•  The term “verification” is used in its wider sense: Defect 
detection and removal 

•  One important application of models is to drive and automate 
verification 

•  In practice, despite significant advances in model-based testing, 
this is not commonly part of practice 

•  Decades of research have not yet significantly and widely 
impacted practice 
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Applicability? 
Scalability? 



Definitions 

•  Applicable: Can a technology be efficiently and 
effectively applied by engineers in realistic 
conditions?  
–  realistic ≠ universal 
–  includes usability 

•  Scalable: Can a technology be applied on large 
artifacts (e.g., models, data sets, input spaces) and 
still provide useful support within reasonable effort, 
CPU and memory resources? 
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Outline 

•  Project examples, with industry collaborations 
 

•  Lessons learned regarding developing applicable and 
scalable solutions (our research paradigm) 

•  Meant to be an interactive talk – I am also here to 
learn 
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Some Past Projects (< 5 years) 
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Company Domain Objective Notation Automation 

Cisco Video conference Robustness testing UML profile Search, model 
transformation 

Kongsberg Maritime Oil & Gas CPU usage UML+MARTE Constraint Solving 

WesternGeco Marine seismic 
acquisition 

Functional testing  UML profile + MARTE Search, constraint 
solving 

SES Satellite Functional and 
robustness testing, 
requirements QA 

UML profile Search, Model 
mutation, NLP 

Delphi Automotive systems Testing safety
+performance 

Matlab/Simulink Search, machine 
learning, statistics 

CTIE Legal & financial Legal Requirements 
testing 

UML Profile Model transformation, 
constraint checking 

HITEC Crisis Support systems Security, Access 
Control 

UML Profile Constraint verification, 
machine learning, 
Search 

CTIE eGovernment Conformance testing UML Profile, BPMN, 
OCL extension 

Domain specific 
language, Constraint 
checking 

IEE Automotive, sensor 
systems 

Functional and 
Robustness testing, 
traceaibility and 
certification 

UML profile, Use Case 
Modeling extension, 
Matlab/Simulink 
 

NLP, Constraint solving 



Testing Closed-Loop Controllers 
  

References:  
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•  R. Matinnejad et al., “MiL Testing of Highly Configurable Continuous Controllers: 
Scalable Search Using Surrogate Models”, IEEE/ACM ASE 2014 

•  R. Matinnejad et al., “Search-Based Automated Testing of Continuous Controllers: 
Framework, Tool Support, and Case Studies”, Information and Software Technology 
(2014) 

 



Dynamic continuous controllers are present in 
many embedded systems 
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Development Process (Delphi) 

12 

Hardware-in-the-Loop 
Stage

Model-in-the-Loop  
Stage

Simulink Modeling

 Generic 
Functional

Model

MiL Testing

Software-in-the-Loop 
Stage

Code Generation
and Integration

Software Running 
on ECU

SiL Testing

 Software
Release

HiL Testing



Controllers at MIL 
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Inputs, Outputs, Test Objectives 
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Process and Technology 
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Process and Technology (2) 
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Process and Technology (3) 
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Challenges, Solutions 

•  Achieving scalability with configuration parameters:  
–  Simulink simulations are expensive 
–  Sensitivity analysis to eliminate irrelevant 

parameters 
–  Machine learning (Regression trees) to partition 

the space automatically and identify high-risk 
areas 

–  Surrogate modeling (statistical and machine 
learning prediction) to predict properties and avoid 
simulation, when possible 
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Results 

•  Automotive controllers on Electronics Control Units 

•  Our approach enabled our partner to identify worst-
case scenarios that were much worse than known 
and expected scenarios, entirely automatically 
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Fault Localisation in Simulink Models 
 

Reference:  
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•  Bing Liu et al., “Kanvoo: Fault Localization in Simulink Models”, submitted 
 



Context and Problem 
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•  Simulink models 
–  are complex 

•  hundreds of blocks and lines 
•  many hierarchy levels 
•  continuous functions 

–  might be faulty 
•  output signals do not match 
•  wrong connection of lines 
•  wrong operators in blocks 

•  Debugging Simulink models is 
–  difficult 
–  time-consuming 
–  but yet crucial 

•  Automated techniques to support debugging? 



Context and Problem (2) 
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•  Simulink models 
–  are complex 

•  hundreds of blocks and lines 
•  many hierarchy levels 
•  continuous functions 

–  might be faulty 
•  output signals do not match 
•  wrong connection of lines 
•  wrong operators in blocks 

•  Debugging Simulink models is 
–  difficult 
–  time-consuming 
–  but yet crucial 

•  Automated techniques to support debugging? 



Solution Overview 
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Evaluation and Challenges 

•  Good accuracy overall: 5-6% blocks must be inspected on 
average to detect faults 

•  But less accurate predictions for certain faults: Low observability 
•  Possible Solution: Augment test oracle (observability) 

–  Use subsystems outputs 
–  Iterate at deeper levels of hierarchy 
–  Tradeoff: cost of test oracle vs. debugging effort 
–  2.3% blocks on average 

•   5-6%: still too many blocks for certain models 
•  Information requirements to help further filtering blocks? 
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Modeling and Verifying Legal 
Requirements 

 
Reference:  

25 

•  G. Soltana et al., “ UML for Modeling Procedural Legal Rule”, IEEE/ACM MODELS 
2014 

•  M. Adedjouma et al., “Automated Detection and Resolution of Legal Cross 
References”, RE 2014 



Context and Problem 
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•  CTIE: Government computer centre in Luxembourg 

•  Large government (information) systems  

•  Implement legal requirements, must comply with the 
law 

•  The law usually leaves room for interpretation and 
changes on a regular basis, many cross-references 

•  Involves many stakeholders, IT specialists but also 
legal experts, etc.  



Article Example 

Art. 105bis […]The commuting expenses deduction (FD) is 
defined as a function over the distance between the principal 
town of the municipality on whose territory the taxpayer's home 
is located and the place of taxpayer’s work. The distance is 
measured in units of distance expressing the kilometric distance 
between [principal] towns. A ministerial regulation provides 
these distances.  
 
The amount of the deduction is calculated as follows:  
If the distance exceeds 4 units but is less than 30 units, the 
deduction is € 99 per unit of distance. 
The first 4 units does not trigger any deduction and the 
deduction for a distance exceeding 30 units is limited to € 
2,574. 



Project Objectives 
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Objective Benefits 
Specification of legal requirements 
•  including rationale and traceability 

to the text of law 

• !Make interpretation of the law explicit 
•  Improve communication 
•  Prerequisite for automation 

Checking consistency of legal 
requirements 

•  Prevent errors in the interpretation of 
the law to propagate 

Automated test strategies for checking  
system compliance to legal requirements 

 

•  Provide effective and scalable ways to 
verify compliance Run-time verification mechanisms to 

check compliance with legal 
requirements 
Analyzing the impact of changes in the 
law 

•  Decrease costs and risks associated 
with change 
•  Make change more predictable 



Solution Overview 
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Research Steps 
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2. Build UML 
profile 

3. Model 
Transformation 
to enable V&V 

•  What information 
content should we 
expect? 

•  What are the 
complexity factors? 

•  Explicit means for 
capturing information 
requirements  

•  Basis for modeling 
methodology 

•  Target: Legal experts 
and IT specialists 

•  Target existing 
automation techniques 

•  Solvers for testing 
•  MATLAB for simulation 

1. Conduct 
grounded 
theory study 



Example 
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Art. 105bis […]The commuting 
expenses deduction (FD) is 
defined as a function over the 
distance between the principal 
town of the municipality on whose 
territory the taxpayer's home is 
located and the place of 
taxpayer’s work. The distance is 
measured in units of distance 
expressing the kilometric distance 
between [principal] towns. A 
ministerial regulation provides 
these distances.  

Interpretation + Traces 



Example 

32 

The amount of the deduction is 
calculated as follows:  
If the distance exceeds 4 units but is 
less than 30 units, the deduction is € 
99 per unit of distance. 
The first 4 units does not trigger any 
deduction and the deduction for a 
distance exceeding 30 units is limited 
to € 2,574. 

Interpretation + Traces 



Challenges and Results 

•  Profile must lead to models that are:  
–  understandable by both IT specialists and legal experts 
–  precise enough to enable model transformation and support 

our objectives 
–  tutorials, many modeling sessions with legal experts 

•  In theory, though such legal requirements can be captured by 
OCL constraints alone, this is not applicable 

•  That is why we resorted to customized activity modeling, 
carefully combined with a simple subset of OCL 

•  Many traces to law articles, dependencies among articles: 
automated detection (NLP) of cross-references 33 



Run-Time Verification of 
 Business Processes 

References:  

34 

•  W. Dou et al., “OCLR: a More Expressive, Pattern-based Temporal Extension of 
OCL”, ECMFA 2014 

•  W. Dou et al., “Revisiting Model-Driven Engineering for Run-Time Verification of 
Business Processes”, IEEE/ACM SAM 2014 

•  W. Dou et al., “A Model-Driven Approach to Offline Trace Checking of Temporal 
Properties with OCL”, submitted 



Context and Problem 

•  CTIE: Government Computing Centre of Luxembourg 

•  E-government systems mostly implemented as business 
processes 

•  CTIE models these business processes 

•  Business models have temporal properties that must be 
checked 
–  Temporal logics not applicable 
–  Limited tool support (scalability) 

•  Goal: Efficient, scalable, and practical off-line and run-time 
verification 35 



Solution Overview 

36 



Solution Overview 
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•  We identified patterns based on 
analyzing many properties of real 
business process models 

•  Properties must be defined based on 
business process models (BPMN) 
according to modeling methodology 
at CTIE (applicability) 

•  The goal was to achieve usability 
•  Early adoption by our partner 



Solution Overview 
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•  Want to transform the checking of 
temporal constraints into checking 
regular constraints on trace 
conceptual model 

•  OCL engines (Eclipse) are our target, 
to rely on mature technology 
(scalability) 

•  Defined extension of OCL to facilitate 
translation 

•  Target: IT specialists, BPM analysts 



Scalability Analysis 

•  Analyzed 47 properties in Identity Card Management System 
•  “Once a card request is approved, the applicant is notified within 

three days; this notification has to occur before the production of 
the card is started.” 

•  Scalability: Check time as a function of trace size … 
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Fig. 3: Average check time of properties with globally and before scopes

eight properties with the before scope (properties P13–P20 in
Table I) and eleven properties with the after scope (properties
P21–P31 in Table I).

1) Trace Generation Strategy: For both types of scopes,
we fix the length of the generated trace to 100K; what we
vary in the various traces is the length of the sub-trace as
determined by the scope boundary, i.e., we vary the position
of the boundary event in the trace. In the case of properties
with a before scope, the boundary event is placed in positions
from 10K to 100K, with a 10K step increment; dually, for
properties with an after scope, the position of the boundary
event varies from 10K to 90K, with a 10K step increment.

For properties referring to a specific occurrence of an event
in their scope part, such as before 3 B. . . or after 4 A. . . , we
only control the position of the actual scope boundary (e.g.,
the third occurrence of B or the fourth occurrence of A in
the examples above); the other previous occurrences of the
boundary event are generated in random positions before the
actual boundary event.

The generation of the patterns in properties follows the
same steps described in Section VI-A1.

2) Evaluation: The relationship between the average check
time for properties with the before scope and the boundary
position is shown in Fig. 3(c). For the sake of readability, we
omitted the data line for properties P13–P16, since their trend
is very similar to the one of P17. We also omitted the indication
of the standard deviation, since it is quite low (CV= 0.01).

We also measured the overhead to compute the sub-trace
on which to check each property pattern, which corresponds
to the time required to find the scope boundary. Based on
our measurements, this time is independent from the actual
position of the boundary in the trace and on average it amounts
to one hundred milliseconds. Although not shown in a plot, the
properties using the after scope have a similar trend.

C. Properties using the Between-and scope

Properties with a between-and scope, similarly to the ones
with a before/after scope, are checked on a portion of trace

provided in input. Depending on the variant of this scope, the
portion of the trace on which properties are checked might
include one or more segments. The scopes used in properties
P32–P35 (see Table I) can potentially select multiple segments
on a trace, while the scopes in properties P36–P38 (see Table I)
select exactly one segment on a trace, as determined by the
specific event occurrence used in the scope boundaries (e.g.,
as in the case of between 3 A and 2 B).

1) Trace Generation Strategy: For both types of between-
and scope variants, we fix the length of the generated trace to
100K. For properties P32–P35, we could control two param-
eters for the trace generation: the length L of each segment
selected by the scope and the number of segments N. By fixing
L to 2000, we can split the 100K trace into 50 segments. The
generator varies the number N of actual segments to select
from 5 to 50, with a 5-step increment. By fixing N to 20, and
assuming a minimum length of 2000 for a segment (given the
time constraints in P33), the generator can produce traces with
segments of length varying from 2000 to 5000, with 1000-step
increment.

For properties P36–P38, we could control two parameters:
the length L0 of the segment and the position P of one of its
bounds. By fixing L0 to 10K, we vary the position of the right
bound from position 10K to position 100K, i.e., we vary the
position of the segment in the trace. By fixing the position P to
10001, we can vary L0 from 10000 to 90000, with 10000-step
increments.

2) Evaluation: The average check time for properties P32–
P35 when varying the number of segments (as determined by
the scope) on which to check the property pattern, varies from
about 4s to 31s . This time increases linearly with respect to the
number of segments on which the property pattern is checked.
In the second case, with the number of segment fixed to 20,
we noticed that varying the segment length did not impact the
check time, which on average was 13.15s (CV=0.05).

As for checking properties P36–P38, when varying the
position of the segment on which the property pattern is
checked, our experiments show that the average checking time



Schedulability Analysis and Stress 
Testing  

References:  

40 

•  S. Nejati, S. Di Alesio, M. Sabetzadeh, and L. Briand, “Modeling and analysis of cpu 
usage in safety-critical embedded systems to support stress testing,” in IEEE/ACM 
MODELS 2012.  

•  S. Di Alesio, S. Nejati, L. Briand. A. Gotlieb, “Stress Testing of Task Deadlines: A 
Constraint Programming Approach”, ISSRE 2013, San Jose, USA 

•  S. Di Alesio, S. Nejati, L. Briand. A. Gotlieb, “Worst-Case Scheduling of Software 
Tasks – A Constraint Optimization Model to Support Performance Testing, Constraint 
Programming (CP), 2014 



Problem 

•  Real-time, concurrent systems (RTCS) have concurrent 
interdependent tasks which have to finish before their deadlines 

•  Some task properties depend on the environment, some are 
design choices 

•  Tasks can trigger other tasks, and can share computational 
resources with other tasks 

•  Schedulability analysis encompasses techniques that try to 
predict whether all (critical) tasks are schedulable, i.e., meet 
their deadlines 

•  Stress testing runs carefully selected test cases that have a high 
probability of leading to deadline misses 

•  Testing in RTCS is typically expensive, e.g., hardware in the 
loop 

41 



Arrival Times Determine Deadline Misses 
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Context 
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Drivers 
(Software-Hardware Interface) 

Control Modules Alarm Devices 
(Hardware) 

Multicore Architecture  

Real-Time Operating System 
 

Monitor gas leaks and fire in oil 
extraction platforms 



Challenges and Solutions 

•  Ranges for arrival times form a very large input space 

•  Task interdependencies and properties constrain 
what parts of the space are feasible 

•  We re-expressed the problem as a constraint 
optimisation problem 

•  Constraint programming 
 

 44 



Constraint Optimization 
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Process and Technologies 
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Challenges and Solutions (2) 

•  Scalability problem: Constraint programming (e.g., 
IBM CPLEX) cannot handle such large input spaces 
(CPU, memory) 

•  Solution: Combine metaheuristic search and 
constraint programming 
–  metaheuristic search identifies high risk regions in 

the input space  
–  constraint programming finds provably worst-case 

schedules within these (limited) regions 
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Process and Technologies 
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Applicable? Scalable? 
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Scalability examples 

•  This is the most common challenge in practice 
•  Testing closed-loop controllers 

–  Large input and configuration space 
–  Smart search optimization heuristics (machine learning) 

•  Fault localization 
–  Large number of blocks and lines in Simulink models 
–  Even a small percentage of blocks to inspect can be 

impractical 
–  Additional information to support decision making? 

Incremental fault localisation? 
•  Schedulability analysis and stress testing 

–  Constraint programming cannot scale by itself 
–  Must be carefully combined with genetic algorithms 

50 



Scalability examples (2) 

•  Verifying legal requirements 
–  Traceability to the law is complex 
–  Many provisions and articles 
–  Many dependencies within the law 
–  Natural Language Processing: Cross references, support for 

identifying missing modeling concepts 
•  Run-time Verification of Business Processes 

–  Traces can be large and properties complex to verify 
–  Transformation of temporal properties into regular OCL 

properties, defined on a trace conceptual model 
–  Incremental verification at regular time intervals 
–  Heuristics to identify subtraces to verify  
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Scalability: Lessons Learned 

•  Scalability must be part of the problem definition and solution 
from the start, not a refinement or an after-thought 

•  It often involves heuristics, e.g., meta-heuristic search, NLP, 
machine learning, statistics 

•  Scalability often leads to solutions that offer “best answers” 
within time constraints, not guarantees 

•  Solutions to scalability are multi-disciplinary 
•  Scalability analysis should be a component of every research 

project – otherwise it is unlikely to be adopted in practice 
•  How many papers in MODELS or SAM do include even a 

minimal form of scalability analysis? 
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Applicability 

•  Definition? 

•  Usability: Can the target user population efficiently apply it? 

•  Assumptions: Are working assumptions realistic, e.g., realistic 
information requirements? 

•  Integration into the development process, e.g., are required 
inputs available in the right form and level of precision? 
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Applicability examples 

•  Testing closed-loop controllers 
–  Working assumption: availability of sufficiently precise plant 

(environment) models 
–  Means to visualize relevant properties in the search space 

(inputs, configuration), to get an overview and focus search 
on high-risk areas 

•  Schedulability analysis and stress testing 
–  Availability of tasks architecture models 
–  Precise WCET analysis 
–  Applicability requires to assess risk based on near-deadline 

misses 
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Applicability examples (2) 

•  Fault localization: 
–  Trade-off between # of model outputs considered versus cost of 

test oracles 
–  Better understanding of the mental process and information 

requirements for fault localization 
•  Run-time verification of business process models 

–  Temporal logic not usable by analysts 
–  Language closer to natural language, directly tied to business 

process model 
–  Easy transition to industry strength constraint checker 

•  Verifying legal requirements 
–  Modeling notation must be shared by IT specialists and legal 

experts 
–  One common representation for many applications, with traces 

to the law to handle changes 
–  Multiple model transformation targets 
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Applicability: Lessons Learned 

•  Make working assumptions explicit: Determine the 
context of applicability 

•  Make sure those working assumptions are at least 
realistic in some industrial domain and context 

•  Assumptions don’t need to be universally true – they 
rarely are anyway 

•  Run usability studies – do it for real! 
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Conclusions 

•  In most research endeavors, applicability and scalability are an after-
thought, a secondary consideration, when at all considered 

•  Implicit assumptions are often made, often unrealistic in any context 

•  Problem definition in a vacuum 

•  Not adapted to research in an engineering discipline 

•  Leads to limited impact 

•  Research in model-based V&V is necessarily multi-disciplinary 

•  User studies are required and far too rare 

•  In engineering research, there is no substitute to reality 
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