Pomsets for M essage Sequence Charts'

Joost-Pieter Katoen and Lennard Lambert

Lehrstuhl fur Informatik VII. Friedrich-Alexander University of Erlangen-Nurnberg.
Martensstrasse 3. D-91058 Erlangen. Germany.

{katoen, |dlamber } @infor matik.uni-erlangen.de

Abstract

M essage sequence charts (M SCs) are a standardised formalism for the specification of the system’scommunication
behaviour that is widely used by industry. Various extensions to MSCs have recently been standardised by the
ITU. This paper treats the extension of MSCs with structural operatorsthat allow the hierarchical composition of
MSCs. In particular, we propose alinear-time partial-order semantics for thisextension that isbased on the notion
of partial-order multi-sets (pomsets, for short). We providea compositional denotational semantics for hierarchical
MSCs and show that well-known operations on pomsets correspond to the new composition operators in MSCs.
The main benefit of our approach is that the semantics is conceptually rather straightforward, as opposed to the
operationa semantics for MSCsthat is currently in the process of standardisation.

Keywords
Denotational semantics, partial-order multi-set, hierarchical M SC

1 INTRODUCTION

In the telecommuni cation sector, MSC (Message Sequence Chart) is a standardised formal specification language
for describing an overview of the system’s communication behaviour. This overview isintended to be incomplete,
that is, an M SC-specification describes only sample behaviours. Typically, an M SC-specification iscomplemented
by a more compl ete specificationin SDL (Specification and Description Language) [3] or asimilar language. MSC
is employed across a wide spectrum of activitiesin the design of distributed systems, ranging from reguirements
specification, over simulation, down to test-case specification of system implementations.

MSC has been standardised in two versions, namely MSC'92 [7] and MSC'96 [8]. In MSC'92 only basic
M SCswith asynchronous message exchange between parallel instances are specified. The mainimprovement from
MSC’'92 to MSC' 96 is the incorporation of structural operators that allow the hierarchical composition of MSCs.
Prominent examples of these operatorsare weak sequential composition, parallel composition, delayed choice, and
constructs to specify infinite behaviour (iteration). Whereas the forma semantics of MSC’ 92 is based on atrans-
lation into process algebra, the semantics of MSC'96 [8] is defined in an operational way [12, 13]. The opera-
tional semantics—which is currently under consideration for standardisation—does not explicitly model the inde-
pendence of subsystems (called instances). Instead, independence is modelled by the non-deterministic alterna-
tion of independent parallel activities. It isa so-called interleaving semantics. The operational semantics maps an
M SC-specification onto a labelled transition system, amodel that keeps track of the moments of choice, i.e. itisa
branching-time model.

Due to the nature of delayed choice—an intrinsically linear-time operator—and weak sequential composition,
thecurrent operational semanticsissignificantly more complex than that of MSC’ 92. We believethat amore natural
and simpler semantics is obtained when considering a partial-order semantics in a linear-time domain as opposed
to an interleaved semantics. In this paper we propose such semantics for the hierarchical composition operators
for MSC'96. This denotational semantics is based on partial-order multi-sets (pomsets, for short) [14, 5], a well-
established model inthe class of linear-time non-interleavingmodels. The semanticsiscompositional, which means
that the interpretation of a composed MSC is defined in terms of the interpretation of its constituent MSCs. In
particular, we show that the new M SC composition operators correspond to ‘ standard’ operations on pomsets.

*Reprinted with permission from Formale Beschreibungstechnikenfiir verteilte Systeme, 8. GI/ITG-Fachgesprach, Cottbus, 1998.
1 Supported by the Deutsche Forschungsgemeinschaft under grant SFB 182, B3

Structure of the paper. Section 2 introduces the notion of pomsets. Section 3 presents a partial-order semantics
for basic MSCs, that is, M SCsthat do not contain composition operators. Thisis, infact, an extension of the partial-
order semantics by Alur, Holzmann and Peled [1] with co-regionsin apomset setting. Section 4 extends thispomset
semanti cswith the operatorsthat allow hierarchical composition of MSCs. Finally, Section 5 discusses related work
and summarises our main conclusions.

2 PARTIAL-ORDER MULTI-SETS

Partial-order multi-sets (pomsets), mainly developed by Pratt [14] and Gischer [5], play a prominent role in the
branch of non-interleaving models. A pomset is basically a set of labelled events enriched with a partial-order re-
lation that represents causality. Events model occurrences of actions, like sending a message or setting a timer.!
Before defining pomsets, we consider the auxiliary notion of Iposet:

Definition 1. LetL beaset of labels. A labelled partially ordered set (Iposet) isatriple (£, <, /) with £, a set of
events, < C £ x F, areflexive, anti-symmetric, and transitiveorder on £, and : £ — L alabelling function.
O

< iscalled a partial order that represents causality. For e # ¢, e < ¢’ denotesthat if ¢ and ¢’ both occur then e’ is
caused by e. The empty Iposet (@, @, @) isdenoted by . Non-empty Iposets are often graphically denoted: e.g.,

({e,e'}, <, {(e,a),(e',b) }) isdenoted by if e and ¢’ are unrelated under <, and by [e—¢’]if e < ¢’. Note

that / is not required to be injective. If for e and ¢/ we have l(¢) = [(¢') it means that e and ¢’ model different
occurrences of the same action. Two Iposets are isomorphic if they are equal up to renaming of events.

Definition 2. (F, <,) and (E’, <',!") areisomorphic iff there existsabijection¢ : ' — E’ suchthat e < € iff
dle) < ¢(é)andl =1 o ¢, fordl e, e € E. O

Definition 3. (Partial-order multi-set [14])
A partia-order multi-set (pomset) is an isomorphism class of Iposets. O

The isomorphism class of (7, <, () isdenoted by [E, <,{]. The representation of pomsets is similar to that of
Iposets, except that events are replaced by their labels. For instance, |, | rather than :, . The idea of our seman-
ticsfor MSCs will be to map an MSC onto a set of pomsets that is closed under the following relation.

Definition 4. [E, <, {]isaprefixof [/, <, VIffECE , <=<'" N x E)and! =1l | E. O
Here, | denotes restriction. The second constraint says that no event in £/ \ E may precede under <’ an event in
E. For instance, [a] is a prefix of |, | and [a—b], whereas|b] is a prefix of thefirst, but not of the latter. The empty

pomset [¢] isaprefix of each pomset. Evidently, therelation‘isaprefix of’ isapartial order on pomsets. Inthe next
sectionsan M SC will be mapped onto a set of pomsets that is downwards closed under ‘isaprefix of . Rather than
writing thisentire set we concentrate on maximal pomsets under thisnotion. The complete semanticsisthusthe set
of all prefixes of this maximal pomset. The maximal pomset can be considered as the maximal ‘run’ of the system,
whereas its prefixes are partia ‘runs’. A pomset is similar to atrace, a sequence of events, with the difference that
apomset is partially ordered whereas atrace istotally ordered.

3 BASIC MESSAGE SEQUENCE CHARTS

An MSC specification isan M SC document which consists of many MSCs. Basic MSC (BM SC) describe thefunc-
tional interaction between parallel working instances which exchange messages asynchronously. They do not con-
tain composition operators.?

Syntax of basic M SC. MSC has atextual and a graphical representation. Usually the intuitive graphical represen-
tation is used, but the definition of our formal semantics will base on an abbreviated subset of the textual syntax
as given (in Backus-Naur-Form) in Table 1. This syntax isinstance-oriented, i.e. an MSC is given by describing

1 Eventsin pomsets should not be confused with M SC-events, since events (in our sense) can only occur at most once, while MSC-events
may occur multiple times, e.g. in case of iteration.
2In literature, various notions of * basic’ M SCs exist; these should not be confused with our notion that includes co-regions.

msc A MSsC A;

- . . inst y;

7 inst z; sty . .

. co innfromz;

in m from env; .

. out o toenv;

n out n toy;

OE
L

endco;
local «;

endingt: endl.nst;
endmsc;

-
—_

Figure 1: Example of abasic MSC

al itsinstances. Alternatively, an event-oriented syntax exists [8]. All non-terminal symbols with (name) (e.g.
(msc name)) are normal a pha-numerical names.

(Msc) = msc{mscname) ; (Body) endmsc;

(Body) = ()]inst (inst name) ; (Ev-s) endinst; (Body)
(Bv-s) = ()| {(Ev); (Ev-s) | co(CoR) endco; (Ev-s)
(CoR) == ()| (Ev); (CoR)

(Ev) == in{msgname) from {{inst name) | env} |

out {msg name) to {(inst name) | env} |

local {action name)

Table 1: Syntax of basic MSC

Example 5. Figure 1 presentsthe graphical and textual representation of BMSC A. Instances: and j communicate
with the environment that is represented by the outer frame in the graphical and by env in the textual representa-
tion. The events on a solid instance axis are totally ordered. Thus, instance i has to receive message m from the
environment before it can send message » to instance j and before the local action a executes. The dotted line on
instance j specifies aco-region. It describes the absence of ordering along theinstance axis, i.e. the events of send-
ing a message o to the environment and the reception of the message m are unordered. Of course, a message must
first be sent before it can be received. So, instance ¢ must send message m beforeinstance j can receiveit. (End
of example.)

Operations on pomsets. The ideaisto map a BMSC onto a (maximal) pomset. To start with, let the set L equal
A x |, where A isthe set of actions® and | the set of instances. Send, receive, and local actions belong to A. We
denote by !(im, j)@: the sending of message m from instance i to j, 7(m, ¢)@; for the receipt of thismessage, and
a@q for local action a at instance i. If no confusion arises we write !'m, ?7m and « as shorthand. Welet 7, j and k
range over |. The distinguishing element env € I denotes the environment.

Letp = [Ep, <p, L] and ¢ = [Ey, <4, {,] betwo pomsets such that E, N E, = @. (Since pomsets are isomor-
phism classes, this can be required w.l.0.g..)

Definition 6. (Concatenation [14])
P'qé[EpUEqagpquU(EpXEq)alpUlq] O

Inp-q, every event of p isforced to precede every event of ¢. Itisstraightforwardtocheck that <, U <, U(E, x Ey)
isapartial order, so p- ¢ isindeed apomset. Concatenationisintended to correspond to strong sequencing in M SCs.
As an example of concatenation, consider:

Q)| [dak bajdak
woicap| [c0i=10i|7 jweilearZea j—fai

3 M SC-events together with local actions are called actions.

Joining of pomsetsis used to compose pomsets that model behaviour at (possibly several) different instances. Itis
basi cally an element-wise union of pomsets, except that send and corresponding receive events are causally related.
To let joining be defined properly we consider consistent pomsets, a notion which we explain below.

Definition 7. (Joining)
For p and ¢ consistent pomsets: p M ¢ £ [E, U E,, (<, U<, U B U gg)Jr 1, Ul,] where

<={(e,¢) € By x By [L(e) =!(m,1)@j A I,(e') =7(m, j)@i } .

d

For arbitrary pomsets p and ¢ it is not guaranteed that p X ¢ isa pomset. For instance, let 7m <, 'n and 7n <,
'm and suppose m and n are messages sent to instances in ¢ and p, respectively. Then, we would obtain 7m <,
'n < 7n £, Imand 'm <’ 7m which violates the anti-symmetry constraint of Definition 1. Therefore we require
p and ¢ to be consistent. Pomsets p and ¢ are consistent if by the addition of new dependencies between send and
corresponding receive events (as defined for X) no cycles areintroduced. As an example of joining consider:

a@j

I(m,)@j —a@j ?(m, j)@i

/
X — N N
2(n, k)@j bak —I(n,)@k (m, z)@g—f?(m,lj)@z .
bk —l(n,j)@k—7(n, k)Qj

Semantics of basic M SC. The function Mmsc[] assignsto abasic MSC (a singleton set consisting of) a pomset:
Mmsc[mscmsc name; Bendmsc] £ { Mpms[B] 1.

(When we consider thehierarchical compositionoperatorsthe use of aset will becomeclear.) Thefunction Mpmgl |
assigns to an msc-body a pomset in the following way.

Mpmsl ()]
Mpmsclinsti; Sendinst; B]

[¢]
Mingl S1() X Mpmec[B 1)
Function M jn4[S 1(7) assignsameaning to theinstance body S of instance:. Thisfunctionisdefined by induction

on the structure of the syntax of S. Here, we use the singleton pomset [eqai] = [{e}, {(e,e)}, {(e,a@i)}] for
a € A. Let

A
A

Mingl (V1)) =[]
Mingl a; ST(%) = Mingla](7) - Mijngl S1(2)
Mipglinmfromj](i) = [erimjail
Mijngloutmtoj](i) = [em j)ail
Mingllocal b](i) = [esa]
Minglco()endco](i) £ [¢]
Mipglcoa; Cendeo](i) 2 Minglal(i) X Mjpg] coC endco](i) 2

The reader might have expected, instead of (2):

Minglcoa; Cendco](i) = Mijpglal(i) || Mingl co C endco](é).

This would correspond with the intuition that a co-region specifies events that are causally independent. (Here, ||
denotes the element-wise union of pomsets.) However, in case

co ...;inmfromi; ... ; outmtos; ... endco

thiswould lead to two unrelated send and receive events (of 1) which contradicts that each message can only be
received if it has sent before. Therefore, weuse X rather than ||.

Theorem 8. For BMSC A, Mpmng[A] isapomset.

Example 9. Let usillustrate the above formal definitions by some examples. The first example shows a simple
application of the join operator. It concerns the transmission of two messages between the same instances:

msc A
[1] [] (m,1)Qj
m 7 N
'(m,j)Qi ?(n,1)Qy
n AN /
(n,j)Qi
— —

If we replace the vertical solid lines by dashed lines, indicating co-regions, at both instances, then the orderings
at these instances are eliminated and the only resulting dependencies are the (always present) relations between
transmissions and receptions:

msc B

r m 1

| n |
Consistency with M SC’ 92 semantics. Therelationship between our pomset semanticsfor BM SC and the standard

process algebrasemanticsfor MSC’ 92, as publishedin[11], isasfollows. Let the process algebraterm P A] denote
the MSC’ 92 semantics of BMSC A. Asan auxiliary notion we define the traces described by a pomset:

(m,7)@i—7(m, 1)@y
W(n,j)@i—1(n,1)Qy

(End of example.)

Definition 10. Let p = [E,, <p, l,] beapomset with{eq,...,e, } C E,. Thesequencee; . ..¢, isatraceof p
iffe; <pej = i< jforadl0<4,j<n. O

Stated in words, a sequence of distinct eventsin £, isatrace if the ordering in the sequence contains the ordering
<,. Forinstance, ab isatrace of pomsets and[a—b], whereas ba isatrace of thefirst, but not of the latter.

Theorem 11. For BMSC A, Mmsc[A] and P[A] are trace-equivalent.

This result says that an interleaving ‘view’ of our partial-order semantics is equal to the standard interleaving se-
mantics for the fragment BMSC.

Extension with other M SC’96 constructs. For the sake of simplicity, we only consider send, receive and local

actions. Our semantics can be extended with the use of timer actions (like timer set, reset, and timeout), dynamic
creation of instances, halting of instances (stop), general orderings and lost and found messages without great diffi-

culty. For instance, the setting of atimer (at instance ¢) can be considered as the transmission of a self-message (by
i to 7) and the timeout (or reset) as the receipt of a self-message (from ¢). The pomset semantics constructs a causal

relation between the setting and expiration of the timer, as required by recommendation Z.120 [8]. (What we have
not considered are multipleset (reset) events after each other without the corresponding reset or timeout (set) event

in between.) Genera orderings can be considered as the sending and receipt of empty messages (no content), dy-
namic creation as specific messages, stopistreated asalocal action, and lost and found messages as messages like
(m, —)@¢ and ?(m, —)@:¢ where — denotes absence of originator and recipient, respectively. The use of conditions
is not considered, since their role seems to be superfluous by the introduction of composition operators. The de-

composition of instances by substructuresis a refinement of instances to a certain level of abstraction. We consider

instance decomposition as a syntactical transformation. Under the assumption that each instance is transformed to

exactly one level of abstraction our semantics can be applied.

4 HIERARCHICAL MESSAGE SEQUENCE CHARTS

To model larger systems M SCs can be composed by hierarchical composition operators. The resulting languageis
called hierarchical MSC (HM SC), referred to as ‘high-level’ MSCin [8].

Syntax of hierarchical M SC. Table 2 presents the extensionsto the syntax of Table 1 that include the composition
operators for HMSC. Here, the non-terminal (k) stands for any natural number (including zero) or co. empty de-
notes an M SC without any action. The binding order of the operatorsisin descending order: loop, seq, par, alt.

(Msc)
(Bx)

msc (msc name) ; {(Body) | expr (Ex)} endmsc;
empty | (mscname) | (Ex) seq (Ex) | (Ex) alt (Ex) |
(Ex) par (Ex) | |00p<k>7<k>(<EX>)

Table 2: Extending the syntax of basic MSC with composition operators

Theintuitiveinterpretation of the compositionoperatorsisasfollows. The seq operator denotesweak sequential
composition. Thismeans, that an instance may start withitsfirst action, only if it hascompleted al itsactionsin the
predecessor MSC. Consider, for instance, B seq A, where MSCs A and B are depicted in Figure 2. Here, instance
Jj can receive message n and send message o only after it has sent message p, but it need not wait for instance to
receive message p.

The alt operator denotes delayed choice composition. This means that only one alternative is chosen. For in-
stance, B alt (B seq A) specifies that the instances j and ¥ communicate only via message p or that the instances
i, 7, k communicate. “In the case where aternative M SCs have a common preambl e the choice of which MSC will
be executed is performed after the execution of the common preamble”’[8]. Due to thisdelayed interpretation of the
choice, B alt (B seq A) and B seq (empty alt A) have the same interpretation.

The par operator denotes parallel composition. All actions from the parallel composed M SCs will occur, but
only the precedences of the actions defined by the MSCs must be fulfilled. Thisimpliesin B par B that two mes-
sages p are sent from instance j to k. Since only the receive actions must follow the send actionsit is possible that
the second message p can be received first. Thus, messages can overtake each other, but need not.

Finally, the loop operator denotes iterative composition. The iteration can be unfolded by applying the weak
sequential composition. The lower and upper bound of theiteration are parameters for the loop operator. The spec-
ified system can choose an arbitrary number of iterations between the lower and upper bound. Inloopg . (B) either
no message is sent or an arbitrary (finite or infinite) number of messages p are sent without overtaking.

Operations on pomsets. The basic ideato provide a semantics to hierarchical MSCs (HMSCs) is to use sets of
pomsets. We use sets, since with delayed choice different alternatives can be described, and thus different system
runs can appear. Again, we focus on maximal pomsets and leave their prefixes implicit. In fact, the semantics of
an HMSCisa set of a set of pomsets (downwards closed under prefixing). Let for pomset p the set E;; denote the
set of eventsin p that occur at instance i.

Definition 12. (Concurrence and local concatenation [14])
Letp = [E,, <p,) and ¢ = [E,, <, ;] be two pomsets such that £, N F, = @.

P||q £ [EPUEqang@blpUlq]

(>

+
[E, U E,, (gp U<, U (B} x Eg)) A, U]

poyq
O
msc A msc B
[] J [] [+]
m n
H= .
] L |]

Figure 2: Two basic MSCs

Itiseasy toverify that <, U <, isindeed apartial order, sop || ¢ isindeed apomset. Inlocal concatenation eventsin
p should precede those eventsin ¢ that appear at the same instance (i.e., these events are ‘ co-located’ [14]). Notice
that for p o ¢ we need to take the transitive closure to guarantee that the resulting relation isindeed a partia order.

Concurrence is intended to correspond to par, whereas local concatenation is linked to weak sequencing seq. As
an example of local concatenation, consider:

baj] [dak b@; dak
e @i @il = e K .
a@ic@k| (€U —SQi q@ic@k” e@)— f@;

Evidently, if p and ¢ only contain events that appear at one and the same instance, local concatenation boils down
to (global) concatenation, as defined before. This means that we could safely replace the use of - in the semantics
of BMSC by o.

Semantics of hierarchical M SC. Since empty denotes the MSC without any actions, it is mapped onto the sin-
gleton set containing [¢], the empty pomset. For A par B and A seq B we take the component-wise combinations
according to || and o, respectively, of the pomsets of A and B. The pomsets of A alt B are simply the pomsets of
A and those of B.

Example 13. Thesemanticsof alt can best be understood by means of a simple example. Consider theBMSCs A
and B depictedin Figure3. According toour idea, thepomsetsof A alt B are[lim—?m—In—7n|and[lm—7m—b],

msc A msc B
" —

Figure 3: Two basic MSCswith a common preamble

respectively. Observe that these two maximal pomsets have a few prefixesin common. The maximal pomset that
both have as a prefix is[lim—?m]. Sincethisisacommon prefix, it means that the choice between the two possible
behaviours of A alt B is made after the reception of m (by instance j). That is, the choice is indeed delayed until
after the common preamble. (End of example.)

In summary, for HMSCs A and B we have:

Mpmsl empty] £ {[¢]}

Mpmgl Apar Bl £ {pllg|p e Mpmsl Al ¢ € Mpme B}
Mpmsl AseaB] £ {poq|pe Mpnsl Al ¢ € Mpmsd BT}
Mpmel AaltB] = Mpmg ATU Mpmgl BI.-

Example 14. Asan example consider the three basic M SCs depicted bel ow.

msc A msc B msc '
m n
]] |]

By using the constructions for basic M SCs (see previous section), we obtain that

'm—7m

Mhmsc[[A]] = Mhmsc[[B]] = Mhmsc[[c]] =

'n—7n

Then, using the operators defined above, the reader isinvited to check that:

'm—7m
Mpms[Apar B] = In—7n
MpmsclAseqB] = [Im—?m—In—7n|
'm—"7m
Mpmgl AdtBatC] = lm—7m], [ln—=7n],| X
In—7n

The reader may check that Mpmg Aseq(BaltC)] = Mpymel(Aseq B)alt (AseqC)].
(End of example.)

L oops. Finite loops can be rewritten into finite terms consisting of alternative and weak sequential composition.
Thisis defined as follows.

Definition 15. (Rewriting of finite loop)
For HMSC A and n, k natural numbers we have

empty if n >k
loop,, ,(A) £ ¢ A" ifn="*F
Araltloop, y ,(A4) ifn<k

where A” isdefined by A° 2 empty and A"t 2 Aseq A” forn > 0. a

loop,, ,.(A) for n < k can choose to execute A afinite number of timesin between » and k. Note that the choice
is delayed and that sequencing isweak. For instance, if

Mpmsc[A] = { Zgz } then Mpmgcl l0op; 5(A4)] = {

a@i| |a@i—a@1| |a@i—a@i—a@7
bQi| |p@i =b@i| [p@i = b@i = b@i

Inspired by [14] we define the operator loop, (A) that is able to execute A afinite, but arbitrary many (including
zero) times. Thisauxiliary operator is defined by

Mpmgdlloop, (A)] £ |] Mpmel A™]-

nz0

It remains to consider infiniteloops. For P a set of pomsets let P denote the set of infinite sequences of elements
in P, where sequencing denotes weak sequential composition. For instance, if

_) |a@y w _) |a@j—a@j—a@j—. ..
P= { bQi —b@i—b@i—. .. } then P = { b@i — b@j — b@i—. ..

Notethatin P* itispossibleto execute infinitely many local actionsa (at instance j) without ever executing action
b (at instance 7). For HMSC A we define

M pmscll 100P., o (A)] £ (Mpms AT
Thatis, loop,,, .. (A) executes A infinitely many times. The other variants of loop can be rewrittenin the following
way.

Definition 16. (Rewriting of infinite loop)
For HMSC A and natural number n

a [loop.(A)altloop,, (A) ifn=0
l00p,, o, (4) = { A" seq loop, ., (A) ifn>0

d

Extensionswith other M SC’96 constructs. The operators option opt and exception exc have not been considered
since they can be rewritten with the given MSC operators. Substitutions on MSC names, messages and instances
can be applied on MSCs used in expressions. Like instance decomposition we consider this as a transformation

on syntax that has to take place before our semantics can be applied. Till now we have not considered the alterna-
tive representation of HM SC in an automaton like notation where states are M SC expressions and state transitions
represent weak sequential composition. Our conjecture is that all HMSC in the alternative representation can be
transformed in a MSC expression without loss of semantical information. Embedded expressions, like inline ex-
pressions, can be integrated without difficulties when special consistency rules apply between the embedded ex-
pression and the outer MSC. These rules include unambiguous communication between the embedded expression
and the outer MSC and validity* of all possible alternativesin the embedded M SC. Closely connected to embedded
expressions are gates which are not considered by our approach since they do not influence the dynamic behaviour.

5 CONCLUDING REMARKS

Related work. Different modelsfor concurrency have been proposed as semantical domain for M SCs, such as Petri
nets[6], Buchi automata[10], partial orders[1] and process algebra[11]. Only the recent operational semantics of
Mauw and Reniers [12] covers al composition operators. We have shown that for BM SCs, uncomposed M SCs,
our semanticsisjust apartial-order view of the standard M SC'’ 92 denotational process algebra semantics [11]. Our
partial-order semantics can be considered as an extension of the partial-order semantics [1] with co-regions and
composition operators. Currently, the semantics for MSC’ 96 is under development [12, 13]. [13] consider HMSC
without loops. We conjecture that for this class of HMSCs our semantics is trace-equivalent to the operational se-
mantics of [13].

Main conclusions. This paper presented a pomset semantics for a major fragment of the MSC' 96 [8] language.
We focussed on basic M SCsincluding co-regions, and showed how the hierarchical composition operators can be
modelled. It isinteresting to observe that for finite behaviours we only needed to introduce one new operator on
pomsets (joining). All other operators, in particular the composition operators, are ‘ standard’ for pomsets[14]. To
our opinion, this indicates that the presented fragment of MSCs are, in fact, graphical representations of pomsets.

Further work. The denotational pomset semanticsinduces an equivalence on MSCsinthefollowingsimple sense:
two HM SCs are pomset-equivalent (say) iff they denote the same pomset. This equivalence notion could be ax-
iomatised. Some example axioms are associativity of par, seq and alt, the fact that empty is a neutral element
for these operators, and, more interestingly A par (BaltC') = (Apar B)alt(AparC), (AaltB)seqC =
(AseqC)alt(BseqC) and loop,, ., (A)seqloop,, ..(A) = loop,, ., (A). A complete axiomatisation for the
language with loopsisinfeasible [5], but it would be interesting to consider such axiomatisation for HM SCs with-
out iteration, for instance in the line of work of Janssen [9]. Other topics of interest are the extension of MSC with
guantitative information such as real-time constructs and probabilities.

Acknowledgement. The authors like to thank Sjouke Mauw for fruitful discussions and Michel Reniers for his
responses on our questions on the M SC-semantics.

6 REFERENCES

[1] R.Alur, G. J. Holzmann, and D. Peled. An analyzer for Message Sequence Charts. Software - Concepts and
Tools, 17(2):70-77, 1996.

[2] A.Cavalliand A. Sarma, editors. SDL'97: Timefor Testing - SDL, MSC and Trends, Evry, France, September
1997. Eighth SDL Forum, Elsevier Science PublishersB.V.

[3] CCITT. Recommendation Z.100: Specification and Description Language SDL, Blue Book. ITU, Geneva,
1992,

[4] O.Faxgemandand A. Sarma, editors. SDL’93: Using Objects, Darmstadt, Germany, 1993. Sixth SDL Forum,
North-Holland.

[5] J. Gischer. The equational theory of pomsets. Theoretical Computer Science, 61:199-224, 1989.

[6] J. Grabowski, P. Graubmann, and E. Rudolph. Towards a Petri net based semantics definition for Message
Sequence Charts. In Feagemand and Sarma[4], pages 179-190.

*validity can be ensured in different ways, e.g. implicit lost and found messages when an alternative of the embedded expression cannot
serve dl necessary communicationsfrom the outer MSC.

[7] ITU-TS. ITU-TSRecommendation Z.120: Message Sequence Charts (MSC). ITU, Geneva, September 1993.
[8] ITU-TS. ITU-TSRecommendation Z.120: Message Sequence Charts (MSC). ITU, Geneva, 1996.
[9] W. Janssen. Layered Design of Parallel Systems. PhD thesis, University of Twente, 1994.

[10] P B. Ladkinand S. Leue. Interpreting message flow graphs. Formal Aspects of Computing, 7(5):473-509,
1995.

[11] S. Mauw and M. A. Reniers. An algebraic semantics of Basic Message Sequence Charts. The Computer
Journal, 37(4):269-277, 1994.

[12] S.Mauw and M.A. Reniers. High-Level Message Sequence Charts. In Cavalli and Sarma[2], pages 291-306.

[13] S.Mauw and M.A. Reniers. Operational semanticsfor MSC’ 96. Computer Networks & | SDN Systems, 1998.
(to appear).

[14] V. Pratt. Modeling concurrency with partial orders. International Journal of Parallel Programming, 15:33—
71, 1986.

