Combining SDL Patterns with Continuous Quality
Improvement: An Experience Factory Tailored to
SDL Patterns !

Birgit Geppert, Frank Rof3ler Raimund L. Feldmann, Stefan Vorwieger
Computer Networks Group Software Engineering Group

Computer Science Department, Computer Science Department,
University of Kaiserslautern University of Kaiserslautern

{geppert, roessler }@informatik.uni-kl.de {r.feldmann, s.vorwieger}@computer.org

Abstract

An SDL pattern is a reusable software artifact representing a generic solution for a recurring design problem. It is
required that SDL be the applied design language. However, just offering an SDL pattern pool to the system de-
signer will not result in the expected benefits of software reuse, such as shorter development cycles, improved qual-
ity, or easier maintenance of the resulting products. Advanced SDL methodologies are also needed, which are
tailored to support the reuse of SDL artifacts.

To guide the application of SDL patterns during system design, an incremental configuration process is defined.
However, software reuse can be characterized as a particularly dynamic concept with steady improvements of ar-
tifacts and processes as experience grows. We therefore further develop the SDL pattern approach into an SDL
Experience Factory that supports evaluation and continuous improvement, while the approach is applied in
projects. As its main component, the SDL. Experience Factory contains a central repository for different kinds of
expert knowledge.

Keywords
SDL patterns, continuous quality improvement, Experience Factory, SDL methodology, software reuse

1 INTRODUCTION

The reuse of pre-designed solutions for recurring design problems is of major concern in object-oriented software
development. During the past few years, design patterns have emerged as a particularly fruitful approach to soft-
ware reuse [7, 15]. Contrary to the traditional paradigm of code reuse in the sense of class and function libraries,
design patterns favor high-level reuse of architecture and design and focus on the invariant parts of a design solu-
tion. Thus they offer by far more flexibility for adaptation to the embedding context and substantially increase the
potential of reuse.

In [16, 18, 19] we present the SDL pattern approach that integrates the design pattern concept with SDL [21].
Generally speaking, SDL patterns describe generic solutions for recurring design problems, which can be custom-
ized for a particular context. While conventional design patterns are specified independently from a possible design
language, it is assumed that the target language for SDL pattern instantiation is SDL. Thereby we benefit from the
formal basis provided by SDL, so that SDL patterns are actually characterized as formalized design patterns. In-
stead of specifying and applying the patterns rather informally, a formal target language such as SDL offers the
possibility of precisely specifying how to apply a specific pattern, under which assumptions this will be allowed,
and what properties result for the embedding context. This is a major improvement compared to conventional de-
sign patterns, which mainly rely on natural language-based pattern description and, to a large degree, must still
leave pattern application to the personal skills of the system designer. We also consider formalization to be a pre-
requisite for increased correctness of resulting products [26] and tool support [9]. However, we do not deal with
formalizing design patterns in general. Instead of formalizing reuse concepts, we aim to support reusability within
the formal methods area.

SDL patterns are expected to offer the same advantages as those commonly attributed to conventional design
pattern, namely, pattern capture solutions, which have evolved over time and serve as an elegant way to make de-

'This work is supported by the German Science Foundation (DFG) as part of the Sonderforschungsbereich
SEB 501 Development of large systems with generic methods

signs more flexible, modular, reusable, and understandable. They reflect experiences gained in prior developments
and therefore help designers reuse successful designs and architectures. As a consequence, the design process be-
comes faster and the number of design errors decreases. However, such statements often seem to be subjective in
nature. That is, they characterize hypotheses that must be validated. In [12] we present an approach for the exper-
imental evaluation of empirical properties of SDL patterns. This approach is based on the Quality Improvement
Paradigm (QIP) [1] and the Experience Factory (EF) approach [2], and serves two purposes: first, the expected
properties of SDL patterns that involve human interaction can be validated and second, one gets detailed informa-
tion for guiding stepwise improvement of the SDL pattern approach. Every project (i.e., case studies and controlled
experiments) is carefully planned, executed, and analyzed. Goal-oriented measurement plans according to the Goal
Question Metric paradigm (GQM) [3] are defined in the planning phase of each project. The data that is collected
according to our measurement plans during the execution phase of a project is finally analyzed and used to prove
or reject our hypotheses concerning SDL patterns. Furthermore, the results are used for continuous improvement.
To support our approach, a central reuse repository is used where project data, process models, SDL patterns, meas-
urement data, lessons learned, or other experiences concerning SDL patterns are collected: the so-called SDL Ex-
perience Base [2]2. With the help of our Experience Base, tailored to SDL patterns, we transfer the gained
knowledge into new projects and experiments to allow continuous improvement of the SDL pattern approach. The
SDL Experience Base, together with the Experience Factory approach, enriches existing SDL methodologies with
two promising paradigms of modern software engineering: design patterns and continuous quality improvement.
Note, however, that we do not aim to substitute existing SDL methodologies. Rather, we integrate smoothly by
adding concepts for reuse and continuous improvement of reuse procedures.

The remainder of the paper is organized as follows: Section 2 discusses software reuse with SDL in general and
introduces the SDL pattern approach. In Section 3 we develop the approach into an SDL Experience Factory that
supports evaluation and continuous improvement of SDL patterns and accompanying processes. We summarize
the results in Section 4.

2 SDL PATTERNS AND METHODOLOGY

In the following we summarize reuse concepts already supported by SDL and motivate the idea of SDL patterns.
Subsequently, we introduce SDL patterns and an accompanying configuration process that guides the application
of SDL patterns during system design.

2.1 Software reuse with SDL

Benefits of software reuse are, for example, reduction of development effort and therefore shorter development
cycles, as well as better quality and easier maintenance of the resulting products. Reuse can already be performed
within a single project by using procedures, macros, or class inheritance. More interesting, however, is the reuse
of software artifacts between several projects by providing some kind of software artifact repository. There are sev-
eral kinds of reusable artifacts which differ in their abstraction level and flexibility.

Component libraries are concerned with code reuse and offer only little flexibility for tailoring them to a specific
problem. As a consequence, the developer does not need to go to much expense before being able to reuse the com-
ponent. Library components have well-defined interfaces and offer black-box reuse, i.e., reuse without the need to
understand how the components are realized. However, they are rather unflexible: "applications seem infinitely
variable, and no matter how good a component library is, it will eventually need new components* [23].

Different from component libraries, frameworks are concerned with reuse of architecture and design. A frame-
work defines a domain-specific architecture represented as a "reusable, semi-complete application that can be spe-
cialized to produce custom applications* [10]. Therefore, an essential property for frameworks is their extensibility
to ensure timely customization. Frameworks are often combined with design patterns which enable documentation
of frameworks and support their customization, in particular. The existing functionality of the framework is reused
and extended by applying certain patterns which define how the framework is to be adapted. Design reuse is more
flexible, but the learning curve required before a framework or design pattern can be reused could be very high.
,Most design reuse is informal and happens through using experienced developers* [23].

It is generally accepted that just offering a software repository to the engineers will not result in the above-men-
tioned benefits of software reuse. Additionally, advanced methodologies are needed which are tailored for support-
ing the reuse of these artifacts. That is, specialized process models, guidelines for applying the artifacts, lessons
learned as well as experiences from prior projects are to be provided to the development team.

Some of the above-mentioned reuse concepts are also supported by SDL:

* Macros:
If a section of an SDL specification appears in several places, it can be defined once as an SDL macro and called

2In [2] the concept of an Experience Base is much more general. We restrict the ideas to the SDL patterns context
and therefore call it SDL Experience Base.

wherever it is needed. Before interpretation of the system the macro calls are replaced by a copy of the corre-

sponding macro definition. A macro can be parameterized and is visible to the whole system, no matter at which

level it is defined. A macro definition may call other macros, but a recursive call (directly or indirectly) is not
allowed.
* Object-orientation:

SDL allows the parameterized type definition of blocks, processes, services, procedures, signals, and data. The

types can be specialized by redefining virtual types or transitions, adding attributes (e.g., gates, signals), or by

bounding formal context parameters (e.g., signal context parameter). Not supported by SDL are multiple inher-
itance and dynamic binding. Defining a type which is instantiated several times and which could also be special-
ized to define a subtype, enables reuse within one system. Parameterization makes a type independent from the
context in which it is defined, so that instantiation is more flexible. For example, without using signal context
parameters, a process type could only be instantiated in a context where the signal definitions exactly match the
signals of the process type.

* Packages:

In order to support reuse between several projects, SDL offers the possibility of collecting type definitions in

libraries. These libraries are called packages in SDL. The type definitions of a package are made visible to an

SDL specification by a special use-clause. Until SDL-92, this was only allowed at system level, so that the type

definitions of a used package were visible to the whole system. Since SDL-96, a package can also be used at a

lower level, such as block or process diagrams. Packages can themselves use other packages. The concept of pa-

rameterized types (see above) is most important for packages in order to make types independent from the con-

text in which they are to be instantiated.
It turns out that SDL only supports code reuse. More flexible reuse concepts would be gained by combining SDL
with the idea of frameworks or design patterns. There are already some projects dealing with SDL frameworks (see,
e.g., [6, 28]). A framework comprises an SDL system type with several virtual block, process, and service types as
well as virtual procedures. Furthermore, documentation is prepared for the framework which describes three main
aspects: the purpose of the framework, how to instantiate it, and its detailed design. The framework is instantiated
by specialization and adaptation. In [16, 18, 19] we describe how to combine SDL with the design pattern concept.
The approach is discussed in more detail in Section 2.2.

There are several SDL methodologies, but only some of them are tailored to support the reuse of SDL artifacts.
For instance, a key issue of the SDL methodology framework presented in [25] is the reuse library, an archive
where relevant documents are placed for later reuse. However, what kind of documents shall be stored or how they
are reused is not prescribed. This has to be defined when instantiating the methodology framework for a certain
development project.

2.2 SDL patterns

What are SDL patterns?

Scattered parts of a given SDL specification together may produce a certain functionality. By analysis, abstraction,

and documentation, such a design solution can be reused whenever the design problem arises. This is the main idea

of software patterns in general and of SDL patterns in particular. Roughly speaking, an SDL pattern is defined as

a reusable software artifact representing a generic solution for a recurring design problem with SDL as the ap-

plied design language. SDL patterns - like other software patterns - serve three main purposes:

* First, patterns are descriptive in nature. That is, they describe design expertise and experiences gained in prior
projects and allow to pass this knowledge on to other developers. A collection of patterns can therefore be seen
as some kind of textbook.

* SDL patterns generate a design solution for a given problem. Therefore, the solution is described by an SDL-
fragment that consists of several syntactical elements (e.g., transition fragments) which may be scattered over
the context specification3 . Additionally, application guidelines describe when the pattern could be applied and
how to adapt the SDL fragment and compose it with the given context specification.

* Furthermore, patterns help to document a given design. The information about embedded pattern instances can
be inserted during pattern-based design, i.e., when applying a pattern (top-down documentation). However, pat-
tern information can also be inserted into a given SDL specification by pattern-based reverse engineering (bot-
tom-up documentation). Therefore the SDL specification is scanned for pattern instances and enriched with
suitable pattern comments.

3Note that SDL-fragments differ considerably from SDL macros. For instance, an SDL-fragment includes several
syntactical elements that are normally scattered over the context specification. Furthermore, embedded SDL pat-
tern instances may overlap with the context specification (i.e., parts of the context are replaced when composing it
with the pattern instance).

Name. The name of the pattern, which should intuitively describe its purpose.
Intent. A short informal description of the particular design problem and its solution.

Motivation. An example (from the area of communication systems) where the design problem arises.
This is appropriate for illustrating the relevance and need of the pattern.

Structure. A graphical representation of the structural aspects of the design solution using an OMT or
UML object model. This defines the involved components (design elements) and their relations.

Message scenario. Example scenarios illustrating typical interactions between the involved objects
(e.g., protocol entities, service users, service providers, protocol functions) are specified by using MSC
diagrams.

SDL-fragment. The mere syntactical part of the design solution is defined by a generic SDL-fragment,
which is adapted and syntactically embedded when applying the pattern. If more than one SDL version
of the design solution is possible (realization as SDL service or procedure, interaction by message pass-
ing or shared variables, etc.), fragments for the most frequent versions are included. For each fragment,
corresponding syntactical embedding rules are defined in terms of the SDL syntax:

e Rules for renaming of the generic identifiers of the SDL-fragment.

* Rules for composing the pattern instance with the embedding context. This could, for instance, result
in the addition of new transitions or SDL services or in a refinement of existing types or transitions.

Note that an SDL-fragment is generally not a syntactically complete SDL specification but a fragment,
which has to be adapted and composed with an embedding context. From a semantical point of view,
SDL-fragments therefore only become formally meaningful when they are part of a complete specifica-
tion.

Semantic properties. Properties of the resulting specification that are introduced by the embedded pat-
tern. This also includes a description of assumptions under which these properties hold. Care has to be
taken not to destroy a pattern’s assumptions during further development steps, €.g., by manipulating the
context specification. The semantic properties define the pattern’s intent more precisely.

Refinement. An embedded pattern instance can be further refined, e.g., by the embedding of another
pattern instance in subsequent development steps. Refinements compatible with the pattern’s intent are
specified.

Cooperative usage. Possible usage with other patterns of the pool is described. This is feasible and es-
pecially useful for a specific application domain as in our case. This distinguishes a pool of SDL patterns
from a mere pattern catalogue where the patterns are unrelated or only loosely related.

Figure 1: SDL pattern description template

What do SDL patterns look like?

The specification of an SDL pattern is organized by a standard description template (Figure 1). Its main items are
sketched in the following: the syntactical part of the design solution is defined by the generic SDL-fragment, which
has to be instantiated and textually embedded into the context specification when applying the pattern. Instantiation
and composition of SDL-fragments is prescribed in terms of syntactical embedding rules, which, e.g., guide the
renaming of generic identifiers or specialization of embedding design elements. Usually pattern semantics is not
completely captured by an SDL-fragment. Due to language constraints, this would otherwise result in an overspeci-
fication of the design solution and reduce the potential of reuse. Thus, additional semantic properties specify pre-
conditions for pattern application as well as behavioral changes of the embedding context. Though semantic
properties are currently stated in natural language, it is possible to express them precisely in a temporal logic. Also,
restrictions on the refinement of pattern instances are specified in order to prevent a pattern's intent from being de-
stroyed by subsequent development steps. A comparison to existing description templates for conventional design
patterns is given in [16]. Figure 2 shows an instance of the description template.

What is the application domain of SDL patterns?

In general, the SDL pattern concept is not restricted to any application domain. This means that SDL patterns can
be defined for any domain where SDL is applicable and can deal with system architecture or behavior description.
In the SFB 501 project we are concerned with the generic engineering of communication software. Therefore, the
current pool of SDL patterns contains building blocks from the domain of communication systems that deal, for
instance, with the interaction behavior of distributed objects, error control (lost or duplicated messages, see Figure
2), lower layer interfacing, or dynamic creation of protocol entities [17]. Not included so far are SDL patterns deal-
ing with system architecture. This is a matter of future work.

2.3 Configuration process

Along with the standard template for SDL pattern description, we have also defined a process model for the appli-
cation of SDL patterns (Figure 3). The configuration process suggests an incremental design, where the whole set
of requirements is first decomposed, i.e., partitioned and (where appropriate) simplified. Decomposition classifies
as an analysis task that identifies separate protocol functionalities. Thereby it is possible to consider a protocol
functionality under different assumptions. For instance, interaction sequences during connection establishment are
less complex on top of a reliable basic service rather than an unreliable basic service. Experience has shown that
protocol functionalities can often be specified one after the other and - in addition - be completed stepwise (e.g.,

ﬁame: TimerControlledRepeat \
Intent:

TimerControlledRepeat extends a two-way interaction between two automata SendAutomaton and ResponseAuto-
maton for the case of possible message losses during data transfer. If an expected response does not arrive before the
expiry of a timer, the message is repeated (Positive Acknowledgement with Retransmission). This pattern does not
deal with the problem of message disruption or duplication.

Motivation:

For a BlockingRequestReply pattern [17] instance the requester will deadlock, if the reliable transmission of the
request or reply signal is not guaranteed. Therefore replies are observed by TimerControlledRepeat in case of unre-
liable basic service.

Autc \(

Structure: two-way interaction I Resp

SendAutomat

7N
PARAutomaton

Message Scenario:

MSC positive acknowledgement with retransmission

R
1 sender receiver
[T—— S

F‘AHA mmatnn Res;cnseAulcma‘cn

sendMessage N
waForRespgnse

| sendMessage 3

=

sendMessage 4

response

SDL-fragment:
Service Type PARAutomaton

~ T M
- -
r —T— -

<
L — —

'rsendMessage >
—_—
]
|SET(NOW+ timerlnterval, timerName) | - —

axNoOfRepeag

false

1
| noOfRepeats:=noOfRepeats+1 |
1

|SET(NOW + timerlnterval, timerName) |

noOfRepeats:=0

QVaitForResponse')

- - — —
‘error’

Semantic properties:
Property C.1.: If the assumptions stated below hold, PARAutomaton will eventually receive a response from
ResponseAutomaton after sending a sendMessage, or PARAutomaton will enter the error state after maxNoOfRe-
peats unsuccessful retransmissions. The assumptions are:
The communication channel between PAR Automaton and Response Automaton for transmission
of sendMessage and corresponding response signals neither disrupts nor creates messages.
* The communication channel may lose messages but timerlnterval is greater than the maximum
round trip time of sendMessage and corresponding response.
* ResponseAutomaton reacts on duplicates the same way (from the perspective of PARAutoma-

k ton) as on the original sendMessage. /

Figure 2: Excerpt of an SDL pattern

adapted to the non-ideal properties of an underlying ba-
sic service) [20, 26]. This suggests that we perform an
individual development step in order to incorporate an
additional protocol functionality or relax a correspond-
ing simplification.

A development step is further divided into an object-
oriented analysis and the actual design of the current
functionality. It is the design activity where SDL pat-
terns actually come into place: starting point is the con-
text SDL specification, i.e., the SDL design
spec1flcat10n obtained from the previous development
step Based on the new requlrements a proper set of
SDL patterns is to be selected®. As SDL patterns repre-
sent generic design solutions, a selected pattern, respec-
tively its corresponding SDL-fragment, has to be
adapted to seamlessly fit the embedding (context) spec-
ification (e.g., generic signal names have to be set ac-
cording to the pattern’s syntactical embedding rules).
Finally, the pattern instance is ready to be composed
with the embedding specification. Application of pat-
terns in the sense of selection, adaptation, and composi-
tion is specifically supported by certain items of the
SDL pattern description template.

The result of this design activity is an intermediate
SDL design specification, which is to be validated in the
normal way. If any faults are discovered, a return to one
of the previous development steps is needed (not shown
in Figure 3). Otherwise the validated specification
serves as the context specification for the next develop-
ment step. If all simplifications are eliminated and all re-
quirement subsets are implemented, the final design
specification is given by the validated design specifica-
tion of the last development step.

3 CONTINUOUS IMPROVEMENT OF THE
SDL PATTERN APPROACH

To show the feasibility of the SDL-pattern approach,
several test projects have been conducted. However, in
order to validate empirical properties as mentioned in
Section 1, a more systematic method is needed. Addi-
tionally, it is essential to have an infrastructure available
that helps to continuously improve the concepts, as good
patterns mainly arise from practical and well-founded
experiences. Thus we combine SDL patterns with the
Experience Factory approach.

3.1 Test projects

In order to show the feasibility of the SDL-pattern ap-
proach, we conducted several test projects. For instance,
we have performed an SDL pattern-based re-engineer-
ing of most parts of the Internet Stream Protocol ST2+
[8], resulting in a systematic and formal SDL design
specification [26]. Thereby a very large portion (almost

| Communication Requirements |

X |
ﬂtocol \
Analysis

Partition/Simplification of
Communication Requirement

Subset of (simplified)
[Communication Requirement:

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

\ 4

Analysis Model
Protocol Architecture and External Components
Interface Behavior of Protocol Entities and
External Components

el -

t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
L

(m D

[

T

A appropriate no
SDL pattern
o inpool ?
7

Selected Protocol Building Blnc

Addplcd Protocol Building Blot

b

Composition *

m>1

Protocol Deslgn\

Poolof | [- - | Adaptation Find ad hn@
Protocol
Building Block:

=~
|
|
|
|
|
J

A 4

r
I
|
i-
I
I
=
I

L Refined Context

Specification

yes

(m:=m+1) no subset of requirements
k completly met?

Intermediate Version of Protocol Design Specificatio)
Partial/Simplified Protocol Architecture and Behavior

1

.1.

I
|
|
|
|
|
1
|
|
|
|
|
|
|
|
1

Validated Context Specification 1-1[— —
(n:=n+1)
all i met?:
Final Protocol Design Speclﬁcatm
DCL n: Integer := 1 /* development step counter */ --- P product flow
DCL m: Integer /* design step counter */ —} control/product flow

Figure 3: Process model (excerpt)

“For the first development step, the initial context specification is either empty or given by an instantiated SDL

framework.

>Note that for some design problems the pool of pre-defined building blocks may not contain an adequate solution.
This gives rise to the development of a new SDL pattern or an ad hoc solution.

Project organization
_—
—>(plan
Dataflow
organizafion- I oxp- C—
wide section (execute)4_’ specific
Vi section project steps
organization-
wide section
Vit (analyze)
Experience Base
1é section
. — \ package)
Experience Factory organization

Figure 4: The Experience Factory

100% of the control structure) of the final ST2+ specification resulted from SDL patterns (10 different patterns
were used and the original specification in natural language took about 70 pages). In particular, we demonstrated
how SDL pattern-based design can boost the developer’s confidence in the correctness of the resulting product [26].
Another test project was part of a more comprehensive project where a real-time communication subsystem was
developed on top of a Controller Area Network (CAN) installation. In [20] we demonstrate how the protocols sup-
porting user communication and certain management tasks were configured using SDL patterns. We also applied
the SDT Cadvanced code generator to implement the resulting design specification on a PC cluster. Again, it turned
out that SDL pattern-based configuring of communication protocols yields more systematic designs, i.e., readabil-
ity and maintainability is improved and less design errors occur, since the design decisions are well founded and
documented.

Test projects are an adequate means of demonstrating the feasibility of the approach. They also helped to develop
an initial pool of SDL patterns. However, with the current status of the SDL pattern approach we wish to have a
more systematic method to investigate certain details of the approach. Additionally, it would be helpful to record
other kinds of experiences concerning SDL patterns (we currently only support informal feedback on the configu-
ration process and the patterns themselves). To alleviate these problems, we are developing an SDL Experience
Factory with a central repository for all kinds of SDL pattern-specific experience, the SDL Experience Base.

3.2 Logical structure of the SDL Experience Factory

The Experience Factory (EF) concept, as suggested by Basili et. al. [2], is a logical and/or physical organization
that supports project development by a) analyzing and synthesizing all kind of experience, b) acting as a repository
for such experience, and c) supplying that experience to future projects on demand. Every single project is conse-
quently seen as an experiment from which the organization can gain new experience to improve its competence.
Therefore, the Experience Factory organization completes the standard project organization, so that each project
is conducted in four main steps: plan, execute, analyze, and package. While the planning and execution steps are
mainly performed by the project organization, the Experience Factory organization is responsible for the analysis
and packaging steps, i.e., to systematically analyze each conducted project in order to gain new experience or val-
idate existing experience, and (re-)structure and store the results from the analysis step, so that they can serve as
valuable input for future projects.

One main component of an EF is the so-called Experience Base (EB). An EB acts as a central repository for all
kinds of experiences regarding software development, since not only the classical code or pattern reuse is support-
ed. In our SDL Experience Factory we distinguish between an organization-wide section and an experiment-spe-
cific section of the EB. The organization-wide section stores experience common to several projects, e.g., the SDL
pattern pool, while all information concerning single projects is kept in the experiment-specific section according
to predefined templates. These templates are completed while the project is planned, executed, and analyzed, and
serve as a basis for the last step, which packages the gained experience into the organization-wide section of the
EB. Therefore, the experiment-specific section is similar to commonly known project databases. Figure 4 summa-
rizes how our EB sections are involved in the conduction of the single project steps.

In our instantiation of an EF tailored to SDL patterns, we refine the organization-wide section of the EB into
different areas. They help us structure the stored experience and can be seen as disjunct modules. An example for
an area is the glossaries area which provides definitions for terms commonly used in all projects and experience
elements stored in the EB. Just as modules can be refined into functions, areas can be further refined. For example,
the glossaries area is split up into a GQM glossary defining terms concerning GQM-based [3] measurement activ-

ities, an SDL glossary with SDL-related definitions, and a general Software Engineering glossary providing defi-
nitions for terms like process, product, etc.. Besides the glossaries area, the following areas have been instantiated:
* The component repositories area:
This area offers components that can be reused in different projects. For example, SDL patterns such as the
TimerControlledRepeat pattern (Figure 2), or C++ code for checksum algorithms are stored here.
* The process modeling area:
Process, product, and resource models, describing how to conduct a project or apply a technique, are offered in
this area. For example, the configuration process for the application of SDL patterns (Section 2.3), the SOMT
process model [29], or the Brak and Haugen model for developing real-time systems with SDL [5] are provided.
* The technologies area:
For different techniques, methods, and tools, so-called technology packages [24] are stored in this area. These
packages contain basic information about the technologies and help to select the appropriate techniques when
setting up a new project. The SDT (SDL Design Tool) package, for instance, helps newcomers get into the SDL
development environment.
* The measurement area:
Pre-defined GQM plans [3] that can be easily adapted to new projects, e.g., to empirically validate and improve
the SDL pattern pool, or the configuration process are stored in this area.
* The qualitative experiences area:
All lessons learned, i.e., experiences that were not planned to be made6, but turned out to be useful, from the
planning, execution, and analysis steps of projects, are represented in this area. They are categorized according
to the topics they deal with. Currently we deposit experiences about adequate decomposition of communication
requirements in this area (Section 2.3).
* The literature area:
Background knowledge in the form of (external) references, on-line documents, and contact addresses is provid-
ed within this area. For instance, a reference to the SDL forum society web page7, or relevant papers dealing with
communication protocols can be found here.
The described areas help find experience elements of a concrete type within the organization-wide section of the
EB. Additionally, different relations have been defined between the areas and the experiment-specific section to
support the search for experience elements in a given project context. The areas, sections, and predefined relations
together form a framework that represents the logical structure of our EB instantiation. It is described in detail in
[12]. A discussion of the technical realization of the EB using HTML-pages that are accessible via the SFB 501
intra-net can be found in [14].

3.3 Process model for experimental evaluation and improvement

After we have discussed the basic structure of our Experience Factory, we will now describe how projects using
SDL patterns are conducted in this infrastructure and how the experimental evaluation and improvement is sup-
ported. Therefore, for each of the four project steps - plan, execute, analyze, and package - we list which processes
have to be conducted, and which products are produced, extracted from, and inserted into the EB sections. A more
general discussion on how an EB supports systematic reuse in projects can be found in [13].

Step 1: Planning the project
As in common project environments, the new project first has to be characterized by means of “What are the de-
liverables of the project?”, “In which environment is the project to be conducted?”, and “Are there time restrictions
for the project?”. This characterization that serves as a basis for all planning activities is recorded and stored in a
new project entry that is created in the experiment-specific section of the EB. In accordance with some pre-defined
template (see [11]), all documents produced for the project will be stored in this entry. The project characterization
is used to search the organization-wide section of the EB for similar project plans and/or process descriptions suit-
able for the new project (remember, in an Experience Factory reuse is extended to all kind of project experience).
Based on the retrieved information, the project plan for the new project is defined and stored in the project entry
of the experiment-specific section of the EB. For instance, the process model for the application of SDL patterns
(see Section 2.3) that is stored in the organization-wide section of the EB usually serves as a basis for the new
project plan. Information about the resources, i.e., people and tools, that will be needed for the project, and mile-
stones of the project will be added. Technology packages [24], from the technology area of the organization-wide
section of the EB, can help to select the appropriate technologies for the project.

Since every project is seen as an experiment that helps to systematically improve and validate the used technol-
ogies, project plans, SDL patterns, etc., any goals regarding the validation of hypotheses that should be examined

6‘Experience which is expected to be collected is captured with the help of GQM-based measurement programs
that are defined in the planning step of a project.

7'http://www.sdl-forum.org/

in the project must be formulated in a quantitative manner. Therefore, metrics are defined with the help of GQM
plans [2], and data collection forms, e.g., in the form of questionnaires, are created. This task is supported by some
GQM plans, e.g., regarding the quality of SDL patterns, that are stored in the measurement area of the organization-
wide section of the EB. All documents for the projects measurement program are saved in the project entry.

Finally, it must be checked if all required resources are ready to be used in the project. This includes the setup
and installation of the needed tools and maybe the preparation of training of the people with regard to the technol-
ogies used and the development process of the project. Technical help for the installation and usage of tools is again
provided by the technology packages of the technology area, or by literature references from the literature area of
the organization-wide section of the EB. Reading those lessons learned from past projects that deal with technol-
ogies can help to avoid problems in the new project.

Step 2: Executing the project

In this step, the project is executed according to the project plan that is stored in the project entry. For the develop-
ment process, the process model for the application of SDL patterns (Figure 3), as part of the project plan, is used.
Developers extract and reuse SDL patterns and/or code fragments from the component repository area of the or-
ganization-wide section of the EB, if they are suitable for the problem that is to be solved. With the help of the
questionnaires from the project entry, measurement data is collected and stored in the project entry. Unexpected
problems and/or new solutions that occur in the project are recorded by the developers and are added to the project
entry, to be analyzed in later project steps and maybe packaged for future reuse in other projects. Finally, the de-
veloped documents, i.e., SDL specifications, code, requirements descriptions, etc., are stored in the project entry.

Step3: Analyzing the project

The measurement data that has been collected and stored in the project entry during the execution of the project is
now processed and analyzed. With its help the questions concerning the measurement program goals are answered,
i.e., the hypotheses that were formulated at the beginning of the project are tested to see if they have been validated
or must be rejected. The results are recorded and stored in the project entry. This is usually done by members of
the Experience Factory organization. Additional reported experiences, e.g., about problems and new solutions con-
cerning the usage of tools or SDL patterns, are completed and carefully judged to see if they were project-specific,
or if they can be of relevance for future projects. Therefore, the people from the development team and project man-
agement team are interviewed. Again, the results are stored in the project entry.

Step 4: Package the project experience

From the experiences in the project entry of the experiment-specific section, lessons learned are formulated and
stored in the organization-wide section of the EB if they are of interest for future projects. Both the analyzed meas-
urement data and the captured lessons learned can then be used to systematically improve and/or adapt the tech-
nologies (e.g., tools), process models (e.g., the SDL-pattern process), and components (e.g., the SDL patterns) that
were used in the actual project, for similar future projects. Even if no problems occurred and everything worked
out fine, the results are useful for future projects: this is because the used processes and products can be more trust-
ed since they have been successfully tested in practice and therefore can guarantee a minimum of quality assurance
in a project if they are selected for reuse. So whenever a future project uses the organization-wide section of the
EB to support its planning and execution step, the experience gained in the actual project is systematically trans-
ferred into the new projects. And when each future project is also seen as an experiment which is used to gain ex-
perience and therefore, is conducted according to the four steps: plan, execute, analyze, and package, the cycle
starts again and continuous improvement is established.

4 CONCLUSION

We have introduced the SDL-pattern approach which integrates the well-known design pattern concept with the
formal design language SDL. As a major advantage, SDL patterns allow to precisely specify knowledge about pat-
tern application and its impact on the embedding context. SDL patterns focus on the reuse of architecture and de-
sign as opposed to the reuse concepts that are already supported by SDL. To show the feasibility of the approach,
several test projects were conducted. However, with the current status of the approach, we wish to have a more
systematic method to investigate certain details concerning SDL patterns. Additionally, it is essential to have an
infrastructure available that helps to continuously improve the concepts, as good patterns mainly arise from prac-
tical and well-founded experiences. For this purpose we combined the SDL pattern approach with the Experience
Factory approach. The SDL Experience Factory contains a central reuse repository for all kinds of SDL pattern-
specific experiences and allows us to effectively set up new projects with a corresponding measurement program.
Knowledge is systematically packaged and transferred into new projects, so that the SDL pattern approach can be
continuously improved. A model for the SDL Experience Factory was introduced where the main activities are
planning, executing, and analyzing the project as well as packaging the project experiences.

Initial experience with the SDL Experience Factory [12] has shown that it is a valuable means for evaluation and

continuous improvement, while the approach is applied in real projects. Thus we are currently planning a re-engi-
neering of two former test projects within this context.

Acknowledgements

Our gratitude is extended to our project leaders Prof. Dr. Reinhard Gotzhein and Prof. Dr. H. Dieter Rombach. Ad-
ditionally, the assistance provided by Sonnhild Namingha from the Fraunhofer Institute for Experimental Software
Engineering (IESE) in reviewing early versions of this paper is much appreciated.

5

(1]
(2]
(3]
(4]
(5]
(6]
(7]
(8]

(9]
[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]
[22]
[23]
[24]

[25]
[26]
(27]

(28]
[29]

REFERENCES

V. R. Basili and H. D. Rombach, The TAME Project: Towards improvement—oriented software environments, IEEE
Transactions on Software Engineering, SE-14(6):758—773, June 1988.

V. R. Basili, G. Caldiera, and H. D. Rombach, Experience Factory, In John J. Marciniak, editor, Encyclopedia of Soft-
ware Engineering, volume 1, pages 469—476, John Wiley & Sons, 1994.

V. R. Basili, G. Caldiera, and H. D. Rombach, Goal Question Metric Paradigm, In John J. Marciniak, editor, Encyclo-
pedia of Software Engineering, volume 1, pages 528-532, John Wiley & Sons, 1994.

G. Booch, J. Rumbaugh, and 1. Jacobson. The Unified Modeling Language, Version 1.0. Rational Software Corporation,
1997

R. Brek and @. Haugen. Engineering Real-time Systems: An Object-oriented language Methology using SDL. Prentice
Hall, London, 1993.

R. Brek, 0. Haugen, G. Melby, B. Mgller-Pedersen, R. Sanders, and T. Stalhane, TIMe - The Integrated Method. SIN-
TEF, TIMe Report, 1997

F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Software Architecture - A System
of Patterns, John Wiley & Sons, 1996

L. Delgrossi and L. Berger (Ed.), Internet Stream Protocol Version 2 (ST2), Protocol Specification - Version ST2+, RFC
1819, 1995

D. Cisowski, B. Geppert, F. RoBler, and M. Schwaiger, Tool Support for SDL Patterns (this volume)

M. E. Fayad and D. C. Schmidt, Object-Oriented Application Frameworks, Communication of the ACM, Volume 40,
Number 10, Oct. 1997

M. Fechtig. Fixing the case studies’ structure for the access and storage system of the experiment-specific section in the
SFB 501 Experience Base (in German). Projektarbeit, Dept. of Computer Science, University of Kaiserslautern, Germa-
ny, Jan. 1998.

R. L. Feldmann, B. Geppert, and F. RoBler, Towards an Experimental Evaluation of SDL-Pattern based Protocol Design,
SFB 501 Report 04/98, Computer Science Department, University of Kaiserslautern, Germany, 1998

R. L. Feldmann, J. Munch, and S. Vorwieger, Towards Goal-Oriented Organizational Learning: Representing and
Maintaining Knowledge in an Experience Base, In Proceedings of the Tenth International Conference on Software En-
gineering and Knowledge Engineering (SEKE*98), San Francisco, USA, June 1998

R. L. Feldmann and S. Vorwieger, Providing an Experience Base in a research Context via the Internet, In Proceedings
of the ICSE 98 Workshop on "Software Engineering over the Internet", Kyoto, Japan, April 1998

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns - Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995

B. Geppert, R. Gotzhein, and F. RoBler, Configuring Communication Protocols Using SDL Patterns, in: A. Cavalli,

A. Sarma (Eds.): SDL’97 - Time for Testing - SDL, MSC and Trends, Proceedings of the 8th SDL Forum, France, 1997
B. Geppert and F. RoBler, Pattern-based Configuring of a Customized Resource Reservation Protocol with SDL, SFB
501 Report 19/96, Computer Science Department, University of Kaiserslautern, Germany, 1996

B. Geppert and F. RoBler, Combining SDL and Pattern-based Design for the Customization of Communication Subsys-
tems, in: A. Wolisz, I. Schieferdecker, A. Rennoch (Eds.): Formale Beschreibungstechniken fur verteilte Systeme,
GMD-Studien No. 315, GI/ITG-Fachgesprach, ISBN 3-88457-315-2, 1997

B. Geppert and F. RoBler, Generic Engineering of Communication Protocols - Current Experience and Future Issues,
Proceedings of the 1st IEEE International Conference on Formal Engineering Methods, ICFEM'97, Hiroshima, Japan,
1997

B. Geppert, F.R08ler, and M. Schneider, Using SDL Patterns for the Design of a Communication Subsystem for CAN,
accepted for GI/ITG-Fachgesprich: Formale Beschreibungstechniken fur verteilte Systeme, Cottbus, Germany, 1998
ITU-T. Recommendation Z.100 (03/93) — CCITT Specification and Description Language (SDL), 1994

ITU-T. Recommendation Z.120 (10/96) — Message Sequence Chart (MSC), 1996

R. E. Johnson, Frameworks = (Components + Patterns), Communication of the ACM, Volume 40, No. 10, Oct. 1997
F. Kollnischko, S. Vorwieger, M. Ciolkowski, S. Haubrichs, D. Muthig, Online-Support For Techniques And Tools In
An Software Engineering Lab (in German), SFB 501 Report 06/97, Computer Science Department, University of Kaiser-
slautern, Germany, 1997

R. Reed, Methodology for Real Time Systems, Computer Networks and ISDN Systems 28 (1996)

F. RoBler, B. Geppert, and Ph. Schaible, Re-Engineering of the Internet Stream Protocol ST2+ with Formalized Design
Patterns, accepted for the 5th IEEE International Conference on Software Reuse, ICSR'98, Victoria, Canada, 1998

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-Oriented Modeling and Design. Prentice Hall,
1991

STEPS - The SDL Template for Protocol Stacks, S&P Media, 1998

Telelogic. SDT 3.3 Methodology Guidelines — Partl: The SOMT Method. Telelogic, Sweden, 1998

