
Making Model-Driven Verification Practical
and Scalable:

Experiences and Lessons Learned

Lionel Briand
IEEE Fellow, FNR PEARL Chair

Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT)
University of Luxembourg, Luxembourg

SAM, Valencia, 2014

SnT Software Verification and Validation Lab

•  SnT centre, Est. 2009: Interdisciplinary,
ICT security-reliability-trust

•  230 scientists and Ph.D. candidates, 20
industry partners

•  SVV Lab: Established January 2012,
www.svv.lu

•  25 scientists (Research scientists,
associates, and PhD candidates)

•  Industry-relevant research on system
dependability: security, safety, reliability

•  Six partners: Cetrel, CTIE, Delphi, SES,
IEE, Hitec …

2

An Effective, Collaborative Model of Research
and Innovation

Basic&Research& Applied&Research&

Innova3on&&&Development&

•  Basic and applied research take place in a rich context

•  Basic Research is also driven by problems raised by applied
research, which is itself fed by innovation and development

•  Publishable research results and focused practical solutions that
serve an existing market. 3

Schneiderman, 2013

Collaboration in Practice

•  Well-defined problems in context
•  Realistic evaluation
•  Long term industrial collaborations

4

Problem
Formulation

Problem
Identification

State of the
Art Review

Candidate
Solution(s)

Initial
Validation

Training

Realistic
Validation

Industry
Partners

Research
Groups

1

2

3

4

5

7
Solution
Release

8

6

Motivations

•  The term “verification” is used in its wider sense: Defect
detection and removal

•  One important application of models is to drive and automate
verification

•  In practice, despite significant advances in model-based testing,
this is not commonly part of practice

•  Decades of research have not yet significantly and widely
impacted practice

5

6

Applicability?
Scalability?

Definitions

•  Applicable: Can a technology be efficiently and
effectively applied by engineers in realistic
conditions?
–  realistic ≠ universal
–  includes usability

•  Scalable: Can a technology be applied on large
artifacts (e.g., models, data sets, input spaces) and
still provide useful support within reasonable effort,
CPU and memory resources?

7

Outline

•  Project examples, with industry collaborations

•  Lessons learned regarding developing applicable and
scalable solutions (our research paradigm)

•  Meant to be an interactive talk – I am also here to
learn

8

Some Past Projects (< 5 years)

9

Company Domain Objective Notation Automation

Cisco Video conference Robustness testing UML profile Search, model
transformation

Kongsberg Maritime Oil & Gas CPU usage UML+MARTE Constraint Solving

WesternGeco Marine seismic
acquisition

Functional testing UML profile + MARTE Search, constraint
solving

SES Satellite Functional and
robustness testing,
requirements QA

UML profile Search, Model
mutation, NLP

Delphi Automotive systems Testing safety
+performance

Matlab/Simulink Search, machine
learning, statistics

CTIE Legal & financial Legal Requirements
testing

UML Profile Model transformation,
constraint checking

HITEC Crisis Support systems Security, Access
Control

UML Profile Constraint verification,
machine learning,
Search

CTIE eGovernment Conformance testing UML Profile, BPMN,
OCL extension

Domain specific
language, Constraint
checking

IEE Automotive, sensor
systems

Functional and
Robustness testing,
traceaibility and
certification

UML profile, Use Case
Modeling extension,
Matlab/Simulink

NLP, Constraint solving

Testing Closed-Loop Controllers

References:

10

•  R. Matinnejad et al., “MiL Testing of Highly Configurable Continuous Controllers:
Scalable Search Using Surrogate Models”, IEEE/ACM ASE 2014

•  R. Matinnejad et al., “Search-Based Automated Testing of Continuous Controllers:
Framework, Tool Support, and Case Studies”, Information and Software Technology
(2014)

Dynamic continuous controllers are present in
many embedded systems

11

Development Process (Delphi)

12

Hardware-in-the-Loop
Stage

Model-in-the-Loop
Stage

Simulink Modeling

 Generic
Functional

Model

MiL Testing

Software-in-the-Loop
Stage

Code Generation
and Integration

Software Running
on ECU

SiL Testing

 Software
Release

HiL Testing

Controllers at MIL

13

Plant Model

+
+

+

⌃

+
-

e(t)

actual(t)

desired(t)

⌃

KP e(t)

KD
de(t)
dt

KI

R
e(t) dt

P

I

D

output(t)

Inputs: Time-dependent variables

Configuration Parameters

Inputs, Outputs, Test Objectives

14

In
iti

al
 D

es
ire

d
(ID

)

Desired ValueI (input)
Actual Value (output)

Fi
na

l D
es

ire
d

(F
D

)

time
T/2 T

Smoothness

Responsiveness

Stability

Process and Technology

15

HeatMap
Diagram

1. Exploration
List of
Critical
RegionsDomain

Expert

Worst-Case
Scenarios

+
Controller-

plant
model

Objective
Functions
based on

Requirements
2. Single-State

Search

https://sites.google.com/site/cocotesttool/

Initial Desired (ID)

Fi
na

l D
es

ire
d

(F
D

)
Worst Case(s)?

Process and Technology (2)

16

HeatMap
Diagram

1. Exploration
List of
Critical
RegionsDomain

Expert

+
Controller-

plant
model

Objective
Functions
based on

Requirements

(a) Liveness (b) Smoothness

Process and Technology (3)

17

List of
Critical
RegionsDomain

Expert

Worst-Case
Scenarios

2. Single-State
Search

time

Desired Value
Actual Value

0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Initial Desired

Final Desired

Challenges, Solutions

•  Achieving scalability with configuration parameters:
–  Simulink simulations are expensive
–  Sensitivity analysis to eliminate irrelevant

parameters
–  Machine learning (Regression trees) to partition

the space automatically and identify high-risk
areas

–  Surrogate modeling (statistical and machine
learning prediction) to predict properties and avoid
simulation, when possible

18

Results

•  Automotive controllers on Electronics Control Units

•  Our approach enabled our partner to identify worst-
case scenarios that were much worse than known
and expected scenarios, entirely automatically

19

Fault Localisation in Simulink Models

Reference:

20

•  Bing Liu et al., “Kanvoo: Fault Localization in Simulink Models”, submitted

Context and Problem

21

•  Simulink models
–  are complex

•  hundreds of blocks and lines
•  many hierarchy levels
•  continuous functions

–  might be faulty
•  output signals do not match
•  wrong connection of lines
•  wrong operators in blocks

•  Debugging Simulink models is
–  difficult
–  time-consuming
–  but yet crucial

•  Automated techniques to support debugging?

Context and Problem (2)

22

•  Simulink models
–  are complex

•  hundreds of blocks and lines
•  many hierarchy levels
•  continuous functions

–  might be faulty
•  output signals do not match
•  wrong connection of lines
•  wrong operators in blocks

•  Debugging Simulink models is
–  difficult
–  time-consuming
–  but yet crucial

•  Automated techniques to support debugging?

Solution Overview

23

Test%Case%Genera+on%

Test%Case%Execu+on%

Slicing%

Ranking%

?% Test%Oracle%Test%Suite%

Coverage%Reports%

PASS/FAIL%
Results%

Simulink%Model%

Model%Slices%

Specifica+on%

0.95% 0.71% 0.62% 0.43%

Ranked%Blocks%

Any test strategy

Provided by Matlab tool

One slice for each
test case and output

For each test case
and output, or overall

Evaluation and Challenges

•  Good accuracy overall: 5-6% blocks must be inspected on
average to detect faults

•  But less accurate predictions for certain faults: Low observability
•  Possible Solution: Augment test oracle (observability)

–  Use subsystems outputs
–  Iterate at deeper levels of hierarchy
–  Tradeoff: cost of test oracle vs. debugging effort
–  2.3% blocks on average

•  5-6%: still too many blocks for certain models
•  Information requirements to help further filtering blocks?

24

Modeling and Verifying Legal
Requirements

Reference:

25

•  G. Soltana et al., “ UML for Modeling Procedural Legal Rule”, IEEE/ACM MODELS
2014

•  M. Adedjouma et al., “Automated Detection and Resolution of Legal Cross
References”, RE 2014

Context and Problem

26

•  CTIE: Government computer centre in Luxembourg

•  Large government (information) systems

•  Implement legal requirements, must comply with the
law

•  The law usually leaves room for interpretation and
changes on a regular basis, many cross-references

•  Involves many stakeholders, IT specialists but also
legal experts, etc.

Article Example

Art. 105bis […]The commuting expenses deduction (FD) is
defined as a function over the distance between the principal
town of the municipality on whose territory the taxpayer's home
is located and the place of taxpayer’s work. The distance is
measured in units of distance expressing the kilometric distance
between [principal] towns. A ministerial regulation provides
these distances.

The amount of the deduction is calculated as follows:
If the distance exceeds 4 units but is less than 30 units, the
deduction is € 99 per unit of distance.
The first 4 units does not trigger any deduction and the
deduction for a distance exceeding 30 units is limited to €
2,574.

Project Objectives

28

Objective Benefits
Specification of legal requirements
•  including rationale and traceability

to the text of law

• !Make interpretation of the law explicit
•  Improve communication
•  Prerequisite for automation

Checking consistency of legal
requirements

•  Prevent errors in the interpretation of
the law to propagate

Automated test strategies for checking
system compliance to legal requirements

•  Provide effective and scalable ways to
verify compliance Run-time verification mechanisms to

check compliance with legal
requirements
Analyzing the impact of changes in the
law

•  Decrease costs and risks associated
with change
•  Make change more predictable

Solution Overview

29

Test cases

Actual
software
system

Traces to

Traces to

Analyzable
interpretation
of the law Generates

Results match?

Impact of legal
changes

Simulates

Research Steps

30

2. Build UML
profile

3. Model
Transformation
to enable V&V

•  What information
content should we
expect?

•  What are the
complexity factors?

•  Explicit means for
capturing information
requirements

•  Basis for modeling
methodology

•  Target: Legal experts
and IT specialists

•  Target existing
automation techniques

•  Solvers for testing
•  MATLAB for simulation

1. Conduct
grounded
theory study

Example

31

Art. 105bis […]The commuting
expenses deduction (FD) is
defined as a function over the
distance between the principal
town of the municipality on whose
territory the taxpayer's home is
located and the place of
taxpayer’s work. The distance is
measured in units of distance
expressing the kilometric distance
between [principal] towns. A
ministerial regulation provides
these distances.

Interpretation + Traces

Example

32

The amount of the deduction is
calculated as follows:
If the distance exceeds 4 units but is
less than 30 units, the deduction is €
99 per unit of distance.
The first 4 units does not trigger any
deduction and the deduction for a
distance exceeding 30 units is limited
to € 2,574.

Interpretation + Traces

Challenges and Results

•  Profile must lead to models that are:
–  understandable by both IT specialists and legal experts
–  precise enough to enable model transformation and support

our objectives
–  tutorials, many modeling sessions with legal experts

•  In theory, though such legal requirements can be captured by
OCL constraints alone, this is not applicable

•  That is why we resorted to customized activity modeling,
carefully combined with a simple subset of OCL

•  Many traces to law articles, dependencies among articles:
automated detection (NLP) of cross-references 33

Run-Time Verification of
 Business Processes

References:

34

•  W. Dou et al., “OCLR: a More Expressive, Pattern-based Temporal Extension of
OCL”, ECMFA 2014

•  W. Dou et al., “Revisiting Model-Driven Engineering for Run-Time Verification of
Business Processes”, IEEE/ACM SAM 2014

•  W. Dou et al., “A Model-Driven Approach to Offline Trace Checking of Temporal
Properties with OCL”, submitted

Context and Problem

•  CTIE: Government Computing Centre of Luxembourg

•  E-government systems mostly implemented as business
processes

•  CTIE models these business processes

•  Business models have temporal properties that must be
checked
–  Temporal logics not applicable
–  Limited tool support (scalability)

•  Goal: Efficient, scalable, and practical off-line and run-time
verification 35

Solution Overview

36

Solution Overview

37

•  We identified patterns based on
analyzing many properties of real
business process models

•  Properties must be defined based on
business process models (BPMN)
according to modeling methodology
at CTIE (applicability)

•  The goal was to achieve usability
•  Early adoption by our partner

Solution Overview

38

•  Want to transform the checking of
temporal constraints into checking
regular constraints on trace
conceptual model

•  OCL engines (Eclipse) are our target,
to rely on mature technology
(scalability)

•  Defined extension of OCL to facilitate
translation

•  Target: IT specialists, BPM analysts

Scalability Analysis

•  Analyzed 47 properties in Identity Card Management System
•  “Once a card request is approved, the applicant is notified within

three days; this notification has to occur before the production of
the card is started.”

•  Scalability: Check time as a function of trace size …

39

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

0

20

40

60

80

100

Trace Size (k)

A
ve

ra
ge

C
he

ck
Ti

m
e

(s
)

P7 P8 P9

(a) globally / P7–P9

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

1,
00

0

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

Trace Size (k)

A
ve

ra
ge

C
he

ck
Ti

m
e

(s
)

P10 P11 P12

(b) globally / P10–P12

10 20 30 40 50 60 70 80 90 10
0

0

5

10

15

20

25

30

Boundary Position (k)
A

ve
ra

ge
C

he
ck

Ti
m

e
(s

)

P17 P18

P19 P20

(c) before / P17–P20

Fig. 3: Average check time of properties with globally and before scopes

eight properties with the before scope (properties P13–P20 in
Table I) and eleven properties with the after scope (properties
P21–P31 in Table I).

1) Trace Generation Strategy: For both types of scopes,
we fix the length of the generated trace to 100K; what we
vary in the various traces is the length of the sub-trace as
determined by the scope boundary, i.e., we vary the position
of the boundary event in the trace. In the case of properties
with a before scope, the boundary event is placed in positions
from 10K to 100K, with a 10K step increment; dually, for
properties with an after scope, the position of the boundary
event varies from 10K to 90K, with a 10K step increment.

For properties referring to a specific occurrence of an event
in their scope part, such as before 3 B. . . or after 4 A. . . , we
only control the position of the actual scope boundary (e.g.,
the third occurrence of B or the fourth occurrence of A in
the examples above); the other previous occurrences of the
boundary event are generated in random positions before the
actual boundary event.

The generation of the patterns in properties follows the
same steps described in Section VI-A1.

2) Evaluation: The relationship between the average check
time for properties with the before scope and the boundary
position is shown in Fig. 3(c). For the sake of readability, we
omitted the data line for properties P13–P16, since their trend
is very similar to the one of P17. We also omitted the indication
of the standard deviation, since it is quite low (CV= 0.01).

We also measured the overhead to compute the sub-trace
on which to check each property pattern, which corresponds
to the time required to find the scope boundary. Based on
our measurements, this time is independent from the actual
position of the boundary in the trace and on average it amounts
to one hundred milliseconds. Although not shown in a plot, the
properties using the after scope have a similar trend.

C. Properties using the Between-and scope

Properties with a between-and scope, similarly to the ones
with a before/after scope, are checked on a portion of trace

provided in input. Depending on the variant of this scope, the
portion of the trace on which properties are checked might
include one or more segments. The scopes used in properties
P32–P35 (see Table I) can potentially select multiple segments
on a trace, while the scopes in properties P36–P38 (see Table I)
select exactly one segment on a trace, as determined by the
specific event occurrence used in the scope boundaries (e.g.,
as in the case of between 3 A and 2 B).

1) Trace Generation Strategy: For both types of between-
and scope variants, we fix the length of the generated trace to
100K. For properties P32–P35, we could control two param-
eters for the trace generation: the length L of each segment
selected by the scope and the number of segments N. By fixing
L to 2000, we can split the 100K trace into 50 segments. The
generator varies the number N of actual segments to select
from 5 to 50, with a 5-step increment. By fixing N to 20, and
assuming a minimum length of 2000 for a segment (given the
time constraints in P33), the generator can produce traces with
segments of length varying from 2000 to 5000, with 1000-step
increment.

For properties P36–P38, we could control two parameters:
the length L0 of the segment and the position P of one of its
bounds. By fixing L0 to 10K, we vary the position of the right
bound from position 10K to position 100K, i.e., we vary the
position of the segment in the trace. By fixing the position P to
10001, we can vary L0 from 10000 to 90000, with 10000-step
increments.

2) Evaluation: The average check time for properties P32–
P35 when varying the number of segments (as determined by
the scope) on which to check the property pattern, varies from
about 4s to 31s . This time increases linearly with respect to the
number of segments on which the property pattern is checked.
In the second case, with the number of segment fixed to 20,
we noticed that varying the segment length did not impact the
check time, which on average was 13.15s (CV=0.05).

As for checking properties P36–P38, when varying the
position of the segment on which the property pattern is
checked, our experiments show that the average checking time

Schedulability Analysis and Stress
Testing

References:

40

•  S. Nejati, S. Di Alesio, M. Sabetzadeh, and L. Briand, “Modeling and analysis of cpu
usage in safety-critical embedded systems to support stress testing,” in IEEE/ACM
MODELS 2012.

•  S. Di Alesio, S. Nejati, L. Briand. A. Gotlieb, “Stress Testing of Task Deadlines: A
Constraint Programming Approach”, ISSRE 2013, San Jose, USA

•  S. Di Alesio, S. Nejati, L. Briand. A. Gotlieb, “Worst-Case Scheduling of Software
Tasks – A Constraint Optimization Model to Support Performance Testing, Constraint
Programming (CP), 2014

Problem

•  Real-time, concurrent systems (RTCS) have concurrent
interdependent tasks which have to finish before their deadlines

•  Some task properties depend on the environment, some are
design choices

•  Tasks can trigger other tasks, and can share computational
resources with other tasks

•  Schedulability analysis encompasses techniques that try to
predict whether all (critical) tasks are schedulable, i.e., meet
their deadlines

•  Stress testing runs carefully selected test cases that have a high
probability of leading to deadline misses

•  Testing in RTCS is typically expensive, e.g., hardware in the
loop

41

Arrival Times Determine Deadline Misses

42

0

1

2

3

4

5

6

7

8

9

j0, j1 , j2 arrive at at0 , at1 , at2 and must
finish before dl0 , dl1 , dl2

J1 can miss its deadline dl1 depending on
when at2 occurs!

0

1

2

3

4

5

6

7

8

9

j0 j1 j2 j0 j1 j2
at0

dl0

dl1

at1 dl2

at2

T

T

at0

dl0 dl1

at1
at2

dl2

Context

43

Drivers
(Software-Hardware Interface)

Control Modules Alarm Devices
(Hardware)

Multicore Architecture

Real-Time Operating System

Monitor gas leaks and fire in oil
extraction platforms

Challenges and Solutions

•  Ranges for arrival times form a very large input space

•  Task interdependencies and properties constrain
what parts of the space are feasible

•  We re-expressed the problem as a constraint
optimisation problem

•  Constraint programming

 44

Constraint Optimization

45

Constraint Optimization Problem

Static Properties of Tasks
(Constants)

Dynamic Properties of Tasks
(Variables)

Performance Requirement
(Objective Function)

OS Scheduler Behaviour
(Constraints)

Process and Technologies

46

UML Modeling (e.g.,
MARTE)

Constraint Optimization

Optimization Problem
(Find arrival times that maximize the

chance of deadline misses)

System Platform

Solutions
(Task arrival times likely to

lead to deadline misses)

Deadline Misses
Analysis

System Design Design Model (Time
and Concurrency

Information)

INPUT

OUTPUT

Stress Test Cases

Constraint
Programming

(CP)

Challenges and Solutions (2)

•  Scalability problem: Constraint programming (e.g.,
IBM CPLEX) cannot handle such large input spaces
(CPU, memory)

•  Solution: Combine metaheuristic search and
constraint programming
–  metaheuristic search identifies high risk regions in

the input space
–  constraint programming finds provably worst-case

schedules within these (limited) regions

47

Process and Technologies

48

UML Modeling (e.g.,
MARTE)

Constraint Optimization

Optimization Problem
(Find arrival times that maximize the

chance of deadline misses)

System Platform

Solutions
(Task arrival times likely to

lead to deadline misses)

Deadline Misses
Analysis

System Design Design Model (Time
and Concurrency

Information)

INPUT

OUTPUT

Genetic
Algorithms

(GA)

Stress Test Cases

Constraint
Programming

(CP)

Applicable? Scalable?

49

Scalability examples

•  This is the most common challenge in practice
•  Testing closed-loop controllers

–  Large input and configuration space
–  Smart search optimization heuristics (machine learning)

•  Fault localization
–  Large number of blocks and lines in Simulink models
–  Even a small percentage of blocks to inspect can be

impractical
–  Additional information to support decision making?

Incremental fault localisation?
•  Schedulability analysis and stress testing

–  Constraint programming cannot scale by itself
–  Must be carefully combined with genetic algorithms

50

Scalability examples (2)

•  Verifying legal requirements
–  Traceability to the law is complex
–  Many provisions and articles
–  Many dependencies within the law
–  Natural Language Processing: Cross references, support for

identifying missing modeling concepts
•  Run-time Verification of Business Processes

–  Traces can be large and properties complex to verify
–  Transformation of temporal properties into regular OCL

properties, defined on a trace conceptual model
–  Incremental verification at regular time intervals
–  Heuristics to identify subtraces to verify

51

Scalability: Lessons Learned

•  Scalability must be part of the problem definition and solution
from the start, not a refinement or an after-thought

•  It often involves heuristics, e.g., meta-heuristic search, NLP,
machine learning, statistics

•  Scalability often leads to solutions that offer “best answers”
within time constraints, not guarantees

•  Solutions to scalability are multi-disciplinary
•  Scalability analysis should be a component of every research

project – otherwise it is unlikely to be adopted in practice
•  How many papers in MODELS or SAM do include even a

minimal form of scalability analysis?

52

Applicability

•  Definition?

•  Usability: Can the target user population efficiently apply it?

•  Assumptions: Are working assumptions realistic, e.g., realistic
information requirements?

•  Integration into the development process, e.g., are required
inputs available in the right form and level of precision?

53

Applicability examples

•  Testing closed-loop controllers
–  Working assumption: availability of sufficiently precise plant

(environment) models
–  Means to visualize relevant properties in the search space

(inputs, configuration), to get an overview and focus search
on high-risk areas

•  Schedulability analysis and stress testing
–  Availability of tasks architecture models
–  Precise WCET analysis
–  Applicability requires to assess risk based on near-deadline

misses

54

Applicability examples (2)

•  Fault localization:
–  Trade-off between # of model outputs considered versus cost of

test oracles
–  Better understanding of the mental process and information

requirements for fault localization
•  Run-time verification of business process models

–  Temporal logic not usable by analysts
–  Language closer to natural language, directly tied to business

process model
–  Easy transition to industry strength constraint checker

•  Verifying legal requirements
–  Modeling notation must be shared by IT specialists and legal

experts
–  One common representation for many applications, with traces

to the law to handle changes
–  Multiple model transformation targets

55

Applicability: Lessons Learned

•  Make working assumptions explicit: Determine the
context of applicability

•  Make sure those working assumptions are at least
realistic in some industrial domain and context

•  Assumptions don’t need to be universally true – they
rarely are anyway

•  Run usability studies – do it for real!

56

Conclusions

•  In most research endeavors, applicability and scalability are an after-
thought, a secondary consideration, when at all considered

•  Implicit assumptions are often made, often unrealistic in any context

•  Problem definition in a vacuum

•  Not adapted to research in an engineering discipline

•  Leads to limited impact

•  Research in model-based V&V is necessarily multi-disciplinary

•  User studies are required and far too rare

•  In engineering research, there is no substitute to reality

57

Acknowledgements

PhD. Students:
•  Marwa Shousha
•  Reza Matinnejad
•  Stefano Di Alesio
•  Wei Dou
•  Ghanem Soltana
•  Bing Liu

Scientists:
•  Shiva Nejati
•  Mehrdad Sabetzadeh
•  Domenico Bianculli
•  Arnaud Gotlieb
•  Yvan Labiche

58

Making Model-Driven Verification Practical
and Scalable: Experiences and Lessons

Learned

Lionel Briand
IEEE Fellow, FNR PEARL Chair

Interdisciplinary Centre for ICT Security, Reliability, and Trust (SnT)
University of Luxembourg, Luxembourg

SAM, Valencia, 2014

SVV lab: svv.lu
SnT: www.securityandtrust.lu

