
F. Khendek, G. Robert, G. Butler and P.Grogono

Concordia University

Montreal, Canada

khendek@ece.concordia.ca

Implementability of Message
Sequence Charts

Plan

•  Why ?
•  Basic Algorithm
•  Extensions
•  Problems:

–  Implementability issue
– Compatibility between MSCs

•  Discussion

Why ?

•  From requirements to design specification (at least for
the behavioral aspect): ensure consistency by
construction

•  Incremental design of SDL specifications (Add traces in
a stepwise manner)

•  Enrich existing SDL specification without modifying the
architecture adding services (“service creation”)

MSC0 SDL0

MSC1
+

SDL1

MSC2
+

SDL2 ...

 Basic Approach: Introduction

P1 P2
x
y

msc Example1

+
system S1

block B1 block B2

P1 P2

[x]

[y] [y]

[x] [x]

[y]

x
s1

s2
y

s3

Process P2

x
s1

s2
y

s3

Process P1

 Basic Approach: issues
•  MSC specifies required order of sending and consumption

 of messages -x

-y

+x

+y

-x

-y

+x

+y

P1 P2

x

y

msc Example1

P1 P2

y

x

y

x
Translation seems straightforward !

However …

 Basic Approach: issues

•  DOES NOT specify how process instances communicate
•  The actual arrival depends on the communication

architecture
•  The given SDL architecture defines the communication

architecture
•  Even with a defined communication architecture the

actual arrival of messages (signals) into SDL process
instance queue may be different from the consumption
order

•  Straightforward translation may lead to deadlocks because
of SDL implicit transitions...

 Basic Approach: issues
system S1

block B1 block B2

P1 P2

[x]

[y] [y]

[x] [x]

[y]

system S2

block B1 block B2

P1 P2
[x,y] [x,y] [x,y]

Two different

architectures

Basic Approach: Key Concepts
•  For each process, generate an SDL skeleton with the

sending and receiving transitions as specified in the
bMSC, BUT keep in mind all the possible arrival orders
to the input queue according to the given architecture

•  Avoid implicit transition for signals that will be
consumed later

•  APPROPRIATE USE of “SAVE”: If process instance
is expecting signal y, then “any” other signal that MAY
BE in the queue and ahead of y is saved

•  3 Main steps in the translation algorithm

•  First step: Ordering of events *
–  define a transitive earlier relation << , ei << ej means

ei occurs earlier in time than ej

–  two rules:
•  for each MSC instance, events are totally ordered
•  the sending event of a message occurs earlier than

its reception
–  Transitive closure of the order relation is independent

from the architecture

Basic Approach: Step 1

* Similar to Holzman and Alur et al. in their work on race conditions

Example: Step 1

P1 P2 P3

x
z

y

w

(e1)

(e2)

(e3)
(e4)

(e5)

(e6) (e8)

(e7)

msc Example2

system S2

block B1 block B2 block B3

P1 P2 P3
[x,y] [w,z]

 e1 e2 e3 e4 e5 e6 e7 e8

e1 T T T T T
e2 T T
e3 T T T
e4 T T
e5 T
e6
e7 T T T T
e8 T

(ei, ej) = T means ei << ej

•  Build “receive queues”
–  For each process, in order to view the possible arrival orders of

incoming signals, we view its input queue as a set of parallel FIFO
queues. Each queue correspond to one incoming channel

–  Algorithm creates a table for each process:
•  1 column for each “receive queue” (for each incoming channel)
•  a row for each input event (and only input events)
•  for each instance Pi in the MSC

–  for each output event es sending signal m to Pj
»  find the related input event er in Pj
»  for each input event ek in instance Pj
 if not(ek << es) and not(er << ek),
 add signal m to the appropriate “receive queue”

Basic Approach: Step 2

Example: Step 2

Event Input Signal Q1,2,1 Q3,2,1

e3 x x,y z,w

e4 z y z,w

e5 y y w

e6 w w

“Receive queues” table for process P2

•  Generate SDL code (use of SAVE)
•  for each instance Pi in the MSC diagram

–  for each event ej
–  if ej is an output event generate an SDL output
–  else if ej is an input event of signal m

•  generate an SDL input for message m
•  for each “receive queue” of Pi (except the queue to

which m belongs), generate an SDL SAVE for all
the messages in the queue

 [THESE MESSAGES MAY ARRIVE INTO PI
INPUT QUEUE BEFORE m]

Basic Approach: Step 3

Example: Step 3

SDL specification of process P2

Extensions

•  Inline constructs:
–  alt
–  opt
–  seq,
–  loop, etc.

Extensions: Alt construct

a

msc Ex1

c

alt

b
d

Sender Receiver

system Ex1
block B1 block B2

Sender Receiver
[c, d]

[a , b]

Example 1

Extensions: Alt Construct

process Receiverprocess Sender

any

ab

cd

ab

cd

Generated SDL processes for Example 1

Extensions: Alt Construct

a
b

msc Ex2

c

alt

b

a

d

system Ex2

block B1 block B2

Sender Receiver

[c, d]

[a] [a]

[b]

[a]

Sender Receiver Example 2: Problems !

Extensions: A Second alt Example

a

msc Ex3

c

alt

b

Sender Receiver

a
d

Example 3:

Problems !

Extension: Overtaking

b

a

msc Ex6
Sender Receiver

system Ex1
block B1 block B2

Sender Receiver
[c, d]

[a , b]

Example 4: Problems !

Communication hierarchy

No-buf : synchronous

Every message one channel

Implementable

Non-implementable

Non-implementable

Communication
Hierarchy from
Engels et al.
[PSTV/FORTE’97]

Proposed
hierarchy

Communication hierarchy (cont.)

y
x

a
b

msc Ex4

c

alt

b
a
d

Sender Receiver

Cannot be implemented
with full synchronization
or msg-models.

Example 5

Compatibility between MSCs

•  Related to implementability

•  Two MSCs are compatible, if they can
be implemented in the same
architecture.

•  MSC Composition Operators ?

Compatibility between MSCs (cont.)

b

a

msc Ex6
Sender Receiver

a
b

msc Ex7

c

alt

b
a
d

Sender Receiver

These two MSCs are incompatible.

Compatibility between MSCs (cont.)

b

a

msc Ex8
Sender Receiver

a

msc Ex9

c

alt

b
d

Sender Receiver

These two MSCs are incompatible.

Discussion

•  Different issues simultaneously: translation,
Implementability, compatibility

•  Data part ?
•  Environment for enriching SDL

specifications : use ObjectGeode Internal
Representation

•  A basis for maintaining code ...
•  Work is still in progress ...

