Implementability of Message Sequence Charts*

F. Khendek!, G. Robert 2, G. Butler? and P. Grogono?
IDepartment of Electrical and Computer Engineering
khendek@ece.concordia.ca

Tel. (514) 848 — 3081, Fax. (514) 848-2802
2Department of Computer Science

{gabriel | gregb | grogono}@cs.concordia.ca

Concordia University
1455, De Maisonneuve W., Montréal, Canada H3G 1M8

Abstract
In [1], we have introduced an approach for the generation of SDL process specifications from a basic MSC. The
translation is constrained by the given architecture for the system. We extended our approach to handle inline
constructs such as alt, opt, seq, etc. We came across the problem of non-implementability of MSCs for given
architectures. This paper focuses on the implementability issue. We illustrate this problem with examples and
discuss the notion of implementability of a MSC under a given communication architecture. We will also point
out problems with the communication hierarchy introduced in [2] when full MSC'96 is taken into consideration.

Keywords
MSC, SDL, communication architecture, translation, implementability, compatibility

1 INTRODUCTION

MSC (Message Sequence Charts) [3, 4] are often used to capture user requirements and specify use cases. SDL
(Specification and Description Language) [5] is used to describe abstract or detailed design with an explicit
architecture of the system. In the software engineering lifecycle, the validation of the design against the
requirements is mandatory. The verification of the design against the requirements can be greatly simplified if
the SDL processes, or at least skeletons of these processes that represent the communications, have been
generated automatically from the MSCs.

On the other hand, systems evolve with the addition of new capabilities that may also be described with MSCs.
Typical examples of such evolving systems are the telecommunications systems that are very often extended
with new services. In general, the existing system has a fixed architecture and the new service described with the
MSC:s is added without any modification to the system architecture.

In [1], we presented an algorithm for generating a skeleton SDL specification for a given bMSC (basic MSC).
A bMSC consists of instances, messages and conditions. In our approach, the architecture of the SDL
specification is given. Our approach can be used for the generation of an initial design from user requirements or
for the incremental enrichment of an existing system design. We are extending our work to handle full MSC'96.
We recently came across the problem of implementability of MSCs. Indeed, for a MSC, it may be impossible to

*This research was partly supported by the National Sciences and Engineering Research Council of Canada (NSERC) and
Fonds pour la Formation des Chercheurs et 1'Aide a la Recherche du Québec (FCAR).

translate it, under a given communication architecture, into its equivalent SDL specification. In other words, the
MSC cannot be implemented with the given communication architecture.

In this paper, we discuss the notion of implementability of a MSC with a given communication architecture, and
we point out problems with the communications hierarchy described in [2] when extended to full MSC'96. We
use the terms “SDL architecture”, “communication architecture” or “architecture” as synonyms.

In the next section, we review briefly our translation approach and we illustrate the non-implementability of
MSCs with examples. In Section 3, we discuss the implementability concept and the communication hierarchy
introduced in [2]. In Section 4, we discuss briefly an extension to our MSC to SDL translation algorithm, in
order to handle the implementability issue. We conclude in Section 5.

2 FROM MSC TO SDL

A MSC specifies the required order of sending and consuming of messages, but not the actual arrival order into
the input queues of the processes. The actual arrival order depends on the communication architecture of the
system and the interleaving of the processes. MSCs do not specify the communication architecture. To translate
a MSC into an SDL specification, the architecture of the target SDL system is required. The algorithm we have
introduced in [1], takes as input a MSC and a communication architecture, and generates the behavior
specification for the SDL processes.

For the description of the communication architecture, we use an explicit SDL specification. Processes may be
grouped into blocks. Processes communicate through signalroutes or channels. The data part is given with the
SDL specification. Prior to the translation, the algorithm checks for the “architectural consistency” between the
MSC and the given communication architecture, i.e. there is a one to one correspondence between the MSC
processes and a subset of the processes in the SDL architecture and a one to one correspondence between the
MSC messages and a subset of the SDL signals [1]. The given architecture may have more processes and
signals, which are introduced by other MSCs.

A MSC describes a “global” view of the system, whereas an SDL specification is distributed by nature. With the
SDL system, signals travel through different channels or signalroutes and processes have different speeds. A
signal “a” that is supposed to be received before a signal “b” may arrive into the destination process input queue
later than “b”. During the translation of a MSC into an SDL specification with a given architecture, we have to
take into account the actual arrival order of signals into the input queue of each process. The algorithm avoids
discarding from the input queue signals that are expected in later stages. These signals are saved using the SDL
save concept [5].

Our translation approach ensures, by construction, behavioral consistency between the SDL specification and
the MSC specification. The SDL specification is also free from deadlocks and unspecified receptions; no further
validation is required. When multiple MSCs are taken as input, the consistency relationship between the whole
set of MSCs and the SDL specification is the trace equivalence. In other words, the set of traces defined by the
set of MSCs is equal to the set of traces of the SDL specification. Therefore, the set of traces of each MSC is a
subset of the set of traces of the SDL specification.

We have extended our approach to handle MSC'96 inline constructs, such as alt, seq, opt, etc. An example of
MSC with inline construct is given in Figure 1.a. MSC Ex1 describes two alternate behaviors, either Sender
sends message “a”, Receiver receives “a” and replies with message “c”; or Sender sends message “b” and
Receiver receives “b” and replies in this case with message “d”. In other words, Receiver will reply with “c” if it
receives “a” or with “d” if it receives “b”. For the generation of an equivalent SDL specification, the target
architecture is given in Figure 1.b. In this architecture, messages “a” and “b” are sent from Sender to Receiver

through one channel and messages “c” and “d” are sent from Receiver to Sender through a second channel.

The generated SDL processes are shown in Figure 2. As specified by the MSC in Figure 1, the sending of
messages “a” or “b” are two exclusive events for Sender, therefore only “a” or “b” will be send and queued in
Receiver input queue. For the generation of the skeleton process Receiver, we expect only one of these two

signals; therefore we do not save the other signal.

msc Ex1
Sender Receiver
alt
a
> system Ex1
C
7
block B1 block B2
[a,b]
b - > >
—————— > - Sender Receiver =3
< <
< d [c.d]
[]
Figure 1. (a) MSC with alt construct. (b) SDL Architecture
process Sender process Receiver

O

<>

55| & &
5 &

Figure 2. Generated SDL processes for the example in Figure 1.

The MSC Ex2 in Figure 3.a is a second illustration for the alf construct. Here again, we have two processes,
Sender and Receiver. The MSC describes two alternate behaviors, either Sender sends message “a” then

[Pt} [TPK L)

message “b”, and Receiver receives “a” then “b”, and sends message “c” or Sender sends message “b” then

message “a” and Receiver receives “b” then “a”, but in this case the receiver sends message “d”. In other
words, Receiver will reply with “c” if it receives sequence “a.b” or with “d” if it receives sequence “b.a”. The
labeled transition system in Figure 4 represents the set of traces specified by this MSC. The notation “-x” stands

9 [T L)

for sending of message “x”, whereas “+y” stands for the consumption of message “y”.

Our initial set of MSCs consists of the unique MSC given in Figure 3.a. The SDL architecture given in Figure

[Pt}

3.b, specifies that signals “a” and “b” are conveyed from Sender to Receiver through two different channels,
whereas signals “c” and “d” are conveyed from Receiver to Sender through the same channel. Both channels
are delaying channels. The translation of MSC Ex2 into an equivalent SDL specification with the architecture
given in Figure 3.b is impossible. In other words, we cannot, for the given architecture, find an SDL
specification that has exactly the same set of traces as MSC Ex2. Because of this architecture, the message “a”
and “b” may be delivered to Receiver in the reverse order of their transmission. These two messages being
conveyed through two different delaying channels, both arrival orders are possible independently of the
transmission order. Process Receiver cannot distinguish which branch has been taken by Sender and how it
should reply. Since both arrival orders are possible and exclusive, we cannot solve this problem with use of
save. The same problem can be described using local or global conditions instead of process Receiver replying
with “c” or “d”.

Notice that MSC Ex2 is implementable with the architecture in Figure 1.b. SDL processes, very similar to the
processes in Figure 2; will be generated by the translation algorithm. MSC Ex1 is implementable under both
architectures, Figure 1.b and Figure 3.b, and the algorithm generates exactly the same SDL processes in both
cases.

msc Ex2
Sender Receiver
alt
‘ > system Ex2
#’
block B1 block B2

C [a] [a] | [a]

* L > | >

> Sender Receiver]
. <>

b > lc, d] [b]
a q +

» d

I I
Figure 3. (a) MSC non-implementable with (b). (b) SDL Architecture

This problem with the alt construct can be characterized as follows: for at least one process, at least two
alternative traces with the same messages in different orders are allowed, and the communication architecture
does allow for this process to distinguish between these two alternatives.

Figure 4. Traces specified by the MSC in Figure 3.a.

Now, consider the MSC Ex3 given in Figure 5 with the architecture given in Figure 3.b. Even if the messages
sent and received in both alternatives of the altr expression are different, Receiver cannot figure out which
alternative has been taken by Sender when signal “a” and “b” are both in its input queue. Here again, MSC Ex3
cannot be implemented with the given architecture. Similar problems may arise with opt expressions.

msc Ex3
Sender Receiver
alt
a . |
< C
b >
b
<
] I

Figure 5. A second case of non-implementability.

Notice that this is not a “distributed choice” as described in [6], the choice of sending “a” then “b” or “b” then
“a” is made locally by Sender. However, the same problem arises with the distributed choice in the translation
from MSC to SDL. A MSC that contains a distributed choice can be implemented with only full synchronization

architectures, where the sending and the reception of a message are simultaneous. This is due to the natures of
MSC and SDL specifications: the first one gives a “global” view of the system, whereas the second one is
distributed in general and processes communicate through channels and signalroutes. The same problem of

“distributed choice” is encountered in the derivation of communication protocol specifications from service
specification [7].

3 IMPLEMENTABILITY OF MSCs

As shown in previous section, a MSC is not always implementable. In [2], the authors developed a hierarchy of
communication models under which a bMSC can be implemented. This communication model hierarchy goes
from a model (“msg”) where each message travels through its own buffer (i.e. channel), to a model (“global”)
where all messages for all instances travel through the same channel. The highest model in the hierarchy “nobuf”
has no buffer and implements synchronous communications. Between the “global” and “msg” models, there
exist different models: the “pair” model refers to the communication model where all the signals between each
pair of processes goes through two channels, one for each direction. According to this hierarchy, any bMSC that
is implementable should be “msg”-implementable.

Our example in Figure 3.a shows clearly that the hierarchy in [2] does not hold for full MSC. The MSC in
Figure 3.a is “generally implementable”. However, it is not “msg”’-implementable. As explained previously,
when each message is conveyed through its own channel, Sender can send sequence “a.b”, and expect to
receive “c” or can send sequence “b.a”, and expect to receive “d”’. This behavior can be implemented only if the
sending order of the messages is preserved, which is not the case with the “msg”’model. On the other hand, the
MSC is “pair” implementable. As mentioned previously, the MSC Ex2 can be implemented with the
architecture in Figure 1.b. Therefore, the hierarchy in [2] (any “pair’-implementable message should be “msg”--

implementable) cannot be extended to full MSCs.

The problem is that the hierarchy developed considers only the fact that the architecture should allow all MSC
allowed traces (strong implementability) or at least one (weak implementability) to be implemented, but does not
consider that fact that the architecture should also preserve “enough” of the ordering of messages to ensure that
various branches of the MSC remain distinguishable.

We suggest that the hierarchy could be transformed such that a MSC would be implementable in a “band” of
architectures. For example, a MSC could be implementable in any architecture lower than “xxx” and higher
than “zzz”:

xxx: Architecture does not allow the traces

yyy: The MSC is (weakly/strongly) implementable under the architecture

zzz: Architecture allows too many traces that will make branches of the MSC indistinguishable

The MSC in Figure 6.a shows clearly that it cannot be implemented with neither the “nobuf” model nor with the
“msg” model. However, there are many architectures in between in which the MSC can be implemented.
Messages “x” and “y” have to be conveyed through different channels to allow for overtaking and the
communication model for the messages in the alt construct should allow for distinguishing between the two
alternatives, like the architecture given in Figure 1.b for instance. However, the MSC in Figure 6.b cannot be
implemented at all. The first part requires an “msg” model whereas the second part cannot be implemented with

an “msg” model.

msc Ex4 msc Ex5
Sender Receiver Sender Receiver
X a
y b
alt alt

 ——————_ ———p
b b

C C
¢ ¢
b) | b)

a a
————— —
< d < d

|] é .

Figure 6. (a) An MSC implementable in a restricted “band”. (b) Non-implementable MSC.

4 EXTENSION OF THE MSC TO SDL TRANSLATION ALGORITHM

In this section, we discuss extensions to our translation algorithm to handle the implementability issue. The
translation task is further complicated by the fact that various messages may be conveyed through different
channels, i.e.: the SDL architecture of the processes may be a composite of many of the basic architectures
described in [2].

The algorithm starts by mapping the given SDL architecture to a set of communication models. Then, each
message can be mapped into a communication model (we assume that each message travels through a unique
channel type). The algorithm then converts the MSC into one tree per instance. Then, it determines the message
sequences that distinguish each branch of the tree (in the above case: “a.b” and “b.a”). Finally, the algorithm
determines, from the set of communication models used for the messages composing the sequence, whether a
branch can contain a sequence that is in another sibling branch. If so, the MSC is non-implementable under the
given architecture and the error is reported back to the system designer.

Other algorithms can also used to determine whether the MSC is not implementable because the architecture is
insufficient (similar to what is described in [2]. A simple example is a MSC with message overtaking which can
not be implemented through a “global” model (all channels are assumed FIFO).

The problem of non-implementability is driving us toward the problem of compatibility between MSCs. Indeed,
if you decompose MSC Ex5 in Figure 6.b into the component MSCs as shown in Figure 7. We know from
Section 3 that MSC Ex6 can be implemented with “msg” model only while the MSC Ex7 can be implemented
with the “pair” model only. There is no common architecture in which both MSCs can be implemented.
Therefore, we can conclude they are incompatible. This is an example of “absolute” incompatibility. The

“relative” compatibility is defined relatively to a given architecture or a set of architectures. Notice that these
definitions of compatibility are related to the implementability, other definitions of compatibility may be given
for other purposes.

msc Ex6 msc Ex7
Sender Sender Receiver
alt

a >
b 5

< C

[]

b >
a —

< d

] []

Figure 7. Incompatibility between MSCs.

5 CONCLUSION

The objective of our work is the automatic generation of correct SDL specification, from MSC specifications
and incremental enrichment of SDL specifications with behaviors specified with MSCs. We assume the target
architecture is fixed. This differs significantly from [8], which reports on race conditions.

We are extending our basic approach to handle MSC'96. Our algorithm generates automatically the SDL process
specifications when the MSC is implementable in the given architecture. We came across this problem of non-
implementabilty, which is due to the distributed nature of SDL specifications compared to the “global view”
described by a MSC. We know that some MSCs cannot be implemented with some architecture and other MSCs
are not implementable at all. These non-implementable MSCs are generally composed of incompatible bMSCs.

Engels et al. [2] have also considered the implementability of bMSCs under different communication models
and came out with a hierarchy for a bMSC. In our work, we have shown that this hierarchy does not hold for
full MSC'96 as discussed in sections 2 and 3. Our work on translating MSCs to SDL, implementability of MSCs,
and compatibility between MSCs is still in progress.

Acknowledgment
The authors thank Mohamed Ashour and Mohamed M. Abdalla for many insightful discussions.

REFERENCES

(1]

(2]

(3]
(4]

(5]
[6]

[7]

(8]

G. Robert, F. Khendek and P. Grogono, “Deriving an SDL Specification with a Given Architecture
from a Set of MSCs”, in A. Cavalli and A. Sarma (eds.), SDL'97: Time for Testing - SDL, MSC and
Trends, Proceedings of the eight SDL Forum, Evry, France, Sept. 22 - 26, 1997.

A. Engels, S. Mauw and M. A. Reniers, “A Hierarchy of Communication Models for Message
Sequence Charts”, Proceedings of the IFIP International Symposium on Protocol Specification Testing
and Verification (PSTV), Osaka, Japan, Nov. 1997.

ITU-T, “Recommendation Z.120 - Message Sequence Chart (MSC)”, 1996.

E. Rudolf, J. Grabowski and P. Graubmann, “Tutorial on Message Sequence Charts (MSC’96)”,
Tutorial of the FORTE/PSTV’96 conference in Kaiserslautern, Germany, Oct. 1996.

ITU-T, “Recommendation Z.100-Specification and Description Language (SDL)”, 1993.

H. Ben-Abdallah and S. Leue, “Syntactic Analysis of Message Sequence Chart Specifications”,
Technical Report 96-12, University of Waterloo, Electrical and Computer Engineering, Nov. 1996.

F. Khendek, G. v. Bochmann and C. Kant, “New Results on deriving protocol specifications from
service specifications”, in Communication Architectures and Protocols: ACM SIGCOMM’89, pp. 136-
145, Austin, Texas, Sept. 1989.

R. Alur and G. J. Holzmann and D. Peled, “An analyzer for Message Sequence Charts”, Proceedings
of Tools and Algorithms for the Construction and Analysis of Systems: second international workshop;
proceedings (TACAS '96), pp. 35-48, Springer-Verlag, 1996.

