TIMe - The Integrated
Method

TIMeat aglance

Rolv Brak
Joe Gorman
@ystein Haugen
Geir Melby
Birger Maller-Pedersen
Richard Sanders

About TIMe and the SISU project TlMe h

TIMe Report

About TIMe and the SI SU project

2 -

TIMe, TheIntegrated Method, is a continued improvement of the results from the SISU
Project, a Norwegian technology program that aimed to improve the productivity and
the quality of Norwegian companies that devel op systems within the real-time domain.
The project ran in two periods, SISU-I (1988 - 1992) and SISU-I1 (1993 - 1996).

The following companies and research institutes participated in the SISU project:

Thomson-CSF Norcom, Siemens, Ericsson, Kongsberg-Ericsson, Stento, Tandberg
Data, Norsonic, Seem Audio, Norapp, TrioVing, Seatex-Garex, Telox, Kjel G. Knut-
sen, CAP Gemini, SINTEF, Norwegian Computer Center.

The project had focus on methods and languages for making System descriptions, Ver-
ification and Validation, Configuration Control and Process quality.

The project was active in the development of SDL-92 and the methodology guidelines
for SDL, and in the MSC-96 standard. We are currently active in the standardization
work for SDL and M SC year 2000.

SISU-I produced the book “ Engineering Real Time Systems” by Rolv Brask and @ystein
Haugen [1]. More than 20 companies use the SI SU-1 methodol ogy actively intheir prod-
uct development. Most of them have tool support for SDL with code generation.

The Integrated Method was the final outcome of the SISU-I1 project. SINTEF have
taken over the results and have made TIMe commercially available. For more informa-
tion contact us at:

TIMec/o SINTEF
N-7465 Trondheim
Norway

Phone: (+47) 73 59 30 00

Fax: (+47) 7353 25 86

email: time@sintef.no

WWW: http://www.sintef.no/time

TIMe at aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

K,) TIMe About the authors

TIMe Report

About the authors

Rolv Bragk; SINTEF Telecom and I nformatics

Rolv graduated from the Norwegian Institute of Technol-
ogy (NTNU/NTH) in 1969 and has been working with
SINTEF since 1973, where he is Principal Research Scien-
tist. Heis also Professor at the University of Science and
Technology in Trondheim (NTNU).

Rolv has been working with software engineering method-
ology since the early 70’sin close cooperation with
Norwegian industry. One of the most reputed projects was
the MAREIK project in the INMARSAT system 1979-81.

Rolv has been working with formal description techniques

for decades, and fathered the SOM® language and methodol ogy, a parallel development
to SDL. Heis currently occupied with introducing TIMe to Ericsson, and is aso con-
tributing to the Z.109 standard for SDL with UML.

Rolv participated in the SISU project, with responsibility for Methodology.

Joe Gorman; SINTEF Telecom and I nformatics

Joe studied Computer Science at the University of Glas-
gow, where he gained hisHonours Degreein 1977. After
working in Scottish Universities, he started work at SIN-
TEF in 1986.

Joe isinvolved with contract research work with Norwe-
gian industry, and in international co-operative research
funded by the European Commission. His main research
interests are software engineering, software development
methodol ogies, compiler techniques and configuration
management.

In the SISU project Joe was responsible for Configura-
tion Management.

1. SOM initially stood for Structure-Oriented M odeling, and was | ater changed to SDL-Oriented M ethodol ogy.
SOM is no longer supported by SINTEF, but TIMe contains many of the basic principles of SOM.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance -3

About the authors

TIMe =

TIMe Report

@ystein Haugen; Ericsson Norway

@ystein graduated from the University of Oslo in 1980,
where he was assistant to Kristen Nygard for a period.

@ystein worked at the Norwegian Computing Center for 4
years as project leader for a Simulamachine. From 1984-88
he worked at SimTech, and from 1988-1990 as senior
research scientist at ABB Corporate Research, Norway.
@ystein was an independent consultant whileworking on his
Ph.D., until he joined Ericsson Norway in 1997 to work on
software methods and languages. @ystein is Associate Pro-
fessor at the University of Odlo.

@ystein participatesin the standardizationwork in ITU, first
in the development of the object-oriented extension of SDL

that where incorporated in the 1992 version of SDL (*SDL-92"), and later as Associate
Rapporteur for MSC in ITU-T Study Group 10, that produced the 1996 version of Mes-
sage Sequence Charts. Heiscurrently Rapporteur for MSCinITU-T, responsiblefor the
development of M SC standard year 2000.

@ystein is co-author of Engineering Real Time Systems - An object-oriented methodol -
ogy using SDL. In the SISU project @ystein had responsibility for Verification and

Validation activities.

Birger Mgaller-Pedersen; Ericsson Norway

4 -

Birger graduated from the University of Copenhagen in Den-
mark in 1976.

Birger worked at the Norwegian Computing Center from 1977
to 1996, where he specialized in object oriented languages,
including designing and implementing compilers for Simula,
designing Beta, and later adding object orientation to SDL.
Birger joined Telenor Research and Development (the Norwe-

gian PTT) in 1996, where he amongst other things worked on
Javain TMN.

In 1998 Birger joined @ystein and Geir at Ericsson NorARC, where he has continued
hiswork with TIMe and SDL. Birger is also Associate Professor at the University of

Odo.

Birger participates in the standardization work in I TU, first as Associate Rapporteur in
the devel opment of the object-oriented extension of SDL that where incorporated in the
1992 version of SDL (“SDL-92"). Heis currently participating in the ITU-T Study

Group 10, working on the next version of the SDL standard scheduled for the year 2000.
Birger is Associate Rapporteur for the harmonization of SDL and UML, in the coming

Z.109 standard.

TIMe at aglance

TIMe version 4.0 © SINTEF Modified: 1999-07-14

5, TI Me About the authors

TIMe Report

Birger is co-author of The BETA Programming Language and Systems Engineering
Using SDL-92.

Geir Melby; Ericsson Norway

Geir worked at Telox until 1988, where he acted as manager and
consultant. Geir participated in the development of embedded
software systems for industrial companiesand in Telox’ own
products, that included a run-time support system for SDL
(Telox SDL Toals).

Gelir left Telox to lead the SISU project from 1988 to 1996.

Geir joined Ericsson Norway in 1996, where he is manager of
the Software Engineering Laboratory of the Applied Research

Department.

Richard Sanders; SINTEF Telecom and I nformatics

Richard graduated from the University of Trondheim, Insti-
tute of Informaticsin 1984, Mastering in Computer Science
and Telematics. He worked for 3 years as a consultant with
Computas (now a part of CAP Gemini), devel oping embed-
ded software for communication systemsusing SDL/SOM,
and working on a CASE tool for SDL (DASOM).

Richard worked at Stentofon (now Stento) from 1987 to
1994 as designer and later software manager, developing a
new generation communication exchange, where automatic
code generation from SDL was introduced in 1988, to our
knowledge the first industrial project to do so. Stentofon were participants of the SISU
project from the start.

Richard joined SINTEF in 1994, where he has been working with development meth-
odology (in the SISU project and in Mechatronics), and asa UML/MSC/SDL designer
in industry projects. Heis currently occupied with introducing TIMe to Ericsson Nor-
way. Richard also lectures at the University of Science and Technology in Trondheim
(NTNU).

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance -5

About the authors Tl M e 5

TIMe Report

6- TIMeataglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. Tl Me Table of Contents

TIMe Report

Table of Contents

About TIMeandtheSISUproject. ...t 2
About theauthors 3
Tableof CoNteNntS. 7
INtroduction e 8
TIMe from SISU e 13
What's in TIMe forthe manager 13
What's is TIMe for the designer 14
TheWhy, Whatand Howof TIMe. it 15
INtrOdUCHION e 15
TIMeEESSeNtialS . .. oo e 20
System Development ACLIVILIES i 32
ALY SIS . 33
DESION . . o oo e 53
Implementation e 71
INStaNtiation. e 71
Object and Property Models

- and theLanguagesfor describingthem, 73
Object Modellingo 73
Property Modelling 89
LISt Of fIQUIES . . oo 97
List Of definitions.o 99
RE O EBNCES. . . 109

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance -7

Introduction Tl Me .

TIMe Report

| ntroduction

The Integrated Method (TIMe) supports design oriented development, an approach to

system development where systems are understood and maintained mainly in terms of
abstract design descriptions. It even goes one step towards making the vision of property
oriented development come true.

TIMefor ~ TIMeisdesigned for systemsthat are
what? .

* reactive,

e concurrent,

* red-time,

 distributed,

* heterogeneous and

e complex.

TIMeis centered around a set of models and descriptions capable of expressing domain
knowledge, system specifications in terms of external properties, system designsin
terms of structure and behaviour, implementation mappings and system instantiation.

Like most other ssimilar methods, TIMe distinguishes between Analysis, Design, Imple-
mentation and I nstantiation (see Figure 1).

8- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

-
K, TIMe Introduction
TIMe Report
Figure 1. TIMe activities, descriptions and languages
Open figure
4 Analysis A Domain Descriptions
Domain Analysis Object Property
Models Models
System Family descriptions
(Requirements analysis) Specifications MSC,
_ J UML
4 Design N
Design Models
(Application design
Object Property
C Framework design Bl Models Models
Architecture design
NG J
(Implementation ' Implementation I SDL
(Instantiation) Instance Descriptions
Configuration Instance
configuration
| =]
(Testing) Concrete system
N J
How TIMe Thedistinction between Domain and System Designisnot particular for TIMe. What is

is different

special, however, is that:

» designis split between

application design, where the functionality of the system is design,
architecture design, where the non-functional properties are taken care of, and

framework design, that definestypes of systemswith the same infrastructure (e.g.
supporting distribution) where the application specific parts are singled out to be
redefinable in specific systems.

 the complementary object models and property models are used both for domain and
system analysis, and for design.

TIMe provides:

» aset of system development activities that covers most of the system development
process, with emphasis on the activities leading to implementation,

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

TIMeat aglance -9

Introduction Tl Me .

TIMe Report

» guidelines on object and property modeling in general, and particularly how to do it
inUML [24] / SDL [11] - [13], [16] and MSC [14],[18] respectively, and

 tutorialsin UML, SDL and MSC.
Object TIMeistruly object oriented in its approach. It defines its own underlying object and
oriented property models, and contains detailed guidelines on:

* how to make analysis object models using Unified Modeling Language (UML),

* how to make design object models using Specification and Description Language
(SbL), and

* how to make interaction property models and Use Cases using M essage Sequence
Charts (MSC).

TIMe s characterised by:

Abstract » Emphasison abstract models and descriptions: Abstract descriptions leave out
models implementation specific details and let the devel opers focus on functionality.

Property ¢ Focuson (external) properties: Objects are the building material from which systems

models and components are constructed. Property descriptions are used at an early stage of
development to express the properties required from asystem or an object. At alater
stage they are used to express the properties actually provided by a system or
component.

Service * Userstend to think in terms of services and interfaces. Therefore TIMe recommends

orientation use of separate property models for services and interfaces. These models are used
for high level service engineering, and for synthesising object designs that provide
the services.

Roles » Strong object-property relationships: Roles are used to describe properties, and are

related to object designs by projection. Roles are used to link properties and objects.
Projections are used for synthesis of new objects and for documenting existing
objects.

Desgnfor * Planned variability and reuse: TIMe seeksto make generic system familiesthat may

reuse be adapted as easily and safely as possible to the needs of particular systems. Com-
ponents for reuse across families come from general domain descriptions. TIMe
describes a cost-effective way to define instantiation of particular systems by defin-
ing the general parts by reference to the family description, detailing only what is
special for that particular occurrence, i.e. its configuration.

Ynthess ¢ Design synthesis: Property oriented design involves:
- Decomposing required service and interface properties into object properties.

- Synthesizing object designs from required object properties, by transformation
and by composition, taking reuse into account.

- Comparing properties: required against provided (validation).

Designwith - Searching for components with provided properties corresponding to some
reuse required properties.

10- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

i TI Me Introduction

TIMe Report

- Composing properties corresponding to object composition.

Goal of this This document providesthe TIMe Essentials (p-20), intended for readers that would
document [ike to know why they should use TIMe, get afeeling for what TIMe s, if it appliesto
their needs, how it differs from other similar methods, etc.

Focus The focus in this document is the core of TIMe, that is system development activities
with the combined use of UML, MSC and SDL for making models, based on acommon
approach to object modeling and property modeling, with emphasis on the early stages
of system development. Asindicated in Figure 2, TIMe is more than this.

Figure 2: Thecorethemesof TIMe covered in thisintroduction, and supplementing themes

Open figure

Configuration
management, that is
management of o

The activities

Tech- of making descriptions —
niques (with obj . Verifying

for
improve-
ment
of

property models)
In

UML/SDL/MSC
using

development processes
1N Ooraer to make
families

reguirements

This introduction can be read as a stand-alone document, but when read in €l ectronic
form, and integrated with the full method book, it also works as an introduction, with
hyperlinks to the whole method.

The section The Why, What and How of TIMe (p-15), together with the last part of
TIMe Essentials (p-20) will tell you why you should use TIMe and what is special about
it. Object and Property Models - and the Languages for describing them introduces
UML, MSC and SDL for those that are not familiar with them. TIMe Essentials (p-20)
provides an overview. The rest of the document is organized mainly according to the
development activities of the method (see System Development Activities).

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 11

Introduction Tl Me .

TIMe Report

Supple- Asmentioned above, the full method book of TIMe containsimportant elementsthat for
menting reasons of space are not covered in thisintroduction:

elements of
TIMe
Figure 3: Verification and Validation
Open figure
domain L
Verification domain
family
specification
Verification
Validation design
__ Verification
Validation
Validation implementation Verification
Validation instance nstance
configuration

needs
3

» Verification and validation deals with “validation”, meaning to determine “whether
we are making the right system” and “verification”, meaning to determine “whether
we are making the system right”. TIMe presents several different approaches to ver-
ification and validation that correspond to different maturity levels of the companies
(or projects):

- test orientation: performed on the implementation of the system.

- inspection orientation: involves human readers who control the quality of the
descriptions.

- animation orientation: executions of the system based on descriptions on higher
abstraction levels than implementation.

- formal analysisorientation: used in order to prove statements about the system, or
to disclose hidden aspects of a system.

- synthesisorientation: theimplementation can be synthesi sed from adescription of
the requirements.

TIMe presents techniques on all these levels. TIMe considers constructive rules to be
superior to corrective measures.

12- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

i TI Me Introduction

TIMe Report

TIMe from S SU

» Process improvement deals with the introduction of TIMe into a company, and also
covers process monitoring and improvement in general.

We talk about achieving improved productivity and quality by setting goals and follow-
ing one of several improvement methods, like“Mean & Lean”, the Capability Maturity
Model (CMM) or the Risk Management Approach.

It also discusses Risk Assessment and Control, as well as Change Cost Analysis and
measuring the effect of introducing new tools and methods.

» Software configuration management covers how to control a product (in terms of
descriptions) asit evolves. It describes levels of control and management, and
describes means to cope with the complexity of product management.

It presentsour view on Configuration Management, which should help in defining plans
for projects and companies.

We identify 3 levels of control and management that can be useful: to achieve Configu-
ration Management we need a platform for Configuration Control. To achieve
Configuration Control we need a platform for Version Control.

We give an indication of what can be obtained by state-of-the-art tools at each level.

* Metricsisabout measurement in software development, afield that is known as met-
rics or software metrics. TIMe gives the answers to the questions

- Why are we collecting measurement data?
- How shall we collect measurement data?
- How will we analyze the measurement data?

A method that focuses on this, GQM - The Goal Question Metrics, is presented. It also
discusses how to define useful metrics, and presents a few individual metrics.

TIMefrom SISU

TIMeisadevelopment of the Norwegian SISU | methodology described in Engineering
Real Time Systems (Brak and Haugen 1993, [1]). TIMe has been continually devel oped

sinceitsinception inthe SISU project (1988 - 1996), see http://www.sintef.no/sisu - and

hasits name from the fact that it consists of an integration of method elements from dif-
ferent parts of the project. For people with no relation to the project, TIMe could aswell

have been an acronym for The Interesting Method, The Important Method, etc.

What'sin TIMe for the manager

TIMesaves Experience from the SISU project has show that TIMe can give you:

timefirst
time

50% reduction in errorsin delivered systems

* reduced development costs equalling or surpassing the cost of introduction on the
first project

» 20% or more reduction of development costs on subsequent projects

* better control over the development process

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 13

Introduction Tl Me .

What'sis TIMe for the designer TIMe Report

» more flexible staffing, with less dependency on individuals
» smoother cooperation between professionals

when TIMe s carefully introduced into an devel opment organisation, compared to a
non-TIMe development paradigm. Some of these claims are proven by metrics pro-
grams in the SISU project, while others are based on interviews with managers.

What'sis TIMefor the designer

TIMeisfun Systems and software designersusing TIMe typically experience
» more focus on designing functionality
* more precise communication with peers on design issues
* the pleasure of smulating (executing) designs at an early stage
* modern, state-of-the-art development tools

* less dependence on detailed development environment know-how, more focus on
domain knowledge, making for easier shifts to new projects

» easier maintenance, smpler error correction

« theinitial burden of learning a new development paradigm being outweighed by a
better working environment and more job possibilities

compare to apre-TIMe setting.

14- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

The Why, What and How of TIMe
Introduction

= TIMe

TIMe Report

The Why, What and How of TIMe

Sesam Sesam

decided to go Object Oriented (OO),
like rest of the world. Some years ago
this would have been atough decision,
but now it looked asif thiswasthe only
right thing to do. The languages and
tools were mature and there was plenty
of help to get from books, courses and
consultants - the problem was rather
that there was too much help to get.

Figure 4: Sesam Sesam Inc

Open figure

INSERT YOUR CARD

=

N

=

IS
=
o

ON | NWVS3S NVS3S

insert card here

For many years, the company had great
success with their door locks and sys-
tem keys. Their selling point was the
highly flexible way that keys and locks
could be coded to give user groups dif-
ferent access rightsin a building com-
plex.

But even their system had two main
drawbacks: Lost keys and Code limita-
tions. Whenever a key was lost, they

had to change the locks to prevent un-
authorised persons to gain access. Al-
though the system was very flexible, it
was based on fully mechanical locks
and keys with inherent limitationsin
the coding.

To overcome these problems and to
stay in front of competition the Sesam
Sesam people were continuously 1ook-
ing for improvement opportunities.
They saw that electronics and comput-
erswererapidly becoming attractive al-
ternatives as the prices went down and
the reliability up, so they decided to go
for plastic cards and panels with key-
boards and displays at the access
points.

The reason for going OO was that they
would try to come in a Situation where
each delivery was composed from gen-
eral components - up till now they had
experience each delivery asalmost a
separate implementation. However,
they also knew that their systemswould
be rather complex, involving real-time
constraints and consist of large parts
that were reactive of nature, so the
choice of languages, tools and methods
was not obvious.

They bought atool, consulted the ac-
companying method book, and got the
advice (in a condensed version): “Just
find the objects (they are there to pick)
and you will have the structure of your
system”.

I ntroduction

For the development of complex telecom, real-time or reactive systemsin general, a
promising combination isto use:

» Object Orientation as a common approach to analysis, design and implementation,
with concurrent processes as objects;

* Interaction Scenarios for the specification of communication between users and sys-
tems (use cases) and between objects of systems;

» State/Transition based specification of behaviour of individual objects.

TIMeat aglance - 15

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

The Why, What and How of TIMe T”\/Ie *

Introduction

The com-
bined use of
UML, MSC
and SDL

Why not
just UML?

TIMe Report

Object orientation helps to master complexity by structuring in terms of objects and by
factoring out common propertiesin general classes. Objectsdo not live on their own but
communicate with other objects. Interaction Scenarios help to describe and understand
even the most complex interaction cases. Describing the behaviour of each object in
terms of states and transitionsthat are triggered by incoming signals from other objects
has proven to be of great value for thiskind of system.

TIMe supports this combination by the integrated use of
» UML for object model analysis,

» MSC for interaction scenarios, and

» SDL for specification and design of behaviour.

UML and SDL both support object orientation, there are tools integrating them, and the
same tools also support MSC. UML isan OMG standard, while SDL and M SC are stan-
dards from ITU.

UML is accepted by the Object Management Group (OMG) asa Visual Modeling Lan-
guage, and has received much attention from the software engineering community. The
establishment of the UML Revision Task Force gives the potential methods user confi-
dence that thiswill become the new industry language for systems design. However,
UML is not mature enough to be adopted in its present form as a design language in an
industrial context:

» Thelanguage is not yet stable, with considerable changes between 1.0 [3], 1.1 [23]
and 1.2 [24].

» Support for real time conceptsisonly partial

» Thelanguage is not formally defined, with a self-referential meta-model and a
semantics written in prose.

» Theinterchange format is not yet stable.

» Several textbooksexist [4], [5], [6], [20], [33], but many include features that do not
adhere to the approved standard [23].

* Notoolsfully support UML, athough many promise they will [26], [29], [30], [31].

For thesereasons UML isnot yet the ultimate, all-compassing language that itsfounders
aimitto be. TIMerecognizesUML asasubstantial improvement over predecessorslike
OMT [32], and currently recommends that parts of UML be used, along with industrial
description languages like MSC and SDL, especially for illustrative sketchesin early
phases. If UML turns out to be what its founders aim at, while MSC and SDL do not
evolve, TIMe may in the future become a UML methodology.

Presently we believe the combination of UML along with SDL and M SC following the
formal rulesto be defined by the ITU in the forthcoming Z.109 standard “ SDL with
UML” isthe most promising. Thisisthe strategy taken by the major SDL tool vendors

[27], [28].

16- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

4 TIMe TheWhy, What and How of TIMe

Introduction

TIMe Report

What about OMT [32] isin widespread use, and many tools are available. TIMe seesOMT asan

OMT? informal notation (not alanguage), and recommendsthat OMT be used in the same way

asUML, so that the transition from OMT to UML hasllittle risk involved. Version 3.1

of TIMeincluded an extension to OMT called OMT+-, which has now been

discontinued.

Why UML Some companies have an established use of MSC/SDL, but for early analysis they nor-

andnotjust mally useinformal drawings. In order to becomealittle more precise, it could be argued

DL? that SDL can beused for thispurpose. It hasbenefitsin that it will easethe shift to design

in SDL, but we advocate the use of UML for the following reasons:

* UML models do not require the same degree of formalization as SDL models do,

» UML supports relations (associations) between objects,

» UML supports fragments of object models, e.g. specifying relations in one fragment
and attributes/operations in another.

However, TIMealso advocatesthat SDL isused for object modelling in casethisismost

appropriate. Asan example, if it isimportant during analysisto specify some main states

(modes) the system may be in, then this may directly be specified in SDL, as opposed

to Statechartsin UML.

Why MSC Some companies have chosen to go Object Oriented by means of UML or OMT. Tools

and not for UML support Sequence Diagrams (and OMT tools supported Event Traces) for the

Sequence formulation of properties of interactions, and to some degree these are integrated with

gr' aEer;r:‘S the object modelling. The reasons for choosing MSC are still:

Traces? » MSC ismore precise and richer in expression than Sequence Diagrams or Event
Traces. HMSC, M SC references, conditions and in-line expressions are some of the
distinguishing features of MSC.

» Theinstancesin a Sequence Diagrams or in an Event Trace are objects from the
object model, but often they should rather just be roles played by objects. Instances
in MSC diagrams can represent both objects and roles.

Why SDL In some literature on state machine based specification of behaviour, Statecharts [7] as

and not used in UML isthe preferred notation. The reason for thisis that the notion of nested

;iﬁs? statesis appealing and that it produces compact specificati onsl. Statecharts alone s,

however, not a complete language. It does not define communicating objects with data
having the behaviour specified, so other notations and/or tools often add this. The main
reason for using SDL is exactly that:

» SDL isacomplete language that defines communicating objects (processes) with
data attributes, operations and behaviour in terms of states and transitions;

* it aso defines a structure of subsystems (blocks), and

* because it isacomplete language, tools can (and do) support code generation from
SDL specifications, and the integration with MSC allows for some degree of formal
verification and validation.

1. There are currently initiativesin the I TU standardisation work to introduce nested statesin SDL. Thiswork
is near its conclusion, and will be part of the year 2000 revision of SDL.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 17

The Why, What and How of TIMe T”\/Ie *

Introduction

Are MSC
and SDL
perfect?

Why a sepa-
ratemethod
on the com-
bined use?

Why use
TIMe?

TIMe Report

In addition, inheritance from the object model can be directly mapped onto inheritance
for SDL process types, including inheritance of attributes, operations and behaviour
(that isinheritance of states and transitions). Thismeansthat, if desired, itispossibleto
inherit “functionality” and not just “interfaces’.

Another line of reasoning isthat an interchange format for SDL descriptions between
different tools is standardised [17] - this eases the transition from one tool vendor to
another.

The above discussions are not meant to promote MSC and SDL as “the perfect lan-
guages’. They are not. There are thing we missin MSC, such as guard conditions,
transitions names and the possibility to express constrains. There are things missing
from SDL, not only the obviouslack of relations (which we recommend be expressed in
UML), but also anumber of niceties such as substates (i.e. the compact description they
give, which SDL Procedures lack), for/while loops, expressions of algorithms and a

dozen other issues.t

Neither MSC nor SDL are capable of formally defining execution time constraints, or
expressing exact real-time behaviour in terms of processinterleaving. Hence TIMe does
not address mission-critical, “hard real-time” systems. Certain vendor-dependent solu-
tions to this are provided by tool vendors [27].

We nevertheless recommend that M SC and SDL be used for the types of systems target
by TIMe for detailed design and systems generation in an industrial context. MSC and
SDL have proved themselvesin many real-life projects, and are mature, abeit not per-
fect. UML is still promiseware.

In conclusion, the combined use of UML, SDL and MSC seems agood idea. But there
are still some issues to consider when using two slightly different object oriented
approaches as represented by UML and SDL.:

* uncritical useof relations (associations) will lead to problemswhen turning to design
in SDL;

 aggregation was a special association in OMT, while UML and SDL support “real
aggregation” (called compositionin UML);

* UML (and OMT) supports multiple inheritance (the semantics of which will first
become clear during design), while SDL supports single inheritance only - careful
use of inheritance is therefore an issue.

In addition comes the object orientation you may have to use when considering distri-
bution, e.g. CORBA, and thisis yet another approach. TIMe has the answer on how to
isolate the application specific aspects from the distribution aspects.

There are already anumber of methods supporting the combined use of UML, MSC and
SDL, two of these are supported by tool vendors[34], [35]. Still there are some valid
reasons for using TIMe:

1. Work is currently being carried out in ITU SG10/Q6 and Q9 to enhance the “year 2000” versions of MSC
and SDL with such features.

18- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

4 TIMe TheWhy, What and How of TIMe

TIMe Report

Introduction

Most methods have a bias towards object modeling - “just find the objects and you
are done’. TIMe comes with a system reference model and emphasises property
modeling as equally important as object modeling. Property modeling includes use
case modeling as a special case.

TIMe has an answer to where the design objects come from and does not just provide
technical guidelines for how to go from UML to SDL.

Asamechanism not supported by other methods, TIMetellsyou how to make frame-
works in SDL. Frameworks produce the most effective reuse.

TIMe represents many years of experience with system development and object
orientation.

TIMe bridges the gap between the user’s world of needs and the designer’s world of
objects.

TIMe can be used as a supplement to other methods. Tool vendor specific methods will
always be useful, as their elements most probably will be supported by the tools.

Howtouse TIMeisavailable both as printed material and as an “electronic book”. The electronic

TIMe? version allowsyouto follow linksin order to read what you want, e.g. at a specific stage
in the development process. The electronic version allows for company specific exten-
sions, with links into and out of those parts of TIMe that are used.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 19

TIMe Essentials
Introduction

TIMe =

TIMe Report

TIMe Essentials

Systems
and system
descrip-
tions

This section gives adescription of the essential elementsof TIMe and what makesit dif-
ferent from other methods.

TIMeis asystem development method. A systemis apart of the world that a person or
group of persons during some time interval and for some purpose chooseto regard asa
whole, consisting of interrelated components, each component characterised by proper-
tiesthat are selected as being relevant to the purpose. A system is not adescription on a
piece of paper, but something actually existing as a phenomenon in thereal world. This
puts the system apart from the description of the system. The system actually exhibits
behaviour, while its description is a dead pile of paper.

Systems made by means of TIMe (and by means of many other methods) are produced
by making descriptionsin avariety of languages and notations. These descriptions pre-
scribe how systems should be generated by having computers and similar equipment
(platforms) execute these descriptions.

Systems consist of objects. In order to describe them, classes of objects are defined and
described. In short, methods consist of approaches, guidelines and techniques for iden-
tifying and describing classes of objects.

With the advice “ Just find the objects
(they are there to pick) and you will
have the structure of your system”, the
development group at Sesam Sesam
imagined the picture below. Thisis of
course oversimplified, but in fact most

to the object modelling.

It turned out, how-
ever, that these
people were so
heavily stuck in
the(ir) real world

change PIN code

block access
point

methods they consulted advocated no thatthey couldonly
more structuring of systemsthanthis. think intermsof re- acceptireject
This had to do with the fact that most quired (or desired) users

object oriented languages support only
aflat structure of objectswith relations
- aggregation isjust a special relation
between objects.

properties of the

system as such (in

termsof functions, list of functions, fea-
tures, requirements, etc.). They had the
picture of asystem asillustrated above,
that isalist of services.

Some of these serviceswere defined on
the basis of use cases. With these two

access
zone

access
point

panel |, ..

The process of finding the objects (or
rather classes) was driven by the devel-
opers, but management had learned that
OO was the best way to model the real
world.

The peoplethat wereinvolved with this
real world were the market people and
the people responsible for customer so-
lutions. They were therefore brought
into the process and asked to contribute

20- TIMeat aglance

very different perspectiveson asystem,
it was no surprise that finding the ob-
jects turned out to be finding the “de-
sign/implementation” objects, and that
properties were not taken into account.
Finding objects by functional decompo-
sition was, correctly, regarded as a bad
thing, and was not considered at all. So
where had all the propertiesgoneinthis
new object oriented way?

TIMe version 4.0 © SINTEF Modified: 1999-07-14

i TIMe TIMe Essentials

TIMe Report Introduction
Properties TIMe has the two dimensions properties and objects as integral parts of the method.
and objects
Systems A system consists of a set of objects. Objects are described by:
i st of .
gg?:ci_o * object models, that model how asystem or aset of related classes are composed from
Objectsand objects, connections and relationships.
fgf:ms Systems and objects have properties (both provided and required). Properties are
properties described by:
» property models, that model the properties of a system or object without prescribing
a particular content or implementation.
Object models are constructive in the sense that they describe how an object is com-
posed from parts, and is the perspective of designers. Property models are not
constructive, but are used to characterise an object from the outside: behaviour proper-
ties, performance properties, maintenance properties, etc. Thisisthe perspective
preferred by users and sales persons. It is also the main perspective in specifications.
TIMe provides some of the answersto the challenge of system development: to identify
objects and give them properties so that they contribute to the propertiesrequired of the
whole system, see Figure 5.
Figure5: Matching objects and properties
Open figure
A properties
change PIN D %
block access @ &
accept/reject D
objects
>
access panel . access
Properties A central ideain TIMe isthat every object (and system) is characterised by provided

properties that can be matched against required properties (see Figure 6).

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 21

TIMe Essentials T”\/Ie .

Introduction

Roles

TIMe Report

Figure 6: Required and provided properties

Open figure
Verification
& Validation
required properties .<e——| provided properties

development

Of special interest are interaction properties,

where a property involves the interaction MSC User_accepted

between the system and one or more users of User AccessGranting
the system or other systems in the environ- 1
ment, or between objectsin the system. The PIN

“accept/rglect user” property in Figure5isan -
example of this: it involves the user entering

the card and code to the system, and the sys- - oK

tem answering back with either OK or not OK

toenter. InFigure 7, part of thisisspecifiedin

Figure 5 only indicates that access point Figure 7. Simple interaction prop-
objectsareinvolved, but during the design we erty model

shall see that both panels and a central unit
will beinvolved.

TIMemakesit possibleto express property model swithout referring to specific objects.
Sometimes we need to specify properties without knowing the objects they shall be
associated with, and we may want several different objects to share the same properties
(e.g. acommon interface). TIMe also makes it possible to compose the properties of an
object from parts described in different property models.

The notion of role makes this possible. Roles are used to represent objectsin property
models, and we may compose the properties of an object from roles described in differ-
ent property models.

One of theinstancesinthe MSC in Figure 7 is“ AccessGranting”. Thisis not an object
of the object model, but afunctional role. Behind this name can be hidden any structure
of interacting objects. At some point in the development it is necessary to associate the
functional role with an object of the object model. We call this synthesis.

TIMe uses three main categories of roles:

22 - TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

= TIMe

TIMe Report

Interface
and appli-
cation
given
aspects

ent sets of objects, in other cases
they arejust two different aspects of
objects - thisisindicated by the
jagged line in Figure 8. The impor-
tant thing is to make the distinction
and be ableto maintain it. The inter-

TIMe Essentials
Introduction

service roles, which are the observable behaviour of an object in a given service;

interface roles, which are the observable behaviour at given interfaces;

association roles, which are the conceptual constraints on objects that participate in

associations (relationships).

After having clarified that both object
and properties are supported, the group
at Sesam Sesam went for the TIMe
method and gave it atry. They were
successful in working together towards
a common object model. The market
people saw that their functions (proper-
ties) would be combined with objects,
and that object modelling was not the
only activity.

* “OK, we started by making an
object model of the current system
asit appearsto itsusersin the real
world - now what do we have?’

In some cases these are two differ-

* “We have the main user panel, and
we have the gates where users get
access to the system. We also have
the mandatory objects that control
the equipment, without those there
would not be any system.”

Thisprocesswasdriven by anumber of
use cases, S0 it was not surprising that
the group ended up with an object mod-
el where the dominant object was the
main user interface object of the sys-
tem. Most of the properties became as-
sociated with these objects.

TIMe makes a distinction between the (user) interface given aspects of objects, and
application given aspects of objects, see Figure 8.

interface given { application given

object;

object,

[

face may change e.g. with new
technology, while the application
objects providing the service properties of the system will typically have alonger life.

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

Figure 8: Interface and application given

aspects

TIMeat aglance - 23

TIMe Essentials

Introduction

Systems
belong to
domains
and are
used in
environ-
ments

24 - TIMeat aglance

TIMe

.

TIMe Report

We shall later see that the application given aspects can be decomposed into system

given and domain given aspects.

After having learned the distinction be-
tweeninterface specific and application
specific objects, the question was how
to get at some reasonable application
specific objects. The people at Sesam
Sesam were experts on their kind of
equipment and other technical systems
that were to be used, so they identified
objects that modelled this equipment
and other (technical) systems and de-
vicesin thereal world of the system.

The object model turned out to have,
not a black box, but awhite hole at the
place where the system object model
was supposed to be. The problem was:
what kind objects should the core of the
system consist of ; it was obvious that
there would be objects that handled the

user interface and the interface to other
systems, but apart from that??

» Saysthe TIMe consultant: “What
about adomain analysis’

* “What wasthe word again? And
what doesit mean?’ saysthe project
leader.

* “OK” - saysthe TIMe consultant -
“what isthe system all about, irre-
spectiveof how itisrealised, what is
the basic problem(s) that the
intended system is supposed to
solve; which kinds of entitiesand/or
eventsin the so-called real world or
in your imagination are handled by
the system?’

TIMe makes a distinction between a domain, the systems within the domain, and the
environments in which the systems are used. While systems belong to adomain, in that
they handle the same types of phenomena, they exist and are used in an actual environ-
ment, see Figure 9. Accounting systemsare different from access control systemsin that
they belong to different domains. The example system in thisintroduction to TIMe
belongs to the access control domain, and that includes phenomena and concepts like
access points (where users get access or not), access zones (to which userswould like to
get access), PIN codes, etc.

The domain modelsapart of thereal world having similar needs and terminol ogy where
a system instance may be a solution to some need. The domain is not specific to a par-
ticular system or system family, but rather to a market segment. It covers common
phenomena, concepts and processes that need to be supported irrespective of particular
system solutions.

Required properties derived from an actual use situation may come in addition to the
properties stemming from adomain. Properties required by the actual environment and
by its realization are very specific, while domain-given properties are often more gen-
eral and express idealized needs.

TIMe version 4.0 © SINTEF Modified: 1999-07-14

= TIMe

TIMe Report

Domain,
interface
and system
given
aspects

After thisdistinction it turned out that
the project team at Sesam Sesam were
not only experts on the technical parts,
but they a so knew what the system was
supposed to do. By taking one step

TIMe Essentials
Introduction

backwards and identifying entities and
eventsin the domain and representing
these by object classes, they arrived at
some domain specific classes that may
be candidates for objectsin the system.

Figure 9: Domain, environment, and systems

Open figure

Domain

The access control domain has to do

with controlling access to access zones,

based on e.g. card codes and optional
PIN codes. Users present their cards

(e.g.user)

N>
S
environ-

ment
(e.g.operator)

Environment

control system may in addition to the
users have operators that have other re-
quirements to the system, e.g. getting
the status of access points.

and PIN code at a number of access
points. Some access points may be
blocked even if avalid codeis entered,
while other access points may log what

goes on at the site. Users may also
change their PIN code.

The environment of a specific access

General propertieslike accessgranting
come from an analysis the domain,
while propertiesthat haveto dowiththe
specific use of the system (e.g. how to
read cards and control doors) and oper-
ator requirements come from an analy-
sis of the environment.

Domain objectsand their properties are not enough to provide the required properties of
the whole system. Many general properties can be provided by the domain given
objects, but some properties will often be required in addition. For instance properties
related to the operation and maintenance of a specific system.

Thisisreflected in the system reference model of TIMe: In addition to the domain and
interface given (aspects of) obj ects, the application given objects may have some aspects
that are special for this specific system, in addition to the general properties of domain

given objects.

The object model of a system istherefore divided into three aspects:

 the domain given aspects
* the system given aspects

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

TIMeat aglance - 25

TIMe Essentials TlMe .

Introduction

Abstract
and con-
crete
descrip-
tions

TIMe Report
* theinterface given aspects.
These aspects may be whol e objects or
just aspects of objects. interface system domain
L given given given
Domain given aspects come from an

analysis of the domain, interface given object; ob}éctj object,
aspects have to do with user interface, /
interface to other systems or to con-

trolled equipment, while system given aspects are those aspects that arise because there
isasystem, and that are specific for the system.

Domain given aspects have alarger potential for being reused in other systemsin the
same domain than the system given aspects, and interface aspects may have to be mod-
ified when the interface technology changes.

Theinterface given aspects of the access control system areillustrated in Table 1 (p.26).
Table 1: Thethree aspects of the access control system

interface given tem aiven aspects domain given
aspects ¥ 9 &P aspects

» panel for entering || operator * access points

card code, PIN requirements . BCCESS ZONES

andfor displaying ||, | 5jigationshall be

messages to the done by a central Users

user unit * accessgranting
* door control

: ' » backup y
unlocking the -
door requirements

Descriptions suitable for execution by existing platforms contain alot of detailed, con-
crete description elements (implementation details, platform specific details, etc.).
Descriptions suitable for system developersin their strive to match required properties
expressed by users, owners o.a. are preferably more abstract in the sense that they
describe systems in terms that reflect established concepts within a given domain.

TIMe achieves abstraction by supporting UML and MSC for analysis models and SDL
for design models. UML is a notation that enables informal, abstract object models,

M SC describes use cases and interaction between objects, and SDL supports abstract
descriptions that (by including concrete description el ements) automatically may be
transformed to concrete implementations. The use of abstract descriptionsis one of the

In the access control system example, (including pure hardware components),
the systemis the collection of panels, interface description of the hardware
doors and program executionsrunning components, SDL descriptions of some
on some processor(s), while systemde- of the program executions, and (con-
scriptions will include (abstract) over- crete) Javaor C++ codefor the SDL run
view descriptions of the total system time system and for hardware drivers.

main ingredients in property oriented development.

26- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

i TIMe TIMe Essentials

TIMe Report Introduction

Application

Infrastruc-
ture

Context

Content

Families

Abstract descriptions are organised in two main parts:
 an application part that describes what the user environment wants the system to do;

» aninfrastructure part that describes additional behaviour and supporting functional-
ity that needs consideration, e.g. in order to fully simulateitsbehaviour. Thismay e.g.
include support for distribution, exception handling etc.

The reason for thisdistinction is that systems within the same domain and in the same

family (see below) often will have the sameinfrastructure part, but different application
parts. Reuse of infrastructure is eased by keeping them separate, and application evolu-
tion issimplified.

Concrete model s describe the implementation architecture. Thisisahigh level descrip-

tion of the physical implementation. The purposeisto give aunified overview over the
implementation and to document the major implementation design decisions.

Each object has attributes and behaviour, isrelated to other objects, and is structured for
two different reasons:

1. sothat it models the corresponding domain entity and representsitself adequately to
the objects in the context of the object (for the system object this means the objects
in the environment);

2. sothat the object iscompletely defined with respect to itsrealization on the executing
platform. We will talk about the contents of the objectsin contrast to its context, see
Figure 10.

Analysiswill produce specifications of objects,
while design and implementation activitieswill pro- objects properties
duce designs of objects. In specificationsthe object context
context and external properties are defined. Some

limited parts of the content may also be specified, /\J
see Figure 10. In the design the remaining content is o™ degign
defined. The specification of an object includeswhat
is needed to use the object - and that may be more

than just an interface specification. Figure 10: Context/content

When deciding upon what belongs to the domain

and what is more system specific, the main distinction is between the domain and single
systems within the domain. During development we often think in terms of making one
specific system. We talk about the “ system” and the “domain”, and about e.g. “ system
specification” and “system design”.

specification

Itis, however, fruitful to think in terms of families of systems and really make “ system
family specifications’ and “ system family designs’. The ideais to focus devel opment
and maintenance effort mainly on the families, in order to reduce the cost and time
needed to produce each particular instance, and to reduce the cost and time needed to
maintain and evolve the product base.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 27

TIMe Essentials TlMe .

Introduction

Frame-
works

Applica-
tion and
infrastruc-
ture

Languages
and nota-
tions of
TIMe

TIMe Report

A system family isageneralised system or set of component types (classes) that can be
configured and instantiated to fit into a suitable range of user environments. They rep-
resent the product base from which a company can make a business out of producing
and selling instances.

TIMe provides guidelines on how to make system familiesin addition to single systems.
Where practical, system types and classes will be defined from which complete system
instances may be generated.

The notion of framework is one important mechanism for defining families of systems.
A family comprises morethan just atype of system from which severa system instances
can be generated. In addition a family includes e.g. the necessary documentation, man-
uals, etc. that make up a complete product.

At the heart of asystem family liesthe partsthat are generated from an SDL design. This
may either be a complete SDL system, a set of SDL systems, or a set of general block
types and process types that can be (re)used for making systems.

The SDL descriptionswill be organised according to the distinction between application
and infrastructure. Itisnormally the casethat different systemswithin afamily will have
the same infrastructure but slightly different application parts, and when making differ-
ent systemsit isdesirable not to change or even consider the infrastructure part (besides
what it offers). A framework defines the composition of the infrastructure parts and
application partsin such away that different systems can be made by only changing the
application parts.
Saysthe people at Sesam Sesam: “We oriented programming languages, but

have seen frameworks work for win- we guess frameworks are not for us,
dow systemsandimplementedinobject now that we have chosen SDL ...

The notion of framework isnot specia for TIMe. Within thefield of object orientation,
aframework iswell-known (* In object oriented systems, a set of classes that embodies
an abstract design for solutions to a number of related problems.” - Free On-line Dic-
tionary of Computing), and there are good examples of frameworks, e.g. window
systems. The use of frameworks supports the (re)use of whole designs and not only sin-
gle classes.

What isspecial for TIMe, however, isthat thisideais adapted to SDL. A framework can
be defined asan SDL system type, and the different systems as instances of subtypes of
this system type. TIMe provides detailed guidelines for how to do this.

The main languages and notations of TIMe are UML, MSC and SDL. For readers not
familiar with these, please consult Object and Property Models - and the Languages for
describing them. The following is a very short introduction.

28- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

= TIMe

TIMe Essentials
Introduction

TIMe Report
UMLfor TIMeusesaUML for object modeling in terms of
analysis -
and design classes (with attributes and operations) representing application specific concepts,
object with relations (associations) and communication links;
modelling inheritance between classes in order to express specialization of application
concepts,
e aggregation, that is objects defined by means of part objects.
TIMe definesits own approach to object orientation, and UML is used as a notation for
expressing this. UML matches the TIMe object orientation better than OMT.
Figure 11: UML for object modelling
Open figure
relation subcl
classes AccessZone / supercl aT
with rela- Classeés Blocking
tions and may be Access Point
communi- defin Access Point
cation links X ub- Logging
4 Acce’ssPomt‘<7> User classes/ Access Point|
class i -obi
communication part-object
AccessPoint
classes may
be defined by
means of ag- Panel v
gregation, Central
that is con- User Controller Unit
sisting of ob- ontro
jects of other Door
classes
MSC TIMeuses M SC asitsbasic notation for property modeling. M SC highlightsinteraction
for specify- petween instances based on messages. Instances may represent objects from some
ng object model or just roles played by some objects. A message is asynchronous, the out-
'Sr;g:ﬁtc'gn put must come before the corresponding input. The events on thetimeline of an instance
are strictly ordered, and the distance between eventsis not significant.
An MSC document consists of a set of MSCs. Different MSCs within the same MSC
document are related by conditions. A condition is a label which signifiesaglobal or
local state. Conditions can be used to mark situations where there are different alterna-
tive continuations, and they may describe looping.
I nstances may be decomposed, in order to seethe details of thisin termsof further MSC
diagrams.
DL SDL isthe main language for design, and the only language for specifying behaviour.
for desi .
;]rd fisr'gn An SDL system consists of anumber of blocks, connected by channels. Each block may
specifying ~ €ither consist of a substructure of blocks, or of a set of processes connected by signal
behaviour ~ routes.

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

TIMeat aglance - 29

TIMe Essentials
Introduction

.

TIMe

TIMe Report

Processes execute concurrently, communicate by sending signals (non-synchronized),
and have their behaviour described in Finite State Machines extended with variables,
procedures and transitions.

SDL may define types and subtypes of systems, blocks and processes.

Figure 12: MSC for interaction properties

Open figure
interaction | msc User_accepted
between User AC System initial
instances |——— — initial
for specify- | ¢ Idle S condition
: ~
Ing use Code -
cases "
oK Unlock ~. decomposition
-
/ final N
{__ Door unlocked /1 .
condition ~
—/—— /1 ~
.
] R -
submsc de- | submsc’/AC System
scribing a de- /" panel \ Controller Central Unit
composition of c é — \ I I
i e
one of the in- |__-00C g | Code cod
stancesinthe | 0 ode
superior msc, \
e.g. for design /Card out r@e—OK o]
purposes j——| \
/oK
< | neh
/ ¥ G\ Unlock >
/ —— —— ——
/
; altl \alt.2
msc Unlocked 'timeout msc Unlocked _\reset
User / AC System User | ACSystem
\;I _’_/ I
{____Door unlocked {___Door unlocked >
oor door
Push door /4
’ O ened>
—» Lock -
—— P Closed
4 [dle Lock)
ﬁ ﬁ
4 | Idle >
1 I_:I

30- TIMeat aglance

TIMe version 4.0 © SINTEF Modified: 1999-07-14

5, TIMe TIMe Essentials

TIMe Report Introduction

Figure 13: SDL for design and specification of behaviour

Open figure
An SDL system SYSTEM AccessControl 1(2)
consists of a num- block block
ber of blocks, pos- || AccessPoint ty

sibly according to e
block types. Blocks yce [MPITg AP0y C| [Code]

»

< | g < | 4 CentralUnit|
are connected by / outp)] AccessPoint | [(walidity)] | \.C
channels +

gat BLOCK TYPE AccessPoint 10| ‘channel with
[np)] | CE [€np) I~
< L «—— | Panel Door process type
[(outp)] € | Koutp)]
. [(validity)] [olpen'\\ pro-
/ P ylcode] fopencd, | o — signal route
/ P D)\ Closed] %
apc: < [(validity)]
i Controller Y ‘[(validity)] CcuU [Code] c [Code]
VIRTUAL PROCESS % — dart
CO | e

< dle) (Validationj unlockDoot |<———— procedure refer-

Code VIRTUAL VIRTUAL |e—t+—" Input
(cid,PIN) OK NOK
| | |

cur_panel := OK NOK | output
SENDER TO cur_pan> TO cur_par> < p
|
Code(cid,PIN unlockDoor procedure call
VIAU
v
(o) (=)
[Code] [opened,closed] [(validity)]
%
P I [(validity)] DI [open,close] v [Code] gates

D]

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 31

System Development Activities Tl Me 5

Introduction

TIMe Report

System Development Activities

K

The following overview of TIMe is structured according to system development activi-
ties, and the corresponding kinds of models and descriptions are introduced along with
the activities. In this overview emphasis is put on the activities leading to
implementation.

This chapter covers the following activities:

* Anayss(p-33)

Domain analysis (p-34)

- Domain Statement: what isit all about (p-36)

- Domain object model: modeling the established domain concepts (p-37)

- Dictionary: not just adata dictionary (p-39)

Requirements analysis (p-42)
- Application specification (p-45)
- Architecture specification (p-50)
- Framework/Infrastructure specification (p-51)
Design (p-53)
- Application Design: where the real functionality is designed (p-54)

- Architecture Design: choice of implementation platform (p-63)
- Framework Design: from Infrastructure to Framework (p-64)

* Implementation (p-71)

Instantiation (p-71)

Guidelines on Object and Property Modeling are provided in a separate chapter (Object
and Property Models - and the Languages for describing them). These are modeling
techniques that are part of many activities and therefore most conveniently covered in
one place. That chapter includes guidelines on the matching of properties and objects,
and on the transition from UML to SDL object models.

32- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

~) TIMe

TIMe Report
Figure 14: Themain activitiesin TIMe
Open figure
4 Analysi N i ot
naysing Domain descriptions Dictio-
nary
(Analysing domain i Domain
models State-
ment
System Family descriptions
Analvs : i Specifi-
(nalysing requnremens’ cations
. J Dictio-
4 Designing A nary
(D igni licati Designs State
esigning application
[vp]caion| bl
Designing f k | E |
(esigning framewor @

Analysis

System Development Activities

Analysis

Designing architecture

NG J

| Implementing '_

4 Instantiating A

Implementa-
tion

Instance descriptions

< Configuring)
< Building '

(Testing '

- J

Instance Implemen- Auxiliary
models tations

oncrete

system

The objectives of analysis are to understand the domain and what users and other stake
holders want to achieve, i.e. their needs, to find improvements to existing systems, or to
plan new product familiesthat will give valuable improvement and thus create business

in the future.

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

TIMeat aglance - 33

System Development Activities

Analysis

Product
Planning

Why
domain
descrip-
tions?

34 - TIMeat aglance

TIMe =

TIMe Report
Figure 15: Analysing
Open figure
Business plan,
product strategy
(Analysing)
g Andysing Domain
2 [o |
Market An_alysi ng
people, us- requirements
ers, design- Y Andlysing pp—
o A] sudies
experts
Specifying |l Family |
descriptions
- J
g
g Family
descriptions

Own systems,
competing
systems

Product planning is another word for analysis. Product planning is a strategic process at
the company level. Itsmain goal isto consider needs existing in the market and plan new
products or enhancement to existing products. Few tasks are more critical to the success
of acompany than its product planning. Product development is a process which pro-
duces the new products or product enhancements that are planned.

At the product planning level, domain descriptions are used to collect and organize
domain knowledge in away that will enable product development to work more
efficiently.

At the product level, product families will enable faster and more cost effective config-
uration and production of system instances, while common components will be used to
develop product families more efficiently.

Product planning consists of two main activities: Domain analysis and requirements
anaysis. Thetask of the latter isto plan what parts of adomain to support by anew sys-
tem family and to specify its required properties.

Domain analysis

Thefirst analysiswill be an analysis of the domain. Thisincludesidentifying which phe-
nomena and concepts (like access zones, access points) are part of the domain, with
focus on concepts. The result is represented by two domain models:

TIMe version 4.0 © SINTEF Modified: 1999-07-14

% TI Me System Development Activities

TIMe Report Analysis
Domain » A domain object model, that is a collection of classes with attributes, relations and
object communication connections that describe the general concepts of the domain, with-
E“'\’/‘ij' in out going into details needed for design and implementation.

- UML isthe main notation used for this kind of modeling, but if it for some reason
should be important to describe some general states and transitions, then SDL is
used.

Domain » A domain property model, that isadescription of propertiesof domain object classes,

property and of roles.

model in S : . : .

MSC - Domain objects do not haveto be just “ data (passive) objects’, so properties may
involve interaction properties - they are described using MSC. Other kinds of
properties are described using natural text, e.g. organised in lists of required prop-
erties. If interaction properties are not obviously associated with objects from the
domain object model, we will say that they are associated with roles.

Two additional domain descriptions are recommended:

Dictionary * A dictionary, that isalist of termswith an explanation of their meaning, including
each of the elements of the domain object model. A dictionary is not just a data dic-
tionary, it also includes definitions of concepts that exhibit behaviour.

- Dictionaries are described by structured natural text.

Domain * A domain statement, that is a concise description of the domain with focus on stake

statement holders and their needs, the essential concepts, functions and work processes, rules

and principles.

- Itisnormally sufficient to express the domain statement informally using natural
language and drawings, but one should try to be as clear and precise as possible.

These models and descriptions represent the understanding of the domain common to
users, owners and developers of systemsin the domain, see Figure 16.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 35

System Development Activities Tl Me 5
Analysis TIMe Report

Figure 16: Domain Analysis Models and Descriptionsfor the
Access Control Domain

Open figure

domain object domain property
model model
Acce

AccessZone User

AccessPoint
[==

domain statement dictionary

Access control hasto ~ acCess
do with controlling point: ...
the access of usersto access
aCCess Zones. ... Zone: ...

user: ...

Domain

Domain Satement: what isit all about

The domain statement leads to the very first understanding of what the domainisall
about. It helpsto clarify needs and to understand the real purpose of systemsin the
domain. It also serves as an introduction to the other domain descriptions.

The domain statement can often be based on existing prose descriptions. There may be
descriptions of earlier systems, there may be textbooks on the subject and there may be
informal statements about the system.

Domain By considering similar systems on the market, by analysing the needs and by consulting

Satement domain and market experts, the short Domain Statement V1 (p-37) is written. It seeks
to describe what is special for this domain in contrast to other domains, and is used to
guide what to include and not in systems.

36- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

% TI Me System Development Activities
TIMe Report Analysis

Figure 17: Domain Satement V1

Open figure

Area of concern

Access control hasto do with controlling the access of usersto
access zones. Only a user with known identity and correct
accessright shall be allowed to enter into an access zone. Other
users shall be denied access.

Sakeholders

Users of the system, those responsible for the security of the
access Zones.

Services
The user will enter an access zone through an access point.

The authentication of a user shall be established by some
means for secret personal identification (code). The authorisa-
tion isbased upon the user identity and accessrights associated
with the user.

A supervisor will have the ability to insert new usersin the
system.

Users shall be able to change their secret code.
Helpers

We assume some central means to establish access rights
automatically.

Domain object model: modeling the established domain concepts

Classesand A domain object model describes the domain from an object oriented perspective. It

objects defines classes which represent concepts in the domain, and objects which represent
phenomenain the domain. It defines the attributes, the operations and the behaviour of
objects as well as associations and communication connections between objects.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 37

System Development Activities
Analysis

TIMe =

TIMe Report

* The Sesam Sesam project |eader also the main distinction in the Use

tries: “Aha, so domain modelling
resembles the way database applica-
tions are made: we make a data
object model for the domain, that is
the objects that the systemsin the
domain must know about, and then
we make different database applica-
tionswith thisdata object model asa
basis.”

“That"s right, we know in fact that
we have to keep a database of what
users have ordered, so that they can
be billed, so that statistics can be pro-
duced, etc.” says a project member.

“OK, thisseemsto be afairly smple
distinction: “passive’ data objects
for the domain and then more
“active” “controlling” application
objects. Asfar as| remember thisis

Case approach of ObjectOry” says
another.

Saysthe TIMe consultant: “Thiswill
work asastarting point, and for some
systems thiswill do, but for most
domains we do not have to restrict
ourselvesto regard the domain spe-
cific objects as data objects only: if
there are general propertiesthat have
to be fulfilled by “active” objects
(that isobjectswith behaviour, witha
life-cycle and often concurrent with
other active objects), then these
objects obviously are domain
objects, and their classeswill be used
for many systemsin the domain. In
TIMethedimensionsdomain-system
and active-passive are two different
dimensions - it is not so that domain
object are always passive and system
objects always active!”

With this definition of domain object model, it israther straight forward to identify the
domain specific objects. In our example it turned out that some of these were really
“active objects’ (e.g. User and AccessPoint in Figure 18). Note that this object model
comes about when considering only classes, relations and connections. If only consid-
ering e.g Use Cases, AccessPoint may not have turned up, but rather arole like
AccessGranting.

38- TIMeat aglance

TIMe version 4.0 © SINTEF Modified: 1999-07-14

= TIMe

TIMe Report

System Development Activities

Analysis

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

Figure 18: The access control domain In this part of

the domain ob-

jectmodel itis

described that
* aUser may en-
ter more than
one Access-
Zone, and may
therefore use
more than one
AccessPoint.
There may be
more than one
point at which
agiven Ac-
cessZone can

Open figure

AccessZone

1 | 4
W bounded by may enter

1>

A RS

User

AccessPoint

be entered and exited.

The User and AccessPoint objectswill be active objects, while Access-
Zone objects are passive. Thisisindicated by the communication con-
nection between AccessPoint and User.

The corresponding property model reflects that User and A ccessPoint
interact. Note that User isthe class of real Users, and not the class of
User objects eventually representing users within the system.

Figure 19: Attribute specification

Open figure
User Access Zone Access Point
Name: string Name: string Name: string
Number: Integer Level: Integer Number: Integer
Access: key type

Dictionary: not just a data dictionary

The objective of the dictionary isto define terminology and thereby enable precisionin
communication between people involved. Terminology names the domain specific con-
cepts and defines their meaning.

An important set of conceptsin the dictionary isthe set of conceptsthat are covered by
the corresponding domain object model. There may aso be phenomena, like e.g. access
granting, that will not be covered directly by aclassin the object model, but by property
model s involving more than one class of objects.

It isimportant that not only “data’ concepts are included in the dictionary, but that typ-
ical “event”- or “action” concepts also areincluded - hence the name Dictionary and not
Data Dictionary.

TIMeat aglance - 39

System Development Activities Tl Me 5

Analysis

TIMe Report

Figure 20: Domain specific Dictionary

Open figure

Access point A point of access into an access zone.

Access zone A physical or logical zone guarded by a set of access
points.

Authentication To establish the identity of a user.

Authorisation To establish the right of a user to enter an access
zone.

Authorizer The entitity which determines authentication and
authorisation.

PIN A personal identification means.

User A person with known identity with
authorisation to enter specific access zones.

User name A user name.

Access Granting Therole of granting (or not granting) a user access.

Domain property model: modeling the needs

A Domain Property Model is used to describe the problem domain from the Property
perspective. It includes functional and non-functional properties.

Functional properties are considered as projections of object behaviour, and are
described using text, role structures and MSC.

Important properties for the systemsthat TIMe isintended for are properties of interac-
tion between parts of the systems and parts of the environment. Some methods
recommend pure role modeling for this purpose: that isall instancesinvolved in inter-
action scenariosareroles played by some objectsthat will befound during design. Other
methods (like UML) use the object model as the basis for interaction scenarios, and
therefore only have objects as instances in interaction scenarios, never roles.

TIMe supportsamixture: if interaction properties are obviously associated with objects
already identified in the object model, then the property models describe the properties
of these. On the other hand, if the object model has not even been identified, it is still
possible to make interaction scenarios only involving roles. During design, roleswill be
assigned to objects. The relationships between objects and properties areillustrated in
Figure 21.

40- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

% TI Me System Development Activities
TIMe Report Analysis

Figure 21: Domain Models

Open figure
Domain property models
Domain object models Service-a
srcture MSC Service-al
Actor-1 view "
[? L~ [
/P aysﬁo/ L]
Actor-2 yiew / Tnterface-x
d Tote
L_Plays role of | structure MSC Interface-x1
THeO—0O|| =y
| Text | [
LB]
Role Text isused to give atextual explanation of a service or interface. Role structures are

sructures UML instance diagrams that represent the roles of the service or the interface. The
objectsinrole structure diagrams can be considered as anonymous objects. They will be
related to object model objects by role association links, and to the instances in the ser-
vice M SCs through the same name.

When the system is designed, the domain property models will also be valid property
models of the corresponding (domain given) system objects. Properties belonging to the
domain will be candidates for properties of several systemsin the domain.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 41

System Development Activities

Analysis

Figure 22: M SC User_accepted

TIMe =

TIMe Report

We know that there will

Open figure

be AccessPoints and that
the Users will interact
withthesein order to enter

MSC User_accepted

L]

User AccessGranting
PIN
-
OK
-
==

an AccessZong, but it is
not obvious if Access-
Points are the objects that
will grant access.

If it isimportant to ex-
press this uncertainty,
then we define Access-
Granting asarole - in oth-
er parts of the
development we will as-
sign thisrole to one or
more objects, and proba

During domain analysis, Sesam Sesam
used the set of rules/guidelines being
part of TIMe. Thefollowingisalist of
some of these:

* Asadart, consider how things are
donetoday and describethe existing
domain. Then consider how it may
be improved and develop a new
domain description.

» Focus on abstract objects that are
essentially needed and avoid system
specific solutions. This does not
exclude elements that eventually
will be part of systems. Theessential
thing is that the Problem Domain

bly AccessPoint will be
one of them.

M SC does not take any stand as to what the instances are - an instance just represents
one sequence of events (sending and receiving messages).

generalises over system specific
solutions. Classes of objectscoming
from an analysis of the Problem
Domain are candidates for reuse
across systems, but reuse requires at
least one use.

For each stake holder, describe their
needs for services and interfaces.

Represent every actor asatypewith
context in the object model and
describe its servicesin property
models.

When systems are defined classify
the entities into interface, system,
and domain specific parts.

Requirements analysis

This activity produces requirement specifications in terms of context specificationsin
UML or SDL (depending on the desired degree of formality and on the starting point)
eventually supplemented by content specification where thisis known and needed in
order to fully specify requirements. Corresponding property specifications are

produced.

42 - TIMeat aglance

TIMe version 4.0 © SINTEF Modified: 1999-07-14

% TI Me System Development Activities

TIMe Report Analysis

The activity will specify the properties of the systems down to alevel where the system
can be evaluated and compared to other possible solutions. It studies different system
aternatives, and it makes requirements on how systems shall be instantiated and how
they may evolve.

Figure 23: Analysing requirements

Open figure
Business plan,
product strategy
< Domain
Descriptions
(" Analysing requirements \
Analysing System
(s o e [
Specifying \
Developing Family
family statement 1 satement
Developing Family
% % family dictionary - dictionary
Y - Specifying Application
Market A application P specification >
persons,
users, de- Specifying Framework
velopers, "L speitication
production Spedifyi
and sales ecitying i —
p specification
Specifying -
methods Family
\ / »r awxiliay |
. J
-

Own systems,
competing systems

In addition it updates the Dictionary (p-35) and Domain statement (p-35) from the
domain analysiswith elementsthat have to do with the introduction of aspecific system
(or family of systems) in this domain.

Central to this activity is the notion of specification, defined thus:

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 43

System Development Activities

Analysis

Require-
ments
specifica-
tion

Foecifica-
tionsvs.
design

Systemsare
part of an
actual use
environ-
ment

TIMe =

TIMe Report

- A specification covers those aspects of amodel that are relevant for its externa rep-
resentation and use. The context part is often sufficient asa specification, but if parts
of the content areimportant it may beincluded in the specification. Specificationsare
associated with the abstractions they belong to.

A requirements specification isadocument whichisnormally produced early in adevel-
opment project and used as a contract for the design work. It will contain specifications

and other items of relevance at that stage. After delivery we are interested in the pro-
vided properties (i.e. specifications) of the system, and are not interested in the historic
document. TIMe unites these two aspects in the single term specification.

Specifications contain the specification parts of Application, Framework and Architec-

ture models (see Figure " Context/content™).

Requirements are requirements to systems.

LS > . Guidelinesfor |dentify the
Systems within the same domain will havein requirements parts that are
common that they handle the samekindsof analysis subject to
phenomena. All systems within the access « Make acon- requirements.
control domain will handle access zones, text diagram Use open
access points, and usersthat want to get access with the sys- aggregationto
to access zones. tem as focus illustrate how
. : . and the sys- entitiesin the
A specific system may in addition have prop- tem environment
erties that are needed because the system will environment relatesand are
have other categories of users, e.g. operators detailed. Only connected
that have other requirements to the system, or show parts of with parts of
an owner that e.g. wants statistics on the traf- the en\(]l ron- the system.
fic. A specific system may also have %e:tteél ta(t; ?rr]g Define the
interfaces to other systemsin the system. interface
environment. behaviour of
» Sketch or out- eachrolein
line the the system
system struc- andin the
ture using environment.
UML.

44 - TIMeat aglance

TIMe version 4.0 © SINTEF Modified: 1999-07-14

= TIMe

TIMe Report

other systems
e.g. database

System Development Activities

log systems

N
controlled system
processes
e.g. the doors Access

Control e @@\
<% | System
users

G -
users
(from the domain)
€.g. persons trying to
enter access zones

(from the
environment)
e.g. operator

Figure 24: System and its environment

When an access control system
isconsidered in its use environ-
ment, then there will both be us-
ers from the domain and users
of the actual system (operator).
The “domain users’ will have
their requirementsto the system
(and interface at the access
points), whilethe operators will

Application specification

have other requirements and
have access to quite other parts
and quite different properties of
the system.

It is also decided that doors are
outside the system, and as such
will be processes that shall be
controlled by the system.

Analysis

When analysing and designing a system within a given domain, the domain modelswill

be of lessuseif the method does provide guidelines on how they contributeto the system
design. In addition to the properties identified as part of domain analysis, there will be
required propertiesthat are specific for this system in its use environment. It is an expe-
rience that interface properties should be treated separately.

TIMe therefore has a system reference model, where these three aspects are treated as

separate issues and contribute differently to the system design, see Figure 25.

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

TIMeat aglance - 45

System Development Activities TI Me 5
Analysis TIMe Report

requirements to inter-
face to users, con-
trolled processes and

other systems l
system

requirements from elements of
use environment domain models

interface { system domain

given given given

object; obj%ctj objecty
/

Figure 25: Contributionsto the different aspects of a system

The domain models contribute to the domain given aspects of the system. These aspects
will be more stable than the interface and system given aspects, and the domain given
classes used for design will have a greater potential than the other classesfor being
(re)used in other systemsin the same domain. That’ s the motivation for this distinction.

It is recommended to use:

« UML with the system represented by a central class and connections represented by
specia relations, or

» SDL with the system represented by a block type with gates (see Figure 26).

Access Zone

-
User AC-System [*® too[?era
v Access Zone
= [poor |
Door
UML gt A g2
<—p| block type Opera
User AC-System toP

v

Door

Figure 26: Context models SDL

The choice depends on how close to UML one desires to be or how formal the context
specification shall be. If SDL ischosen, then really only the connections can be shown,
while UML can a so show the relations (connections are special relations).

46 - TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

- Tl M e System Development Activities
TIMe Report Analysis
Such context model s are matched with corresponding Use Cases (also called Interaction

Scenarios) in MSC, where each connection corresponds to one or more MSC diagrams
(see Figure 1 and Figure 28).

Figure 1. Property model from domain:
MSC User_not_accepted by system

Open figure
One of the Use Cases
MSC User_not_accepted between the domain
User AC-System given User and the

system isthe one

where auser isnot ac-

Code cepted, because the
> codeisnot OK. Dur-

ing system analysisit

<« is decided that this
shall be performed by
——— E——— the AC-system.

Figure 28: System specitic property: Block-
ing Status provided by system and initiated

by Operator
Open figure
MSC ProvidingBlockingStatus From the actual use
environment we
Operator AC-system know that the sys

| | | | temswill have op-

BlockingStatus erators—’ and that
- they will ask for the
blocking status of
: access points. This
< BlockingReport was not part of the
domain model.

Requirements analysis produces a (requirements) specification for the system to be
designed. It may be so that the system has an inherent structure, and that this hasto spec-
ified in order to get the specification right. In that case, the specification includes a
structuring of the system by means of “real aggregation”, and the environment commu-
nicates with the parts of the system (see Figure 29).

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 47

System Development Activities
Analysis

TIMe =

TIMe Report

Figure 29: System Context/Design Outline

Open figure

AC-System

m

k—+ 1> Access

User | 4 may Point

* accept 1
1

<3+~ Central <5

Autho-
rizer

Unit

may use | |, *

m=100

From the Domain Object
Model we get the Access-
Point object. The system
will provide its services at
anumber of AccessPoints,
but validation shall be cen-
tralised, i.e. therewill bea
central unit that takes care

access points are merely
User servers.

Thisisreflected in asys
tem context diagramwhere
the system object contains
a set of AccessPoint ob-
jects and one CentralUnit
object.

of thevalidation, whilethe

When specifications include a structuring like this, the corresponding property models
must be changed correspondingly, so that User does not only interact with AC-system
but with AccessPoint, and Operator not with AC-System but with Central Unit.

TIMe version 4.0 © SINTEF Modified: 1999-07-14

48 - TIMeat aglance

= TIMe

TIMe Report

Application Specificationisa
crucial part of the method. The
following liststhe recommended
activities and guidelines for this
part, some of which have beenil-
lustrated above:

Decide on what parts of the

domainthat shall beinsidethe
system and what partsshall be
in the environment, and what
shall not be considered at al.

Represent the system type as
one entity, and show itsinter-
connections to entity setsin
the environment. Specify con-
straints and variability of the
entity sets.

Make a (passive) object
model representing the enti-
tiesin the environment that
the system family shall know.

System Development Activities

Describe the domain specific
servicesin terms of service
lists, role diagrams and Use
Cases (in MSC). For each of
the active object typesin the
environment, make a context
diagram and describe its
active environment in terms
of association roles. Make a
function list and specify the
corresponding service behav-
iour using rolesand MSC. If
possible or relevant, describe
association role behavioursas
completely as possible.

Consider the system specific
parts. Identify any system
specific services and system
specific objects (active or pas-
sive) that are needed.

Add system specific entities
to the active and passive
environment.

Analysis

System analysis may also consider the interface specific properties and specify corre-
sponding context/content models. When the system specification has included parts of
the system (as with AccessPoint and CentralUnit in Figure 29), then the interface spec-
ification may take that into account. In Figure 30 it has been decided that the interface
of AccessPoint shall be to a panel and to a door, and the corresponding objects of
AccessPoint have been identified.

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

TIMeat aglance - 49

System Development Activities

Analysis

Considering interface as-
pectsin system analysis:

It is decided that the code
shall be entered through a
panel and that the resulting

TIMe =

shall be presented at the
same panel. Correspond-
ingly, the actual controlling
of the door issingled out as
an interface specific part of
AccessPoint.

TIMe Report

response (OK or NotOK)

Figure 30: Introducing PanelServer and Door Server as

part of AccessPoint
Open figure
AccessPoint
, Domangiven ~ |~ — T T T T T T 7] N
I I
| User |-+ Bt UserServer |
I I
\ /
/ﬁteTfac_egK/en_____‘___ T T Ty
l |
Panel |lag—pp Panel Door |« Door
: Server Server :
\ /
N~ —m — e] — — — — — — — — — — — —

Architecture specification

In addition to considering the application specific properties of a system, system analy-
sis may also take requirements on Platform into consideration and specify these.
Platform has to do with non-functional requirements to the implementation, e.g. the
choice of technology, implementation principles, etc.

While the application specification is an abstract description which does not take phys-
ical aspectsinto account, the Implementation is considered as a concrete description. A
central ideain the methodology isto describe abstract systemsin away that can be
understood and validated without knowing how they are implemented.

The concrete description is composed from real hardware and executabl e software. The
concrete system will have an Application part where we find the implementation of the
abstract system, and asupport part containing additional functionality needed to execute
the application. It will often be distributed and have additional support for internal com-
munication, see Figure 31.

50- TIMeat aglance

TIMe version 4.0 © SINTEF Modified: 1999-07-14

% TI Me System Development Activities
TIMe Report Analysis

Figure 31: Concrete system reference model

Open figure

Application SW

| S| D

Infrastructure

D\ Support SW
HW —>

[]e>

Application SW
| S| D
Infrastructure
EK‘ Support SW
HW
[e —

For the access control system, Architecture Specification amountsto specifying e.g. that
plastic cards shall be the means for identification, and that implementation code for the
software parts shall be generated from SDL designs and based on an existing runtime
system.

Framewor k/I nfrastructure specification

Consideration of issues like distribution, systems management, etc., that is behaviour
that has to be part of the system but does not contribute to the services it provides, pro-
duces the Infrastructure specification.

The application Framework is an abstract system which takesinto account concrete sys-
tem issues such as distribution and error handling. It consists of a distributed
Application part, and an Infrastructure part.

TIMe recommends developing arefined and restructured, complete functional specifi-
cation reflecting the concrete system and the implementation dependent requirements,
and turning thisinto a Framework specification, asillustrated in Figure 32.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 51

System Development Activities

Analysis

Figure 32: Application framework reference model

Open figure

' Application

:’ . \:’ A \:’
—] 1 1
Infrastructure |«®» Infrastructure
physical node

(o I o I o)

¢ 000

0
00 00

Infrastructure

<P

Infrastructure

redefinable

configurable

Infra-
structure

4—7

TIMe =

TIMe Report

If the Infrastructure specification can be constructed so that it forms a Framework for
systems with the same Infrastructure, but with varying Application part, then thisis
done. The application specification is changed accordingly. Theideaisthat if a system
can be made as an instance of a Framework, with much of the general properties of the
Framework isolated in the Infrastructure, then the Framework will have a potential for
being reused as adesign.

In Object and Property Models - and the Languagesfor describing them weillustrate the
access control system where the Infrastructure and Platform issues have been

considered.

52 - TIMeat aglance

TIMe version 4.0 © SINTEF Modified: 1999-07-14

= TIMe

TIMe Report

Design

Design
object
modelsin
DL

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities
Design

For the access control system the fact that validation shall be performed by central com-
puter is an infrastructure issue, like the possibility of distribution of validation to the
access points, with additional protocols as an implication.

Table 2: Application, framework and architecture aspectsfor the
access control system

application . framework/ architecture

specification Infrastructure specification
specification

system object, Validation * Plastic cards asthe
possibly con- shall be per- means for

taining formed by identification.
accesspoint central * Code for the soft-
and cen- compuiter. ware parts shall be
tralunit, with Possiblv distri- ated f SDL

y distri gener rom

cont@'(t . bution of designsand based on
'specm.can on validation to existing runtime sys-
including sig- the access- tem for the central
nalslike Code, points, with computer and tai-
OK, NotOK, additional pro- lored run time
and MSCS asa tocolsasan systems for the code
specification implication in the access points.
of use cases.

Inaninitial development theinfrastructure aspect may not be obvious. Frameworks will
often comeasaresult of a(successful) initial development, whichisto beused asabasis
for anew system. If e.g. distribution has been considered and isolated in an infrastruc-
ture part, the next system with the same infrastructure but with a different application
part can reuse this framework.

Thisactivity produces design object models primarily in SDL. Some parts of the design
have to do with the required properties (Application design), another part of the design
has to do with Architecture specific issues (including non-functional propertiesin con-
trast to the functional properties of application design), and athird part combines these
two into a Framework for instantiation of specific systems with the same infrastructure.

Designisacreative process. One thing is that the system design model will bein SDL,
while analysis models may be in UML. Another thing is that design may require a
restructuring, and will certainly add details and precision.

TIMe containsguidelineson how to transform UML modelsinto SDL models, and these
are more or less automatic. It isapoint, however, that they are not quite automatic - if
they were there would be no need for the UML models (or for the SDL models). The

TIMeat aglance - 53

System Development Activities TI Me s

Design

TIMe Report

interesting transformation isto take the system requirements, identify the system objects
and assign attributes and behaviour to these object so that required properties are
fulfilled.

Specifications contain the specification parts of Application, Framework and Architec-
ture models. These are related to the design parts, asindicated in Figure 33.

Figure 33: Specification and design related

Open figure

Application Specification part of models

models

Application Framework
specification models
Framework Architecture
specification models

Architecture
spec

Application
design

Framework
design

Architecture
design

Design part of models

The main design language is SDL, but in cases where the system will be a combination
of SDL components and components created e.g. from an UML model, or using an inter-
face construction tool, the main design may bein UML.

There is some help to get in this main part of design activity. As mentioned above, the
system analysis produces specifications on three levels, and the system design follows
these specification levels:

» Application Design: where the real functionality is designed (p-54)
» Framework Design: from Infrastructure to Framework (p-64)
» Architecture Design: choice of implementation platform (p-63).

Application Design: where thereal functionality is designed

Application Design produces context and content designs (in terms of structure and
behaviour) for the system type and/or for types being used in the system:

54 - TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

iy .o
Tl M e System Development Act|V|t.|es
TIMe Report Design

From
domain
objectsto
design
objects

- Application context, that isacontext model for the type, i.e. adiagram with the type
asasingle entity. It specifies the environment, the interfaces and the knowledge of
the type as well as external typeswhich are used as components. It also specifiesthe
context properties, i.e. services, and describes all objects in the environment.

- Application structure appliesto types that consist of object aggregates, defining the
content as a structure of components.

- Application behaviour appliesto typesthat have abehaviour of their own, e.g. SDL
Processes.

The first purpose of an application design model isto describe the system behaviour at
an abstraction level, where it can be understood and analyzed independently of a partic-
ular implementation. Thisis done in terms of both an object and a property model.

The second purposeisto beafirm foundation for designing an optimum implementation
satisfying both the functional and non-functional requirements.

Application design starts from the application context and the required properties. New
objects may be introduced during design, and these are also subject to the context/con-
tent distinction.

The application content may introduce new component types. In general the component
types and application types are designed in the same way:

» context design;
 content design: thisis either behaviour design or content design.

As mentioned above, some domain objects are candidates for design objects. In Figure
34 itisindicated that AccessPoint may become ablock typein the SDL design.

Example

Domain object

model \

object;

Access Point

<€ Access
Point

> blocktyp(_a
AccessPoint

Figure 34: From domain objectsto design objects

Another source of design objects comes from mirroring the entities in the environment
of the system. Considering the system specific aspects or propertieswill either add new
classes to the set of classes from the domain object model, it will add system specific

propertiesto domain object model classes, or it will make new subclassesto the domain
model classes. Thismay give the application specific objectstwo aspects. domain given

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 55

System Development Activities

Design

Qubsystems
or not, and
when

Inspiration
fromthe
environ-
ment

56 - TIMeat aglance

TIMe =

TIMe Report

and system given. The pure domain model classes can be used in all systemsin the
domain, while the system specific (sub)classes can only be used in systems with prop-
erties specific for this family of systems.

* “Isthis not making things compli- lot to make a class generally usable.

cated? Wewant all classes we make
to be general enough to be used in
other systems anyway, so why not
just get started and make some
classes!”

Says TIMe: “It isacommon misun-
derstanding that all classes are
equally (or apriori) reusable, while
the fact is that many classes defined
for the purpose of a system are
defined within that context and will

The TIMe recommendation is there-
fore that objects (and their classes)
are mainly used for the purpose of
structuring systems, and that classes
in the first place should be defined
with this purpose in mind. So, when
making a domain object model,
include only the obvious general
objects and the obvious general
properties - it is no mistake if the
domain model starts out being
small”.

only work in that context. It takesa

In some casesit isobviousthat the system shall be decomposed into subsystems, or that
objects in the system have a content structure. In that case thisis directly supported by
the SDL block concept. An SDL system simply consists of a number of blocks con-
nected by communication paths, so-called channels, and the blocks may in turn either
contain a new substructure of blocks or sets of processes.

TIMe establishes rules for good subsystem design that are readily supported by SDL .
Subsystems may either come as reflecting an inherent structure of the system, ase.g. the
division into central unit and a number of access points, or they may come from a pure
functional decomposition.

TIMe advocates to start the subsystem decomposition from an inherent structure and
then introduce new subsystemsif it turnsout that required properties cannot be obtained
by assigning behaviour to already identified subsystems.

“Finding” the content objects may in some cases appear as “magic” and may require
some experience from good design for similar systems. However, once the environment
iswell defined, the task is ssimpler. With a dlight adaptation of an old saying: Tell me
who isin your environment and | will tell you who you are (i.e. what your content is).

TIMe version 4.0 © SINTEF Modified: 1999-07-14

iy .o
Tl M e System Development Act|V|t.|es
TIMe Report Design

In addition to guidelines like this, the complete TIMe contains rules for good designin
SDL (e.g. when to use concurrent processes, purpose of block substructuring, redesign-
ing by generalisation, etc.).
Try this sequence of activitiesto ensure that all roles supposed to be played by the
system are provided by some objectsin the system:

» Mirror the environment behaviour: 1dentify the objects in the environment, and describe the
corresponding types with association roles. For each association role directly interacting with an envi-
ronment object through a static one-to-one connection, assign an actor object in the system.

» Défine the corresponding object types and their association roles.

» If possible, assign the association roles remaining to be bound to objects already defined, otherwise intro-
duce new objects.

* Introduce switched communication where n-to-m communication is needed.

* Continue until all roles have been bound to actors. This may be an iterative process by
which new actor objects are found.

» Duringthese activities, make M SCsdetailing theinternal interactions (between
the newly design objects) and check that the structure will give effective behav-
iour definitions.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 57

System Development Activities

Design

From the system analysiswe get
the specification that the system
shall be structured into a set of

AccessPoints and a Central Unit.

We aso know that AccessPoint

TIMe =

TIMe Report

shall both handle the panel, the
door and communication with
the CentralUnit (that is three

processes), so we decide to have

AccessPoint as blocks, because
blocks may contain processes.

Figure 35: Application design in SDL

Open figure

SYSTEM AccessControl

1(1)

SIGNAL

eject-card, lock, unlock
input-card, isOpen, isClosed
display,

keys;

SIGNAL Code(integer,integer);
SIGNAL OK,NOK,ERR ;

SIGNALLIST validity = OK, NO

SIGNALLIST outp = EjectCard,
SIGNALLIST inp = InputCard, keys ;

/* Signal definitions for AccessPoint communication */

/* AccessPoint
/* ENV

/* Display

/* ENV

/* AccessPoint
/* CentralUnit

K, ERR;
display;

TO ENV #/

TO AccessPoint*/
TO ENV #/

TO Keyboard */
TO CentralUnit */
TO AccessPoint */

AccessPoint

CE

—a—»—|, AP(100):
[(outp)] [(inp)] AcccdassPoim

[lock,unlock]

[(validity)]
C—a4——p CentralUnit

C

[isOpen,isClosed]

[Code]

58- TIMeat aglance

TIMe version 4.0 © SINTEF Modified: 1999-07-14

.

TIMe

TIMe Report

Object
(behav-

System Development Activities
Design

If system content decomposition in terms of subsystemsisnot obvious, TIMe advocates
(~ todesign the object typesfirst. That isidentify the attributes and behaviour that each
iour) design - ghject shall have in order to fulfill the required properties.

At this point Sesam Sesam had con-
sulted some UML experts. They had al-
ready made a domain object model (in
UML) and used thisasabasisfor afirst
system object model. They werenow in
the position to do what really isthe core
of the development: to specify the be-
haviour of the objects so that they to-
gether provide the required properties.
They had parts of the propertiesdefined
by use cases and now they wanted to
specify the behaviour of the objects.

An obvious choice was to generate
skeleton code from the UML object
model and then provide the functional-
ity in C++ or Java, but problems were
reported to the TIMe consultant:

» “Some of these objects have intri-
cate behaviour and alot of
interaction, so we wanted to specify

them as state machines where the
transitions are triggered by incom-
ing signals’

“1 guess you have used the State-
charts notation in UML” - saysthe
TIMe consultant.

“Yes, but we aso wanted code gen-
eration from the behaviour
specification, and that is not sup-
ported - the object model and the
behaviour model are not integrated” .

“Ah” - saysthe TIMe consultant -
“then you are really looking for
SDL : most of the UML object model
can be represented in SDL (except
genera associations, but aggrega-
tion and inheritance are supported).
Expressing the behaviour specified
in terms of Extended Finite State
Machinesis an integrated part of
SDL.”

For design in SDL, object behaviour design amounts to identifying the required pro-

cesses and specifying these by means of variables, procedures and behaviour in terms of
states and transitions. The context design of the class|eadsto gate definitionsin the cor-
responding SDL type, while the property models areinput to the combined behaviour of

the process.

In the object design, property models can be made more detailed and precise.

TIMe contains guidelines for how to come from a set of property modelsin terms of
M SC to the corresponding processtypein SDL. A short description of these guidelines
are found in From M SC Property Modelsto SDL Object Models.

Inthefirst round it isrecommended to ignore theinterface specific behaviour. We know
that AccessPoint will have a part that handles the user without considering how the card
code and the PIN are entered via the panel (UserServer in fig. 30 Introducing Pan-
el Server and DoorServer as part of AccessPoint (p-50)). From the M SCs between

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

TIMeat aglance - 59

System Development Activities
Design

TIMe =

TIMe Report

system objects we know that this part of AccessPoint shall also handle the communica-
tion with the CentralUnit, so we rename “ UserServer” to the more neutral “ Controller”,

see Figure 36.
Figure36: Behaviour of Controller accordingto User Accepted & User Not
Accepted
Open figure

PROCESS TYPE Controller 1(1)

l
DCL cur_panel PId ; /* Current panel whose Code will be validated */
DCL cid, PIN integer ; /* Temporary variables for the data attributes of '‘Code’ */

unlockDoor
Idle Validation
|
Code(cid,PIN) OK NOK
/* from /* from
/* from Panel */ Central */ Central */

cur_panel o o
u =
] TO cur_panel
SENDER TOcupeng -
TO
_ L unlockDoor
Code(cid,PIN EntraIUnit

i

d d,closed lidi
5 ¢ [Code] 5 ¢ [opened,closed] U¢ [(validity)]
[(validity)] [open,close] [Code]

Access points shall handle the use cas-
eswhere a user enters a code and gets
either Ok or NotOK. The Controller
object as part of AccessPoint shall pro-
videtherequired properties. Thisleads
to the processtype above. Itismadein-
dependently of how Code is obtained
from the user and how OK and NotOK
are presented (interface specific). It

60- TIMeat aglance

has been decided that the validation
shall be done by the central unit. If we
did not want to takethisdecision at this
point, we could have made atransition
that smply (informally) provided the
validation, and then later changed this
to acommunication with the central
unit.

TIMe version 4.0 © SINTEF Modified: 1999-07-14

System Development Activities
Design

= TIMe

TIMe Report

This process type fitsinto a design of the AccessControl object asablock (defined by a
block type) asin Figure 37.

Figure 37: Block type AccessPoint with processes

Open figure

BLOCK TYPE AccessPoint 1(1)

SIGNAL opened,closed ; /* Door -> Controller */g
SIGNAL open, close ; /* Controller -> Door */

[* signallists (inp), (out) and (validity) are defined in
enclosing block, as is the signal 'Code' */

Controller

[(inp)] [(inp)] [unlock, | [unlock,
e CE lock] Iockc]

- > > Panel -l -

[Out)] | [(outp)] [isOpen, |[isOpen,

p1 [(validity)] isClosed |isClosed]

[code] [opened, [open,

o P Dlgdosd D oo (valicity)]

Controller U [(validity)] CU [Code] e [Co d:]

Designing Should all required properties lead to attributes and behaviour of the domain given
non- objects? The answer is no!

domain

given The Sesam Sesam group had been suc- domain object classes. If you have
objects cessful in starting out with domain ob- an UML domain object model and

jectsin order to get at the application

generate code from this, your extra
objects, but ...

classesor your specialisationscan be
done either in UML or directly in

* “Thisisall very nice, but how dowe
introduce the new system aspects?’

» Says TIMe: “As mentioned before
therearemainly twowaysout: either
introduce new system objects, or
introduce specialisations of the

C++ or Java. If you have turned to
SDL, then you have part of your
domain object model represented as
typesin SDL, and you make new
types or subtypes’

The main purpose of the distinction between domain and system given aspectsis that
special services should not be associated with domain objects, asthese will probably not
be of interest to other systemsin the domain. Besides working as inspirations for appli-
cation objects, domain object classesare candidatesfor re-usein different systemsinthe
same domain.

Which objects should then provide aproperty that is not obviously covered by adomain
given object?

The answer is:
* either a separate object,

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

TIMeat aglance - 61

System Development Activities Tl Me 5

Design

Evolution
of domain
models,
including
design
issues

TIMe Report

* or an object of a subclass of the corresponding domain object class.

Thelast alternative requiresthat the domain object classisrepresented al'so inthedesign
language, and it is recommended to document that the subclassis system given and not
domain given.

“What about the introduction of the objects or specialisations of thedomain
interface specific aspects? Does that object classes?”’
follow the same pattern: either specia

If it isan interface property, and if the property has to do with the actual appearance or
implementation of the interface, then it should be provided by a separate interface
object, like the Panel processin Figure 37. Low-level interface (protocols) or the win-
dow part of a user interface should be isolated in special objects, while interface given
behaviour at the “application” level can be provided by specialisations of domain
classes. The main thing is to isolate the objects that may change with change of under-
lying technology. The answer can also be given by how the interface is to be provided
(existing protocol implementations, user interface toolkits).

If it isasystem given property and if it requires e.g. a separate computation or interac-
tion with other non-domain given objects, then it should be provided by a separate
system object. An example of thisisthe operator handling object. It should be defined
as a separate object, but its class may e.g. be a specialization of aclass that exists, e.g.
AccessPoint.

It may be tempting to take each use case and make a kind of “control” object that takes
care of this use case - then it will at least be easy to trace it when considering new
requirements related to the use case. Most often, however, the instancesin the MSC dia-
grams for the use cases only represent Roles or partial behaviour of somerole. The
chalenge in design is rather to distribute the required behaviour to objects, and objects
will often play severa roles.

The distinction between domain, system and interface given aspects may change over
time. The domain may be narrowed to include some of the other aspects, and the classes
of the domain models may include more and more of the properties that appear to be
common for many systems.

62- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

iy .o
Tl M e System Development Act|V|t.|es
TIMe Report Design

Locally
defined
types or
typesin
packages?

=

I Domain object Domain object
-
e model \' / model
system)
- Access < block type
\ Point g g AccessPoint

Example g gt block type
. g AccessPoint

Figure 38: Evolution of domain object model

Where shall the application given design types be defined? A priori they are defined as
part of a system model.

Types may be defined in SDL packages and used by the system model. Such packages
may either be system specific or more general.

Typesin thelatter kind of package will have to be more general than in thefirst kind of
package, as they shall be usable in more than one system. As a starting point, design
types are defined as part of the system and shall at least fulfil their “mission” there. In
addition, it is recommended that types are turned into general types that can be used in
other systems.

TIMe provides guidelines on how to achieve generality:

* by generalization, that is by defining supertypes with virtual properties for redefini-
tion in subtypes, and

» by parameterization, that istypeswith context parameters, so that types can be fully
defined without being in their actual contexts.

Even when defining a general type it is advocated to specify possible requirements on
the contextsin which the type can be used. These come from the context modelsand are
readily expressed by gate constraintsin SDL types.

Architecture Design: choice of implementation platform

Architecture Design designs an implementation architecture that will behave as defined
in the application object model and that satisfies the non-functional properties, taking
the actual platform in terms of hardware and support software into account. It will also
define a processfor (automatic) generation of application implementation code and for
configuration and building of system instances.

The purpose of architecture design isto answer how the system is going to be realised.
Thisis expressed using Architecture descriptions that show:

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 63

System Development Activities Tl Me 5
Design TIMe Report

 theoveral architecture of hardware and software;
* how Frameworks and Applications are mapped to the Architecture.

Whilethe Application and the Framework hasfocus on functional properties and behav-
iour, the Architecture has focus on non-functional properties and physical structures.
The purposeisto give aunified overview over the implementation and to document the
major implementation design decisions.

Architecture design determinescritical architectural issuessuch asphysical distribution,
global addressing schemes and fault handling. Some of these may subsequently be
reflected in the Framework model in order to describe the complete system behaviour.

The Architecture consists of two main parts:

» The Patform, which consists of the hardware with support software (such as the
operating system, a DBM S and middleware) and the Infrastructure.

» The Application implementation.

Associated with the architecture it is recommended to define a process for (automatic)
generation of code and for configuration and building of system instances.

Architecture design is only performed when the implementation mapping is undefined
or needs to be changed. This occurs during the initial development of a system family
and during maintenance when changes in the platform are made.

During normal application evolution, the Architecture will stay the same, and system
evolution can take place mainly at the Application level.

Hardware and software architectures are defined to a level of detail from which imple-
mentation iswell defined. The architecture shall separate between support mechanisms,
such as an operating systems, and applications.

Inaninitial development, Architecture design will come before Framework/Infrastruc-
ture design. Architecture design involves the choice of implementation platform, what
should be done in software and what in hardware, etc. The design may have to be
adjusted according to thischoice. SDL toolsmay e.g. impose restrictionsin order to sup-
port code generation.

TIMe has a 5-step procedure for making architecture design. Thisis not applied to the
examplein this overview and is therefore not covered here.

Framework Design: from Infrastructure to Framework

Framework Design defines an abstract and generic framework object model and a
method for instantiating the Framework with Applications. In this activity the imple-
mentation dependent functionality is taken into account, e.g. distribution support, error
handling and configuration. It develops a layered approach which separates the Appli-
cation and the implementation dependent Infrastructure. The infrastructure part will be
nearly complete, and the rules for mapping Applications to the Framework will be well
defined.

64 - TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

iy .o
Tl M e System Development Act|V|t.|es
TIMe Report Design

Making infrastructure

Theinfrastructure part of a system contains additional behaviour needed to fully under-
stand what the system does (i.e. the complete system behaviour). Here we find objects
and parts of objects that support distribution, system administration and other facilities
not directly related to user services. Whenever practical the Application and the Infra-
structure should be put together in a Framework that serves to simplify the definition of
new systems. Thisimplies that the objects that are mainly application specific objects
will get some infrastructure specific elementsin order to work on the given
Infrastructure.

When taking infrastructure aspects
into consideration, the system as application specific
designed froman applicationpointof [~~~ |}—
view may be redesigned. Restructur- . L

. . infrastructure specific
ing does not mean that everything has

to be redefined. A majority of the
processes from the first application Figure 39: Application and infrastructure
design may be left unchanged. As specific parts of systemsinto a framewor k
they are defined as stand alone types,

it isasimple matter to put them into anew structural context together with some new
Processes.

In general it will be an advantage if the application design has been done by means of
typesthat are asgeneral aspossible. General types can be used in more than one context,
and when redesigning, the context of the “application” types may change slightly.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 65

System Development Activities Tl Me 5
Design TIMe Report

Figure 40: Redesigned Access Control Inthe access control

system V3 system the channels
between the Access-
Open figure Points and the Cen-
tralUnit are
SYSTEM AccessControl candidates for distri-
bution. Wetherefore
Cluster Entry decideto let these
channels bethe ones
that cover distances.
e clusters(100):
- GEC'“Ster Therewill beat least
one central comput-
GC er and from zero up
A to 100 local comput-
C ers. In this architec-
Y ture we shall
_ op implement the Ac-
CentralUnit |__ > cessPoint and Cen-
tralUnit processesin

software running on
the computers. We structure the system accordingly: ablock set
Cluster for the part of the application running on the local comput-
ers, and the CentralUnit for the part running on the central comput-
er

Note that this distributed architecture is different in structure from
the application design, and that some communi cation protocolswill
be needed to support the communication between the local and cen-
tral hardware.

With the redesigned system, the application types are possibly modified in order to fit
into the new structure. If this has been done, adivision of the system into application
and infrastructure parts has been obtained, and for the next systems (with the sameinfra-
structure) it is amatter of exchanging the application types with either improved
versions or new application types with e.g. new functionality.

66 - TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

= TIMe

TIMe Report

Figure 41: Cluster with LocalUnitsand
Cluster Units

Open figure

BLOCK TYPE Cluster

AccessPoint Protocol

LocaUnit ClusterUnit

localunits
€ (10):LocalUnit
PR

GE A

PR
clustercontrol:
ClusterUnit

e
CE

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

System Development Activities

In this solution the vali-
dation database will be
distributed. There will
be a copy of the central
Validation process (and
its database) in each
cluster. Thismeansthat
the CentralUnit must
handle updatesin adis-
tributed database. This
introduces a new prob-
lem to solvein thefunc-
tional design, but the
Access Points and the
Validation processesin
each cluster may (hope-
fully) work just as be-
fore.

appli- infra-
cation struc-
specif- ture
ic parts | specif-
ic parts

access proto-
point col

valida- cluster
tion unit

local
unit

TIMeat aglance - 67

System Development Activities TI Me 5
Design TIMe Report

Figure 42: AccessPoint used in both

L ocalUnit and Cluster Unit We see that AccessPoint will be
used both in the LocalUnits as
Open figure well asin the ClusterUnits. Those
in the ClusterUnits will have di-
BLOCKTYPE LocalUnit rect, local accessto the Validation
process, whereas those in the Lo-
calUnits must communicate via
o lep Ll |« o | P1:Protocol physical links and protocols (rep-
AccessPoint [~ resented by the block P1 of type
I Protocol). The signasto and from
the AccessPoint blockswill bethe
il same.
d PR
PR
y'y applica- infrastruc-
BLOCKTYPE C|usterUnit tion Specif- ture specif-
ic parts ic parts
L2: v
e | AccessPoint access protocol
P2:Protocol point _
A cluster unit
/ validation
d local unit
Validation |«—{ P3:Protocol
A
v
CE

Making frameworks

Having identified an infrastructure that seems to be common for many systems with
almost the same application properties, TIMe advocates the re-designing of the system
into aframework. TIMe gives guidelines on how frameworks can be defined in SDL.
The following is a short introduction to how it is done.

As mentioned above, ausua definition of aframework isthe following: “ In object ori-
ented systems, a set of classes that embodies an abstract design for solutionsto a
number of related problems.”

TIMe putsalittle moreinto frameworks than the definition above, and onereason isthat
SDL can specify the static structure of systems and not just a set of types.

A framework is aclass/family of systems, with predefined structure so that a specific
system only hasto provide the specific “ contents’ of part of this structure. Frameworks
often come about because an abstract (application specific) system description hasto be
supplemented by a large infrastructure part in order to be executable on a given plat-
form. Instead of making the infrastructure part again for the next system with the same
infrastructure on the same platform, aframework that embodies both the application and
the infrastructure part is defined. In aframework the infrastructure is stable, while the
application part may vary from system to system.

68 - TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

= TIMe

TIMe Report

System Development Activities

Design

In the infrastructure design (see Making infrastructure (p-65)) the infrastructure part
consists of the restructuring of the system into cluster units and local unit and the intro-
duction of the protocol units. The application specific part is represented by the block

type AccessPoint.

Figure 43: Access Control System type as a framework

Open figure

SYSTEM TYPE AccessControl

Vi RTUA'._ Cluster
AccessPoint
clusters(100):
CE Cluster CD
< > GE GD < >
GC
A
C
N
OP
CentralUnit < >

The system description of Figure 40 isturned into aframework ssimply by defining it as
a system type and defining the application specific types as virtual types (in this case
AccessPoint), see Figure 43.

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

TIMeat aglance - 69

System Development Activities TI Me 5

Design TIMe Report

The Cluster block isamost as before: it uses the virtual block type AccessPoint (but it
does not contain its definition), and it embodies the infrastructure parts needed for dis-
tribution (ClusterUnit, LocalUnit and Protocol), see Figure 44.

Figure 44: Block type Cluster aspart of framework for Access Control

Systems
Open figure
BLOCK TYPE Cluster BLOCK TYPE LocalUnit
Protocol
o Lep LT |« | P1:Protocol
AccessPoint "+
LocalUnit ClusterUnit
A
. \4
localunits d
€ (10):LocalUnit d PR
PR PR
1 BLOCK TYPE ClusterUnit
GD
GE Y L2: v
e > :
AccessPoint
PR P2:Protocol
clustercontrol: 4
e ClusterUnit d q
CE
N . .
17 Validation «—»| P3:Protocol
GC 7Y
A4

An actual system based upon aframework definition is described by defining asubtype
of the framework system type, and redefining the virtual, application specific types, see
Figure 45. The rulesfor redefinitions of virtual typesin SDL ensures that the redefined
AccessPoint will have the same interface as specified in the virtual definition (as a con-
straint) and thereby assumed by the rest of the system type.

Figure 45: An actual system based upon a
framework

Open figure

SYSTEM TY PE actual AccessCon-
trol INHERITS AccessControl

REDEFINED BLOCK TYPE AccessPoint

70- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

% o
TIMe System Development Act|V|t.|es
TIMe Report Implementation

I mplementation

Concrete
system

What to do

I mplementations are detailed and precise descriptions of the hardware and the software
that a concrete system is made of. They define the physical construction of systemsin a
family. The software part will be expressed in programming languages such as Java,
C++ or Pascal, while the hardware part will be expressed in a mixture of hardware
description languages such as circuit diagrams, cabinet layout diagrams and VHDL.
Software playsadual role. Firstly, asadescription to be read and understood outside the
system, and secondly as an exact prescription of behaviour to be interpreted inside the
system.

Concrete systems consist of

» The Application and the Framework software. State-of-the-art tools allow this soft-
ware to be automatically derived.

» Specia Application and Framework hardware. Thiswill be special hardware
designed to perform part of the Application or the Framework.

* The Platform, which consists of:

- the support software which normally is a layered structure containing operating
systems, middleware for distribution support, SDL runtime systems, DBMS and
interface support;

- the genera hardware which normally is an network of computers.

For every new system development, the platform is an important design issue, as it
determinesimportant propertiessuch ascost, reliability and flexibility. It alsoinfluences
the way that Applications and Frameworks are implemented. The code which is gener-
ated for the Application and the Framework must be adapted somehow to the Platform.
Here the Vendors of code generators use two different strategies. One isto adapt the
code generator so the generated codefitsthe platform. Another isto adapt the generated
codeto fit different platforms by means of interface modules and/or macros.

Once the platform and the code generation strategy is defined, it ispossible to rely on
automatic code generation for Application and Framework evolution for those parts
where SDL is used.

| nstantiation

The main thing in this activity isto configure and to build system instances. Configura-
tion can be applied both to the Application, the Framework, the Architecture, and the
Implementation levels. Ideally we should perform configuration at the level where it
belongs: functionality at the Application and/or Framework levels, and implementation
at the Architecture and/or Implementation levels.

It is possible to perform some configuration at the Application and Framework levels
using SDL, but due to limitations in the language, thisis restricted.

The common practice in most companies today is therefore to do configuration on the
implementation level using configuration filesand toolslike Make. (An aternativeisto
use special configuration languages.)

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 71

System Development Activities Tl Me 5
Instantiation TIMe Report

We recommend that a method for configuration and building of system instancesis
defined as part of the Architecture design work.

O]

72- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. Tl M e Object and Property Models- and the Languagesfor describingthem

Object and Property Models
- and the Languages for describing them

K

Systemsin the scope of TIMe are characterised by consisting of concurrently executing
objects that communicate by sending signals and whose behaviour is best described by
states and transitions (reactive systems).

These systems tend to become large and complex - therefore it is not sufficient to
describe the objects - the system also has to be structured in some way. |mportant prop-
erties are often described by use cases and by interactions between objects of the system.

UML [24], OMT [32] and many other methods use object diagrams and informal
sketches in the specification and design of structure and a Statecharts-like notation for
the specification of behaviour. TIMe uses one language for both: SDL.

SDL isalanguage recommended by ITU [11] for specifying structure and behaviour of
systems that are reactive, concurrent, real-time, distributed and heterogeneous (not just
telecommunication systems).

MSC is a notation recommended by ITU [18] for describing interaction scenarios.

Object Modelling

What is
object
modelling

TIMe recognizes that UML and SDL have slightly different approaches to object mod-
eling, that these differences in some cases are beneficial (UML provides e.g. concepts
for associations, while SDL does not) and that they in other cases may cause problems.
Instead of aclear cut between object modeling in UML and SDL, TIMe definesits
underlying approach to object orientation and provides guidelines on how to use both
UML and SDL to support this.

This section will give an short introduction to the elements of this underlying approach
to object orientation, and then introduce both UML and SDL, describing how they
match this approach.

The approach followed in this method is that an object model isregarded as a physical
model, simulating the behaviour of either areal or imaginary part of theworld. Themain
property of physical modeling isthat it isbased upon a conception and understanding of
the application domain in terms of phenomena and concepts, and that physical models
will have elements which directly reflect these phenomena and concepts. The physical
model will consist of

- objects, that represent the phenomena, and
- classesthat represent concepts.

Objects are characterised by variable attributes (data attributes), procedures (potential
behaviour patterns) and behaviour. Objects in this approach may execute their behav-
iour concurrently with other objects. This kind of object is sometimes called “active
objects’ in contrast to “passive (data) objects’.

Associated with objects and classes are a number of structure and abstraction
mechanisms:

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 73

Object and Property M odels - and the L anguagesfor describing them Tl M e .
Object Modelling TIMe Report

class
library

Domain
and design

object
models

classes

attributes

* Identification of objects and the classification of these into classes.
» Part/whole aggregation, that is objects as part of other objects.

» Relation composition, that isan object hasrelationsto other objectsinstead of having
them as parts.

» Specialization of classes. Classification relates all objects with the same set of prop-
ertiesinto aclass. Specialization isamechanism for the structuring of sets of classes
with similar propertiesinto general and specialized classes.

» Localization of definitions. Some objects and classes are only meaningful within the
context of a specific object or class.

In addition, object oriented languages have support for some kind of library concept,
enabling sets of related classes to be used in many different applications.

In order to bridge the gap

between domain object mod-

eling and design object Object Model
modeling, TIMe provides
guidelines for object model - Design Object Model
ing in general, and
specialized guidelines for
analysis and design.

Domain Object Model

UML for Object Modelling

TIMe uses UML for describing object modelsin case the formality of SDL is not
required (or desired). The full TIMe book contains atutorial on UML; the following is
just an overview, covering the most important elements.

UML object models consist of aset of classes. A classisdefined by aclassdiagram with
definition of attributes and operations.

In Figure 19 three classes are defined with attributes, and no operations.

Figure 46: Attribute specification

Open figure
User Access Zone Access Point
Name: string Name: string Name: string
Number: Integer Level: Integer Number: Integer
Level: Integer Access: key type

74- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. Tl M e Object and Property Models- and the Languagesfor describingthem

Object Modelling

TIMe Report
Relations Classes may berelated, as e.g. in the domain object model in fig. 18 The access control
andcom- domain (p-39). AccessPoint and User are connected in order to specify that objects of
munication these classes communicate.
connections

The endpoints of the relations may have cardinalities.
specializa- Classes may inherit properties from a superclass, asin Figure 48, and thereby define
tion more specialized classes.

Figure 47: The access control domain

Open figure
*

AccessZone
1 | 4
W bounded by may enter
1% { mag/ erl]lter

- « through ~ 12\1
AccessPoint User

Figure 48: Possible classification of Access Points according to logging and blocking

part/whole
-real
aggrega-
tion

functionality

LoggingAccessPoint
AccessPoint %

L BlockingAccessPoint

Open figure

Although UML supports multiple inheritance, TIMe advocates the use of single inher-
itance. One reason is that thisis by far the best understood concept - another reason is
that SDL only supports single inheritance.

The fact that an object contains other objectsisin UML specified by an aggregation
association.

In order to really specify that the objects are part of the containing object and that rela-
tionsto these part objects are only meaningful when contained in this object, the SOON
notation [1] can be used, see Figure 49. It is here specified that each AccessPoint con-
sists of three objects (of classes Panel, Door and Controller) and that the environment

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 75

Object and Property M odels - and the L anguagesfor describing them Tl M e .

Object Modelling TIMe Report

communicates with some of these part objects. In UML the User in the environment
would have associations to the class Panel in general, while what we want to expressis
that they only have associations with Panels as part of AccessPoints.

Figure 49: Environment entitiesinteract with partsof the system

Open figure

AccessPoint

[Card code]
<display messages>|p. - . [Code] Central
<key strokes> (Con- [OK,NOK]
troller)
I D:(Door) fa——mt
—

The corresponding can be expressed in UML using the Composite relation, preferably
using the nested graphical alternative, see Figure 50.

Figure 50: Composite aggregation in UML

Open figure
AccessPoint
1 1
User Panel .
APC: Central-
1 Unit
Door Controller]

Localiza- Classes defined locally to classesis not supported by UML. If thisisimportant to
tion express, then it may either be expressinformally or it may be specified in SDL.

76- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

= TIMe

TIMe Report

Object and Property Models- and the Languagesfor describingthem
Object Modelling

SDL for Sructure and Object Behaviour

system An SDL system consist of anumber of blocks, connected by channels. Possible commu-
nication by means of signalsisindicated on the channels.

Figure 51: Application design in SDL

block
type

channel

block set

Open figure

system AccessControl

SIGNALLIST validity = OK, NOK, ERR ;
SIGNALLIST outp = EjectCard, display;
SIGNALLIST inp = InputCard, keys ;

[* Signal definitions for AccessPoint communication */

SIGNAL Code(integer,integer); /* AccessPoint
SIGNAL OK,NOK,ERR ; /* CentralUnit

1(1)

SIGNAL

eject-card, lock, unlock I* AccessPoint TO ENV */
input-card, isOpen, isClosed /* ENV TO AccessPoint*/
display, I* Display TO ENV */

keys; I* ENV TO Keyboard */

TO CentralUnit */
TO AccessPoint */

AccessPoint

CE

—t——| . AP(100): [(validity)]
[(outp)] [(inp)] ACCgSsPoint

[isOpen,isClosed]

[lock,unlock]

[Code]
—aq——p——| CentralUnit

C

according to block type

block

The system diagram in Figure 35 defines a system with one block CentralUnit and a set
of 100 blocks of block type AccessPoint.

block A block may either be further structured into blocks, or it may contain a number of pro-
cesses. A block type defines a category of blocks with the same properties. The block
type diagram in Figure 52 defines the AccessPoint referenced in the system diagram.

Each AccessPoint block will consist of three processes. Panel, Door and apc (access
point controller) of process type Controller. The fact that the process type controller is
defined to be virtual implies that it may be redefined in subtypes of AccessPoint.

The e and C on the outside of the frame are gates, that is connection points for channels
- they are used in the system diagram above.

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

TIMeat aglance - 77

Object and Property M odels - and the L anguagesfor describing them Tl M e .

Object Modelling

“class”

communi-
cation
connections

process:
objectswith
behaviour

attributes

TIMe Report

Theblock typein SDL correspondsto aclassin UML. Theinstances of ablock typeare
objects that contain other objects (blocks or processes).
process type signal route single process (set)

Figure 52: Block type AccessPoint with virtual Controller processtype

Open figure

block type AccessPoint 1(1)

SIGNAL opened,closed ; /* Door ->Controller */I>>
SIGNAL open, close ; /* Controller -> Door */

/* signallists (inp), (out) and (validity) defined in

enclosing block. This holds also for signal ‘Code’ */

virtual
Controller

- - [unlock, | [unlock,
o [nD)]| g [0P] ———— ock] | Jock]
- > = Panel - p———

[isOpen, |[isOpen,
isClosed] |isClosed]

[eutp)] | [(outp)]

[(validity)]
[code] [opened

closed]

P1
[open,

close] [(validity)]

P

apc:

U - ol Y W
process set according to type Controller gate

The processes of each AccessPoint block are connected by signal routes, and the signals
on these indicate the possible communication between the processes. The signals used
between the processes of a block can be defined locally to the block.

Processes execute concurrently, communicate by means of signal exchange (or remote
procedure calls), and have the behaviour represented by an Extended Finite State
Machine. The extensions are that processes may have variables and actions as part of
transitions.

The process type Controller in Figure 52 is defined by the process type diagram in Fig-
ure 54. It defines the behaviour of Controller process by means of states and transitions.

The process type also defines the variabl e attributes of Controller processes: cur_panel
of type Pld (denoting a Panel process instance) and two integer attributes cid and PIN.

78- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. Tl M e Object and Property Models- and the L anguagesfor describingthem

_ procedure procedure
variables state Input output cal reference

Figure 53: Virtual processtype Controller

Open figure

virtpfal process type Controller 1(2)
|

dcl cur_panel PId ; /* current pariel whose Code will be validated/*/

dcl cid, PIN integer ; /* temporafy variables for the data attributes of 'Code' */

unlockDoor J
Idle Validation

|
virtual OK virtual NOK
[* from [* from
/* from Panel */, C’entral */) ﬁentral */

| OK \ NOK
cur_panel .= | to cur_panel
sender J to cur_pane;) P

—— ——

Code(cid,PINp— —| to unlockDoor
i Central

Code(cid,PIN)

i [Code] 1 [opened,closed] 1 [(validity)]
D U
[(valldlty)] [open,close] [Code]
specializa- A type may be defined as a subtype of another type (the supertype), thereby inheriting
tion all the properties defined for the supertype and possibly redefining the virtuals of the
supertype.

The subtype hierarchy whichis specifiedin UML in Figure 48 will in the corresponding
SDL design be represented by two block typesinheriting the block type AccessPoint. In
Figure 54 thisisillustrated for BlockingA ccessPoint.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 79

Object and Property M odels - and the L anguagesfor describing them Tl M e .

Object Modelling TIMe Report

additional signals
on inherited gate

Figure 54: Block type BlockingAccessPoint as a subtype of

AccessPoint
Open figure
block type BlockingA ccessPoint 1(1)

inherits AccessPoint
C

redefined <E_ _t;I_ -
Controller [Enable,
Disable]

The redefined process type Controller inherits the states and transitions of the virtual
Controller from AccessPoint, and it adds states and transitions, as shown in Figure 55.

Figure 55: Redefined process type with added states and
transitions

Open figure

redefined process type 1(1)
<<block type BlockingAccessPoint>> Controller
inherits <<block type AccessPoint>> Controller

added

state
BlockDoor
added
input for
|
Disable% Enable / * / save

al
other
BlockDoor sig-
nals
(blocked) Idle

A [Disable,Enable]

U !
v

80- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. Tl M e Object and Property Models- and the Languagesfor describingthem

When the redefined Controller gets a Disable signal (in al states) it will enter the state
Blocked, whereit will only accept Enable, whileall other signalswill be saved (for con-
sideration in other states).

package: Inaddition to the structuring of systemsinto blocks of blocks or processes, SDL speci-
the SDL fications can be organised in packages. A package is a collection of type definitions.

library ' . L . .
concept In Figure 56 the signal definitions for the access control domain have been collected in

apackage, and in Figure 57 they are used by a system diagram.

Figure 56: Package diagram SignalLib
Open figure

package diagram

package SignallLib signal definitions

/* Signal definitions for AccessPoint-communication */

signal

eject-card, lock, unlock I* AccessPoint to ENV */
input-card, isOpen, isClosed /* ENV to AccessPoint*/
display, * Display to ENV */

keys; /* ENV to Keyboard */
signal Code(integer,integer); /* AccessPoint to CentralUnit */
signal OK,NOK,ERR ; /* CentralUnit to AccessPoint */
signallist validity = OK, NOK, ERR ; ﬁg:sal list defini-

signallist outp = EjectCard, display;
signallist inp = InputCard, keys ;

[* Signal definitions for BlockingAccessPoint communication */ g

signal)))
Disable, /* CentralUnitto BlockingAccessPoint */
Enable : /* CentralUnitto BlockingAccessPoint */

/* Signal definitions within Acces%‘*/\ [~
signal opened,closed ; /* Door to Controller */ signal definitions

signal open, close ; /* C8ntrolier to Door

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 81

Object and Property M odels - and the L anguagesfor describing them Tl M e .

Object Modelling

TIMe Report
Figure 57: System using a package of type definition
Open figure
package reference clause
F I
use SignalLib ‘
system AccessControl 1(1)
AccessPoint
CE
-« p [(validity)] [Code]
_ € AP(100): Cl—a———®—— CentralUnit
[outp)] (P | AccessPoint C
d
[isOpen,isClosed]
[lock,unlock]

Guidelines on Object Modeling

Guidelines Domain Object Modeling isaspecial kind of Object Modeling. In addition to the general
for Domain - guidelines for Object Modeling found in TIMe, the following special guidelines apply:

Object
Modeling

» Object classes with attributes, relations and connections

If attributes are not known, just introduce the class. Include any relation or commu-
nication link that may be important - in the design activity these will be refined and
detailed (or thrown away). Do not use too much time on signals or communication
links, unless they are stated in the Domain Statement.

Communication connections between classes indicate that there will be interaction
property models between instances of these. For each of the communication connec-
tions check if thisisimportant enough to call for interaction property models.

Relations

Do not be afraid to use illustrative relations, but be aware that they may have to be
“implemented” during design, while constructive relations may be implemented
automatically through a data base part of the system.

Attributes
If the type of an attribute is not known, simply introduce the attribute without any
type, or introduce the attribute type asaclass - thiswill then be defined during design.

Aggregation
Use only real aggregation when it isobviousthat thisisthe case. If in doubt, userela-
tion aggregation, as this the most flexible.

82- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. Tl M e Object and Property Models- and the Languagesfor describingthem

» Behaviour associated with the object model
Thiswill mostly bein terms of Interaction Models by use of MSC. If state informa-
tion isimportant for the behaviour of an object, sketch an SDL process graph
fragment for this part of the behaviour.

» Localisation (nesting)
Do not consider thisunlessit isquite obvious. In case SDL isused for domain object
modeling, it will produce a set of packages of type definitions. These will mostly be
independent of the actual context. If domain modeling goes so far asto define system
and block types, then apply the general rules of localization.

Guidelines Object modeling for Design isaspecial kind of object modeling. The general guidelines

for Design
Object
Modeling

classes

types

of Object Modeling applies, with the following additions:

» Object classes with attributes, relations and connections
Attributes will be defined by attribute types that are either reused or designed.
Associate signal lists with communication links.
Turn communication connections into signal routes or channels when designing in
SDL.

* Relations
Stick to constructive relations if part of the product isto be implemented by a data-
base component; otherwise “implement” all relationsin SDL as data or signals.

» Attributes
Types of attributes must be defined, preferable as ADTs.

» Aggregation
Usereal aggregation when it isobvious that thisisthe case, and use the SDL kind of
aggregation.

» Behaviour associated with the object model

Thismay still be in terms of Interaction Models by use of MSC, but more SDL pro-
cess graph fragments should be developed during Design.

From UML Modelsto SDL Modds

SDL ismore formal than UML. That is the reason why SDL is chosen for specification
and design, and the reason for using UML for analysis and sketches.

SDL has more specialised concepts, so in amapping from UML to SDL a number of
decisions must be taken. Most UML classes of objects will map to processtypes, but in
UML we may define attribute types as classes, while attributes in SDL are mapped to
variables of datatypes. Aggregated objectsin UML may either map to blocks (contain-
ing other blocks or processes) or to processes (containing services).

TIMe provides guidelines on this mapping - some of them are given below. Most of
them are given in ashort form just to give an impression of what kind of guidelineswe
have.

Classesin UML map in genera to typesin SDL. Classes of objects with their own
behaviour and with communication with other objects map to processes types, classes
of container objects map to block types, and data object classes map to SDL data types.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 83

Object and Property M odels - and the L anguagesfor describing them Tl M e .
Object Modelling TIMe Report

attributes
->
variables

Operations

Relations
> ?

Connec-
tions

Attributes of objects map to variables of datatypes. A difference between UML and
SDL isthat attributes of UML objects are just of predefined types, while variables of
SDL can be of user-defined types.

Operations are either mapped to remote procedures or to signalsin combination with the
corresponding transition and possible reply signal.

Relationsare not easily mapped to SDL. TIMe makes adistinction between constructive
and illustrative relations. Being aware of this distinction when defining relations helps
perform the mapping. Constructive relations will readily be implemented by a corre-
sponding data base part of the system, whileillustrative relation must be “implemented”
in SDL.

Connections are mapped to signal routes/channels and corresponding gates on the types
involved.

84 - TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. Tl M e Object and Property Models- and the L anguagesfor describingthem

illustrative
AccessZone \ may oter > relations
constructive
maywse\

relation
LAccessPoint < i jer)

active object class
mapped to a block
type of processes

connection
mapped to gate
and chappel

BLOCK TYPE AccessPoint
in)
[Panel Door

<+—
(outp)] € | [(outp)] 4
[(validity)]

[code] [opened,

closed] o
[(validity)]
Controller " [validity)] CU [Code] [Cod'e]

SYSTEM AccessControl

AccessPoint]

CE

[(validity)] [Code]
— . i
(oup)] [inp)] e AP(100): C|—-a——p—CentralUnit

AccessPoint ¢

Figure 58: M apping classes, relations and connectionsto SDL

Therelationsin Figure 58 arefor illustrative purposesin the mapping of the AccessPoint
classto the AccessPoint block type, whilethe connection between A ccessPoint and User
mapsto agatee. The User class of objectsis®mapped” in thefirst round to processesin
the environment of the AccessPoint and in the second round to processesin the environ-
ment of the system.

In afurther mapping of the classesin Figure 58, the classes be in addition be mapped to
classes of objects in adatabase of which users may enter which access zones through
which access point. In that mapping therelationsare not just illustrative but may map to
corresponding relations in the database.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 85

Object and Property M odels - and the L anguagesfor describing them Tl M e .
Object Modelling TIMe Report

Sngle
Inheritance

It isrecommended to use only single inheritance. Thisis readily mapped to the corre-
sponding mechanism in SDL. The difference is that inheritance will have more
implicationsin SDL than in UML, especialy for inheritance between process types.
While UML only specifies the inheritance of attributes and operations, inheritance for
process types implies also the inheritance of behaviour also.

Singleinheritance for data classesis mapped to corresponding inheritance for datatypes
in SDL - the only problem being that only operators can be inherited.

Logging —
AccessPoint

Gy

BlockingAc-
[cessPoint

BLOCK TYPE BlockingAccessPoint
INHERITS AccessPoint C

“« — >

REDEFINED [Enable,
Controller
Disable]

BLOCK TYPE LoggingAccessPoint
INHERITS AccessPoint

FINALIZED
Controller
Cise
LD

N
1
|
|

J

, Controller
[(validity),Code]

Figure 59: Subclasses of container object classes mapped to
block typesin SDL

I nheritance between classes are not restricted to UML classes that map to processtypes
or block types. Architecture of systems can be represented by a special system classin
UML andif using the real aggregation of UML the content of the system objects can be
readily expressed. Subclasses of such system object classes are mapped in the same way
asin Figure 59, just substituting BLOCK with SY STEM in the headings.

If the UML model contain inheritance between the types of eventsin use cases, then the
mapping of thisisto a corresponding inheritance between signal type definitionsin
SDL, see Figure 60.

86- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. Tl M e Object and Property Models- and the Languagesfor describingthem

TIMe Report

Multiple
inheritance

Object Modelling

OperatorCode

Code op

cid TestCode
test

SIGNAL Code(integer,integer); o~
SIGNAL OperatorCode INHERITS Code ADDING (integer);
SIGNAL TestCode INHERITS Code ADDING (integer);

Figure 60: Inheritance for signals

Multipleinheritance of the special kind wherejust one of the superclassesisareal super-
classand the other are just “interface classes’ (that is classes with only operations with

no specification of behaviour, and no attributes) can in SDL be represented by inherit-

ance combined with a gate for each interface superclass.

Multiple inheritance in general can be mapped into atype where the properties of the
superclasses are copied into the type corresponding to the subclass (resolving the inher-
itance) or in some cases by aggregation. Thefirst is not recommended, but must be done
in some cases. The second aternative take different forms:

 |f the superclassesare container classes, then the resulting block type may get ablock
for each superclass.

* If the superclasses are active classes corresponding to process types, then careful
specification of these processtypes - so that they can work both as processtypesand
as service types (that is no start transitions and input signal's context parameters) -
makesit possibleto represent multipleinheritance by composing the processtype by
means of services. These services are then defined as subtypes of the services types
corresponding to the superclasses, with one of them getting a start transition and
actual signal parameters provided so that servicesdo not have overlapping valid input
signal sets.

 |f the superclasses are data classes, then the resulting data type can be defined as a
struct with each field being of the types corresponding to the superclasses.

Normally aproblem with representing multiple inheritance by means of aggregation, in
languages with object references, is that the objects of the resulting subclass cannot be
referenced by object references typed with the superclasses. SDL does not have a gen-
eral object reference concept and process instances can only be referenced by untyped
Plds, so thisis not aproblemin SDL.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 87

Object and Property M odels - and the L anguagesfor describing them Tl M e .

Object Modelling

TIMe Report

part/whole In order to really specify that the objects are part of the containing object and that rela-
-real tionsto these part objectsare only meaningful intheir property of being contained inthis
agorega- gbject, TIMe usesthe notation in Figure 61. It is specified that a AC-System object con-

tion

sists of two objects (of class AccessPoints and CentralUnit), and that the environment

communicates with some of these part objects. In UML the User in the environment
would have associations to the class AccessPoint in general, while what we want to
expressisthat they only have associationswith AccessPoints as part of AC-System. The
mapping to SDL isstraight forward - hereit isindicated that CentralUnit isnot an object
of aclass but specified directly. The definition of the block type AccessPoint is left out
in the mapping - it can be defined in a package or as part of the system.

AC-System

A

user Access | Cent.ral
Point Unit

SYSTEM TYPE AccessControl

CE

[(validity)]

P

[Code]
> CentralUnit

® AP(100): C[—
AccessPoint

[outp)] [(inp)]

C

Figure 61: Mapping real aggregation to aggregation in SDL

Relation UML supports a special aggregate association. Depending on how thisis used, it maps

aggrega-
tion

- or torelationsin a corresponding data base model,
- ortoreal aggregation in SDL, see Figure 62.

88- TIMeat aglance

- either to whatever kind of relation mapping in SDL is chosen,

TIMe version 4.0 © SINTEF Modified: 1999-07-14

. Tl M e Object and Property Models- and the Languagesfor describingthem

TIMe Report

Property Modelling

AccessPoint

T

‘ Door

f OR
BLOCK TYPE AccessPoint
Panel Door
apc:
Controller

to database part to aggregation in SDL
of application

‘ Panel

|

Controller

OR

PROCESS TYPE
AccessPoint

dcl theDoor PId

PROCESS TYPE Door

dcl theAccessPoint Pid

to Plds as relations

Figure 62: Mapping relation aggregation in OMT to SDL

Property Modelling

What is The properties characterize the objects identified in the Object Modelling. It is, how-

property ever, not always the case that the object model has been created before the property

modelling model. During the identification of the objects, properties become clear, and during the
description of properties, the objects and their relations must be established.

The following are some common properties of property descriptions:

» Property descriptions cover specific aspects;

liveness properties. something good will eventually happen;

safety properties. something bad will never happen;

overview of functionality (functions and function lists, functional roles);
focus on interaction (use cases, MSC diagrams);

capacity and timing constraints;

physical constraints: temperature, humidity, power consumption, concrete
interfaces,

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 89

Object and Property M odels - and the L anguagesfor describing them Tl M e .
Property Modelling TIMe Report

- other not so easily formalized properties: modifiability, security, error handling

» Property descriptions may overlap and underlap;
Asan example we are used to accepting that the M SC document will not comprise a
description of all traces possible of the SDL model (object model).

» Property descriptions are often declarative rather than imperative;
While the object model in SDL may be seen as a complete imperative description of
the system, property models are often declarative meaning that they express some-
thing which either holds or does not hold in the model.

» Property descriptions supplement object descriptions,

MSC for Property Modelling

The basic notation for property modelling is MSC-96. MSC highlights interaction
between instances based on messages. MSC is most effective when the sequencing of
messages between the acting objects is of major importance.

The full TIMe contains tutorials on MSC-92 and MSC-96 - the following isjust an
overview.

M SC concentrates on describing the message-sending between instances. Theimportant
invariant for messages is that a message must be sent before it is received.

Figure63: An MSC

Open figure

msc User_accepted

User AC System
L 1] L 1]
Code
>
OK
-t
Push door
>

N

MSC heading Instance ~ Event Message Environment
(more)

Timeline
(more)
Figure 63 describes a very simple interaction between a user and an access control sys-

tem. The user presents the personal code to the system which then returns that the user
is eligible to enter the door. The user then pushes the door open.

90- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. Tl M e Object and Property Models- and the L anguagesfor describingthem
TIMe Report Property Modelling

instance The actors of an MSC are called instances. They are described by an instance head and
an instance end connected by atimeline as shown in Figure 64.

Figure 64: Instance

Open figure
instance name
User instance head
1]

timeline (instance axis)

instance end-.

events The instance head and instance end represent the start and end of events on the instance
timelinewithin the MSC. Thetimeline of an instance contains a sequence of events. The
most basic events are output and input of a message. Each message has exactly one out-
put event and one input event. Messages are communicated between instances or
between an instance and the environment. The environment is represented by the frame
around the MSC diagram.

Figure 65: M SC diagram

Open figure
frame
(environment) | msc User_accepted 1
7 User AC System
the msc name L 1 L 1
Code
>
output . oK
nput ——— / Unlock
messagetothe | — Push door '
environment >
I

message name

timeline The events are ordered along each timeline, but events on different timelines are not
ordered.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 91

Object and Property M odels - and the L anguagesfor describing them Tl M e .

Property Modelling

TIMe Report

M SC describe communication between instances. An instance need not be a processin
SDL terms. In Figure 65 we see that AC Systemisan SDL system.

M SC describes asynchronous communication. Input is normally interpreted as con-
sumption of the message.

MSC docu- The set of mscsthat are used to describe a specific piece of redlity iscaled an M SC doc-

mentand ument. Relations between different mscswithin aM SC document are called conditions.

Conditions Combining two mscs where the end condition of the first is equal to the start condition
of the second islegal. Combining mscs with unequal conditionsis not legal. In Figure
66 there are two conditions, Idle and Door unlocked.

Open figure

Figure 66: Conditions

initial
condition —

final
condition

A

92 - TIMeat aglance

—<

msc User_accepted 3

User AC System
Idle >
Code
>
OK

Card out Unlock
SR

Door unlocked >

<

*

*

TIMe version 4.0 © SINTEF Modified: 1999-07-14

. Tl M e Object and Property Models- and the L anguagesfor describingthem
TIMe Report Property Modelling

Figure 67: Alter natives by conditions

Open figure
msc Unlocked_timeout
User AC System
< Door unlocked >
oor|
Lock
—
< Idle >
I [
msc Unlocked reset
User AC System
< Door unlocked >
oor
Push door
Open&
-
Closed
-
Lock
< Idle >
— E—

The two mscs Unlocked reset and Unlocked _timeout in Figure 67 represent alternative
courses of action from the state Door Unlocked.

Conditions are not synchronization primitives meaning that the different instances are
not “within the condition” all at the sameinstant. The conditionsare merely therefor the
combination of mscs.

Coregion Coregion is aconcept which is motivated by the fact that sometimes one does not care
in which order a set of events occur.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 93

Object and Property M odels - and the L anguagesfor describing them Tl M e .
Property Modelling TIMe Report

Figure 68: Coregion

Open figure
msc User_accepted 4
User AC System
coregion < Idle
Code
\-— Card out
[
< OK Unlock
T .
< Door unlocked

In Figure 68 the User does not care whether he receives/consumes Card out or OK first.

Submsc Submsc is motivated by the need to look into an instance for more communication
details. Our AC System instance obviously contains a number of “smaller” instances.
The requirement analysis may want to express details about the internal behavior of the

System.
Figure 69: Decomposed
Open figure
declaring
msc User_accepted_5 decomposition

User AC System
~

:I
< Idie >

Code
1 Card out
~ OK
- Unlock
T SR
< Door unlocked

**

When we want to define a submsc of an instance we depict that in the instance header,
see Figure 69. The decomposed instance must have the same interface as given by the
instance in the MSC of higher granularity.

94 - TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

= TIMe

TIMe Report

Object and Property Models- and the Languagesfor describingthem

Property Modelling

AC System of Figure 69 states that input of Code isfollowed in sequence by the outputs
of Card out, Ok and Unlock. To ensure thisin the submsc, we sometimes have to intro-
duce additional (pseudo) messages, see Figure 70. Thisis an unfortunate aspect of this

mechanism.
Figure 70: Submsc
Open figure
submsc heading
submsc AC System
Panel Local StationControl Central Unit
1 1 [decomposed]
Code Code
> Code
OK ™
OK
Card out = <
R A—
OK h
< ync > Unlock
>
;] I

pseudo-
message

Guidelines on Property Modeling

Guidelines 1. ldentify separate services which should be offered in the domain.

for Domain
Property
Modeling

E N

For each service, provide a prose description.

For each service, define which roles provide the service.
For each service, make the description more precise by:

Formalizing (1): Transform those aspects which may into aformal language. The
behavior should preferably be described in MSC or SDL.

Formalizing (2): Those aspects which do not lend themselves easily to descrip-
tionsin MSC or SDL should be described in semi-formal prose and structured

comments.

Narrowing: Find out what questions were not addressed in the prose version and
make decisions on these matters.

Supplement: Make sure that the precise description covers all those cases which

the prose covers.

5. Associate every role with objects of the object model (Alignment).

TIMeversion 4.0 © SINTEF - Modified: 1999-07-14

TIMeat aglance - 95

Object and Property M odels - and the L anguagesfor describing them Tl M e .
Property Modelling TIMe Report

Guidelines 1. Take every service of the corresponding domain model and make sure that all roles

for Design
Property
Modeling

are played by objects in the design structure. Remake all domain property descrip-
tions such that they refer to the design software structure which is preferably in SDL.

2. Make the descriptions more detailed by:

- Decomposition: Transform the descriptions such that they apply to the substruc-
tures of the objects and not only to the objects themselves.

- Breaking down: Break down the messages and higher level protocols such that
their internal structure becomes known.

- Revelation: Revea new instances and messages which prove to be interesting
when amore detailed view is to be described.

3. Having reached a precise and detailed description, make surethat it is covered by the
precise, but more abstract corresponding domain description.

4. Make sureto retain the structured comments and associ ated semi-formal prose of the
domain descriptions in the corresponding design descriptions.

5. Use the design M SC property model as base for producing SDL process skeletons.
The automatic production of skeletons can be used for discovering inconsistenciesin
the MSC property model. The produced skeletons should then be compared with the
design object model and a complete design SDL model should be produced.

From MSC Property Modelsto SDL Object Models

Thetitle of this section can be alittle misleading - the fact is that what may be obtained
is the construction of SDL Skeletons from M SC Property Models.

MSC isaformal language which is well suited to express cases of interaction between
instances. SDL isaformal language which iswell suited to expressthe total imperative
behavior of processes one by one. The two notations have different perspectives on a
system which supplement each other well.

We shall not always expect the M SC descriptions to cover all possible situations, but
those situationswhich are covered areimportant. We should make surethat at | east these
situations are properly handled in the corresponding SDL descriptions.

TIMe provides a simple technique to produce SDL process skeletons for instances of
MSCs. In order to have the produced SDL be a part of thefinal design it is necessary to
make the M SCs so detailed that the instances of the M SCs correspond directly to pro-
cesses of the SDL design. By careful use of local and global conditionsinthe MSCs, the
SDL skeleton can be automatically derived.

From the SDL skeleton, the design process will add more behavior in order to cover al
aspects of the process behavior. These supplements should not violate the behavior
which was already generated in the skeleton. Since MSC does not have aformal data
concept, the addition of tasks and decisions is one major activity when supplementing
an SDL skeleton.

Even though a skeleton is only supplemented, it may be necessary to perform analysis
to ensure that the final version of the SDL actually is consistent with the requirement
MSCs.

96- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. TlMe List of figures

TIMe Report Property Modelling

List of figures
TIMe activities, descriptionsandlanguages, 9
The core themes of TIMe covered in this introduction, and supplementing themes 11
Verificationand Validation i 12
SESAM SESAM INCo 15
Matching objectsand propertiest 21
Required and provided propertiest 22
Simpleinteraction property model. 22
Interface and application given aspects. 23
Domain, environment, and SyStems.o 25
CoNtexXt/CONLENtot 27
UML forobject modelling. 29
MSC for interaction propertiest e 30
SDL for design and specification of behaviour 31
Themainactivitiesin TIMe. e 33
ANAlYSING . . o 34
Domain Analysis Models and Descriptions for the Access Control Domain 36
Domain Statement V0 37
Theaccesscontrol domain.t e 39
Attribute specification 39
Domain SpeCific DICONaryot 40
DOmain MOAEISo 41
MSC USEr_aCCepted.ot 42
AnalySINg reqUIreMENtS.ot e 43
Systemand itsSenvironment. e 45
Contributions to the different aspectsof asystem. 46
Context MOJElSo 46
MSCsfor domain- and system givenproperties., 47
Property model from domain: MSC User_not_accepted by system 47
System specific property: Blocking Status provided by system and initiated by Operator
47
System Context/Design Outline. 48
Introducing Panel Server and DoorServer as part of AccessPoint 50
Concretesystemreferencemodel i 51
Application framework referencemodel oo 52
Specificationand designrelated 54
From domain objectstodesignobjects. i 55
Applicationdesignin SDL. ot 58
Behaviour of Controller according to User Accepted & User Not Accepted 60
Block type AccessPoint With processes.o 61
Evolution of domainobjectmodel. 63

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 97

List of figures T”vle %

Property Modelling

TIMe Report

Application and infrastructure specific parts of systemsinto aframework. 65
Redesigned AccessControl systemV3. 66
Cluster with LocalUnitsand ClusterUnits. 67
AccessPoint used in both LocalUnit and ClusterUnit 68
Access Control Systemtypeasaframework. 69
Block type Cluster as part of framework for Access Control Systems.......... 70
An actual systembased uponaframework oL 70
Attribute specification 74
Theaccesscontrol domain.ot e 75
Possible classification of Access Pointsaccording to logging and blocking functionality
75

Environment entities interact with partsof thesystem 76
Compositeaggregation iNnUML e 76
Applicationdesignin SDL.t 77
Block type AccessPoint with virtual Controller processtype................. 78
Virtual processtypeController i 79
Block type BlockingAccessPoint as a subtype of AccessPoint. 80
Redefined process type with added statesand transitions. 80
Packagediagram SignalLib. 81
System using a package of typedefinition 82
Mapping classes, relations and connectionstoSDL 85
Subclasses of container object classes mapped to block typesinSDL 86
Inheritancefor Signalso 87
Mapping real aggregation to aggregationinSDL 88
Mapping relation aggregation iNOMTtoSDL 89
AN M S . 90
INSEANCE . . .o 91
MSC diagram. 91
CoNItIONS . . . ot 92
Alternativesby conditions. 93
(0 o 1o o 94
DECOMPOSE. . . . ottt 9
SUDIMISC. .« . 95

98- TIMeat aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. TlMe List of definitions

TIMe Report Property Modelling

List of definitions

ADSIraCt Sy St . .. 100
AQOregatION . . ot 100
ATCHITECTUNE . . . o e 100
AtrDULES . . 100
Classwith constraintson itsenvironment, 100
CONCIE e QY S BIM . . .t e 101
CONNECHIONS . . . ettt e e 101
Constructive part of adescription 101
GOt Nt . . e 102
GOt EXL . . . 102
DESCIIPtION. . . ot 102
Designoriented development 102
DOCUMENT 102
FrameworK 103
Hustrative part of adescription. 103
Implementation 103
LaNgUAagE . . . o 103
Method. 103
Methodologlyot 104
Non-functional Property.t e 104
NOTALION . . . et e e 104
Objectmodel 104
Physical NOde. 105
IO LY . o 105
Property model. 105
Property oriented development 105
Real aggregationt e 106
REAiONS 106
Relation aggregationt e 106
RO . 106
SOftWare NOOEo 107
SPECITICALION . .o 107
SNBSS . . .o e e 107
S S I . 108
Systemfamily 108
Sy EM NS ANCE . . . oot e 108
Validation. 108
VErfICatON. . . oo 108

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMeat aglance - 99

List of definitions T”vle 5

Property Modelling TIMe Report

Abstract system

An abstract system is a system which exists in a conceptual, abstract world.
Abstract systems are composed from abstract components.

Aggregation

All non-trivial systems are composed from components. The process of putting compo-
nentstogether to form awholeis called aggregation. Aggregation enables usto associate
asingle concept and aname with acomposite object. Thishelpsto simplify matters con-
siderably when we are dealing with the object asawhole. But to build the object and use
it correctly we need to understand what it consists of.

An aggregate isan object in itself and the part objects are parts of this object only. This
isin contrast to aggregation just by using ordinary relations.

The opposite process of decomposing awhole into partsis called partitioning (or
decomposition).

We distinguish between relation aggregation and real aggregation.

Architecture

An architecture is an abstraction of a concrete system representing:

 theoveral structure of hardware identifying at least all physical nodes and intercon-
nections needed to implement an abstract system,

» theoveral structure of softwareidentifying at |east all software nodes, software com-
munications and relations needed to implement an abstract system (in terms of
processes, procedures and data).

Attributes

Attributes of objectsare “value’ properties that are not covered by part objects (aggre-
gation). Attributes are defined by a name and atype. In Domain Object Modelsthisis
informally specified, but it is still worthwhile to use atype that will be defined asan
attribute type or class in the Design Object Model.

For the specification of attributesin UML, see attribute specification in UML.
For the specification of attributesin SDL, see variable definition in SDL.

Class with constraints on its environment

Classes are often defined with a specific purpose in mind, and especially for the behav-
iour of aclass (typically becoming aprocesstypein SDL) it is necessary to know what
other processes will be in the environment. Thisistypical for the scenario with severad
equally “important” objects that have to co-operate in order to do atask. It will, how-
ever, reduce the reusability of the classin other contexts where these other objects will

100 - TIMe at aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. TlMe List of definitions

TIMe Report Property Modelling

not be. A quite different scenario is the specification of atypical “server” object class
that should work in any context and where the behaviour is independent on the behav-
iour of the client objects.

A specification of aclass with constraints on it environment contains the following
elements:

» Theclassdefinitioninfocusmay contain adefinition of the attributes of the class(the
intention).

» Theenvironment of aclassisimportant for the understanding of its purpose and con-
straints. Therefore, the environment of importance has been depicted outside the
class. Entitiesin the environment represent roles.

* Whentheclassisinstantiated therewill be entitiesin the actual instance environment
that will play the roles. Therefore, al instances must comply with the roles given to
them by the other instances.

A class definition may include a prescription of what we consider avalid instance envi-
ronment. The entities and relations in the environment of a class represent roles that
shall be played by actorsin the environment of an instance of the class.

Concrete system

A concrete system isareal system which is part of the physical world.

In TIMe, concrete systems are composed from physical parts and software that execute
to provide servicesto its users.

Connections

Objects are connected if they are involved in communication with each other. Thisis
different from objects being related, as thiswill only imply that the objects may be
reached by navigating along the relations.

When using SDL as the design language, connected objects will mainly be objects that
will be represented by blocks or processesin SDL.

Constructive part of a description

A constructive part of adomain object or property model description is apart that may
be automatically transformed into a corresponding design.

Examples are parts of object modelswith relations that may be transformed to database
schemes; a subtype relation between two types in the domain object model that istrans-
formed to the corresponding relation between the corresponding SDL process types.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMe at aglance- 101

List of definitions T”vle 5

Property Modelling TIMe Report

Content

The content of an object model consists of a structure of internal entities or abehaviour.
The structure may be decomposed over several aggregation levels. The structural com-
ponent may be instances of types defined in other object models.

Property models associated with the content will specify properties of internal objects
and interfaces.

Context

The context of an object model consists of the entity being modelled, considered as a
black box, and its environment, where the environment consists of other entitiesthat are
known to or that interact with the entity being modelled. Thisservesto describe the envi-
ronment and the interfaces as well as other external relationships.

The environment of atype consists of conceptual entities, called roles, relations and con-
nections. The environment of an instance consists of actual entities playing the roles.

By associating property models with the context it is possible to specify the externa
properties that the object provides, as well as the propertiesit requires from its
environment.

Description

A descriptionisastatement or account that describes. It isasymbolic representation that
enabl se communication and reasoning about some subject. Descriptions may be
expressed on a variety of media using a variety of languages and notations.

In TIMe, descriptions are contrasted with documents, which are considered as the phys-
ical carriers of descriptions.

Design oriented development

An approach to system development where systems are understood and maintained
mainly in terms of abstract design description in some notation or language.

Design oriented development isat alower process maturity level than Property oriented
development, but higher than implementation oriented development, where “the code
documents the system”.

Document

A document isapiece of paper, abooklet, etc.; providing information esp. of an officia
nature. In TIMe Documents are physical carriers of information. Thisinformation may
be local to that document, or it may be fetched from descriptions and models (whole or
partial models). Documents are often made for specific occasions and audiences, e.g. a
contract, areview document, a user manual.

102 - TIMe at aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. TlMe List of definitions

TIMe Report Property Modelling

A description or model may appear in several documents, therefore the descriptions or
models should be maintained separately from the documents.

A document may be seen as a“snapshot” at a particular point in time. As such it need
not be maintained, although it may be.

Framework

A framework is an abstract system or acollection of (large) system component with two
parts:

» aredefinable application;

» aconfigurable infrastructure that takes distribution into account, and contains all
additional behaviour and supporting functionality needed to support the application
in the concrete system.

[lustrative part of a description

Anillustrative part of adomain object or property model description isapart that isnot
automatically transformed into a corresponding design.

I mplementation

I mplementations are detailed and precise descriptions of the hardware and the software
that a concrete system is made of. They define the physical construction of systemsin a
system family. The software part will be expressed in programming languages such as
C++ or Pascal, while the hardware part will be expressed in a mixture of hardware
description languages such as circuit diagrams, cabinet layout diagrams or VHDL.

Language

Method

By asystems engineering language we mean aformal descriptiontechnique (FDT). This
means that not only the a phabet (notation) must be defined, but that both syntax (gram-
mer) and semantics (meaning) of the language must be defined.

Examples of systems engineering languages are SDL, MSC, LOTOS, ESTELLE.
Contrast to Notation.

A method is systematic way of producing some result.

In systems engineering a method provides guidelines for structuring and using descrip-
tions in given notations.

Contrast to Methodology.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMe at aglance- 103

List of definitions T”vle 5

Property Modelling TIMe Report

Methodol ogy

A methodology isacollection of methods and guidelines for when and how to use them
to produce aresult.

I n systems engineering most results take the form of descriptions expressed using some
notation or language. A systems engineering methodol ogy therefore prescribes a set of
descriptions and associated methods.

A systems engineering methodol ogy is used by an organisation in an attempt to achieve
right quality, short lead times and low cost.

Non-functional property

A non-functional property is aproperty which is not measurable in an abstract system.

Non-functional propertiescan berelated to the handling of abstract systems, for instance
that they are flexible. More often they are related to the concrete system, and express
physical properties such as size, weight and temperature.

Performance, real-time responses and reliability are considered to be non-functional
propertiesin TIMe, since they cannot be measured in the abstract systems.

Notation

A systems engineering notation consists of symbols (an aphabet) that can be used to
model or describe a concept or entity.

A notationislessformal than aLanguage, in that the syntax and/or the semantics are not
formally defined.

Examples of notationsare OMT, UML, ROOM, SA/SD, SADT.

Object model

An object model defines static object structuresin terms of objects, classes (types), asso-
ciations and connections, and dynamic object behaviour in terms of signals and state
transitions.

These are models that describe how a system or component is composed from objects,
connections and relationships, and how each object behaves.

The term object model is a bit misleading, as object models normally describe general
types (sometimes called classes) and object setsrather than individual objects. A typeis
a concept. According to the classical notion of a concept, it is characterised by:

» extension, the collection of phenomena that the concept covers;

* intention, a collection of propertiesthat in some way characterise the phenomenain
the extension of the concept;

* designation, the collection of names by which the concept is known.

104 - TIMe at aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. TlMe List of definitions

TIMe Report Property Modelling

Representing concepts by types and phenomena by instances of these typesfollowsthis
pattern: the instances bel ong to the extension, the type definition gives the intention and
the type name represents the designation. The term object model aswe useitin TIMe
covers objects aswell astypes.

Object modelsare constructivein the sense that they describe how an entity iscomposed
from parts, be it abstract or concrete.

In TIMe, every object model should have associated property models.

Physical node

A physical nodeisadistinct physical entity, such asacomputer, that implements one or
more abstract system objects.

A physical node operates concurrently with other physical nodes.

Physical nodes may be aggregated and decomposed, but always in such away that
abstract objects are contained within physical nodes.

Property

A property isaquality or characteristic attribute, such as the strength or density of a
material.

In TIMe we speak of functional/abstract properties and non-functional/concrete proper-
ties associated with objects.

Properties are not components that can be used to build systems. They are measures we
useto characterise and evaluate systemsby. L et uscompareto abrick: the brick itself is
an object we can use to build something with (e.g. afireplace), its physical measuresare
propertieswe may use to select the particular type of brick and to plan the fireplace, but
not to build with. Thus, properties are not components to be used in constructions, but
means to understand, select and plan constructions.

Property model

A property model isamodel that states properties of a system, acomponent or asingle
object without prescribing a particular construction. Property models are not construc-
tive, but used to characterise an entity from the outside. There are many kinds of
properties: behaviour properties, performance properties, maintenance properties, etc.
Thisisthe perspective preferred by users and sales persons. It is also the main perspec-
tive in specifications.

In TIMe properties will be expressed mainly using text and MSCs.

Property oriented devel opment

Property oriented development is characterized by an integration of:

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMe at aglance- 105

List of definitions T”vle 5

Property Modelling TIMe Report

* better product planning through focus on the early stages of system development, in
particular domain analysis and requirements specification;

* emphasis on system families, evolution and reuse;
» formal expressions of required and provided properties;

 quality-by-construction through integration of methods for verification, validation
and design synthesis.

Property oriented development isat ahigher process maturity level than Design oriented
devel opment.

Real aggregation

Relations

Real aggregation is supported by UML.
Real aggregation implies:
* that the part object isonly part of one object, and

» that possible relations specified with the part object (class) as endpoint only hold for
the part object and not for all objects of this class.

UML adorns the association with afilled diamond and calls it composition.

A relation represents application specific relationshi ps between objects of theinvolved
classes. Instances of arelation are called links and consist of tuples of object references.
Structural “relations’ such as subclass-of and part-of are not regarded as relations, but
as separate constructs.

Relations can be used either as the basis for automatic generation of the corresponding
part of functional design (e.g. adatabase part of the design) - that is as constructive parts
of the conceptual model, or asillustrations of properties that will be “implemented” in
some way in the design.

Relation aggregation

Role

Thisisthe form of aggregation where the part objects are just related to the composite
object with a special relation, but still just arelation. This was the only form of aggre-
gation supported by OMT.

UML adorns the association with a hollow diamond and calls it aggregation.

isabehaviora pattern which describes how one acting object performs a set of related
services.

From Webster:

106 - TIMe at aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

. TlMe List of definitions

TIMe Report Property Modelling

» Jla acharacter assigned or assumed
» 1b: apart played by an actor or singer
e 2: Function

Roles are used to describe properties, and are related to object designs by projection.
Roles are used to link properties and objects. Projections are used for synthesis of new
objects and for documenting existing objects.

Software node

A software node is a distinct software entity, such as a software process (a concurrent
thread), that implements one or more abstract system objects.

A software node will often operate concurrently with other software nodes, but not
aways.

Software nodes may be aggregated and decomposed, but always so that abstract objects
are contained within software nodes.

Specification

A specification covers those aspects of amodel that are relevant for its external repre-
sentation and use. The context part is often sufficient as a specification, but if parts of
the content areimportant it may beincluded in the specification. Specifications are asso-
ciated with the abstractions they belong to.

Synthesis

In TIMe, synthesisis an activity that produces a design from a specification.
Two basic techniques are used to synthesize adesign:

1. Transformation. A source description istransformed to atarget description according
to well defined rules. One example isto generate code from an SDL design.

2. Composition. The content is decomposed into parts (top down) and/or composed
from parts (bottom up) using a mixture of manual and automated techniques. TIMe
seeks to reuse existing types as much as possible, and to make new types that might
be needed reusable. Thus, design with reuse and design for reuseis part of TIMe.
Design with reuse involves:

- searching for existing types having some desired properties;

- adapting the propertiesto fit the particular application.

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMe at aglance- 107

List of definitions T”vle 5

Property Modelling TIMe Report

System

A systemisapart of theworld that a person or group of persons during sometime inter-
val and for some purpose choose to regard asawhole. A system consists of interrelated
components, each component being characterised by propertiesthat are selected as
being relevant to the purpose.

System family

The System family contains generalised system and component concepts that can be
adapted (configurated) and instantiated to fit into a suitable range of user environments.
They represent the product base from which acompany can make a business out of pro-
ducing and selling system instances.

Theideaisto focus development and maintenance effort mainly on the familiesin order
to:

1. reduce the cost and time needed to produce each particular instance
2. reduce the cost and time needed to maintain and evolve the product base.

InTIMe, system familiesareformally defined as(collections of) typesor classes. Where
practical, system types/classes will be defined from which complete system instances
may be generated. In addition the system family contains the component types/classes
that are used to compose the system types/classes.

System instance

A system instance is a (real) system which can perfom behaviour and provide services.
The system instance area of concern contains system instances produced from system

families.
Validation

to establish the fitness or worth of a software product for its operational mission (from
the Latin valere, “to be worth™).

Verification

to establish the truth of correspondence between a software product and its specification
(from the Latin veritas, “truth”).

108 - TIMe at aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

= TIMe

TIMe Report

References

[1]
[2]

[3]

[4]

[5]

[6]

[7]
[8]
[9]

[10]
[11]

[12]

[13]
[14]
[15]
[16]
[17]

[18]

References
Property Modelling

Brak, R. and Haugen, @. (1993). Engineering Real Time Systems. Hemel
Hempstead, Prentice Hall International 0-13-034448-6

Brak, R., Gorman, J., Haugen, @., Melby, G, Mgller-Pedersen, B. and Sanders
R. (1993). Quality by construction exemplified by TIMe - The Integrated Meth-
odology, Teletronikk, Vol 95 (1) ISSN 0085-7130 pp 73-82, 1999

Booch, G, Jacobsen, |. and Rumbaugh, J. (1997a). The Unified Modeling Lan-
guage, Version 1.0, Rational Software Corporation, http://www.rational .com
(January 1997)

Booch, G., Rumbaugh, J. and Jacobsen, 1. (1998). Unified Modeling Language
User Guide. Addison Wedley Longman, Reading Mass. 0-201-57168-4 (Octo-
ber 1998)

Douglass, B., P. (199). Real-time UML: Developing Efficient Objects for
Embedded Systems, AddisonWesley Longman, Reading Mass. 0-201-32579-9
(December 1997)

Fowler, M. with Scott, K. (1997). UML Distilled: Applying the Sandard Object
Modeling Language. Addison Wesley Longman, Reading Mass. 0-201-32563-
2 (May 1997)

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Scien-
tific Computing Programming 8(3) 231 — 274

Haugen, O. (1997a). Practitioners’ verification of DL systems, Dr Scient The-
sis, University of Oslo (April 1997) 82-7368-166-1

Haugen, @. (1997b). The MSC-96 Distillery. SDL'97 Time for Testing - SDL,
MSC and Trends. Proceedings of the Eighth SDL Forum, Evry, France 23-26
Sept. 1997, Elsevier 0-444-82816-8

SO (1991) 1SO 9646-3 The Tree and Tabular Combined Notation (TTCN),
ISO/IECJTC 1/SC 21 (“TTCN")

ITU (19934) Z.100 ITU Specification and Description Language (SDL), ITU-
T, June 1994, 237 p (“SDL-92")

ITU (1993b) Z.100 Annex F Specification and Description Language (SDL)
Annex F. SDL Formal Definition, ITU, April 1994, (33+437+183) p (“SDL-
92")

ITU (1993c) Z.100 Appendix | SDL Methodology Guidelines, ITU-T, July
1994, 129 p

ITU (1993d) Z.120 Message Sequence Charts (MSC), ITU-T, September 1994,
36 p (“MSC-92")

ITU (1994a) Z.105 SDL combined with ASN.1, ITU-TS, Oct. 19.-27. 1994, 69
p

ITU (19964) Z.100 Addendum to Recommendation Z.100: CCITT Specifica-
tion and Description Language, ITU, October 1996, 31 p (“SDL-96")

ITU (1996b) Z.106 Common Interchange Format, ITU-TS, Oct. 18. 1996
(“CIF")

ITU (1996¢) Z.120 Message Sequence Charts (MSC), ITU-T, Oct. 1996, 78 p
(“MSC-96")

TIMe version 4.0 © SINTEF - Modified: 1999-07-14 TIMe at aglance- 109

References
Property Modelling

[19]

[20]

[21]

[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

[32]

[33]

[34]

[35]

TIMe =

TIMe Report

Jacobson, I., Christerson, M., Jonsson, P. and Overgaard, G. (1992). Object-Ori-
ented Software Engineering: A Use Case Driven Approach. ACM Press
Addison-Wesley, 0-201-54435-0

Jacobsen, 1., Booch, G. and Rumbaugh, J. (1999). The Unified Software Devel-
opment Process. Addison Wesley Longman, Reading Mass. 0-201-57169-2
(January 1999)

Kristensen, B. B., Madsen, O. L., Mdller-Pedersen, B. and K., N. (1987). The
BETA Programming Language. Research Directions in Object-Oriented Lan-
guages Eds. B. Shriver and P. Wegner. MIT Press

Olsen, A., Faergemand, O., Mgller-Pedersen, B., Smith, J. R. W. and Reed, R.
(1994). Systems Engineering Using SDL-92. North Holland 0 444 89872 7

OMG (1997). OMG Unified Modeling Language Specification, Version 1.1,
September 1997

OMG (1998). OMG Unified Modeling Language Specification, Version 1.2,
July 1998

OVUM (1996). OVUM Evaluates: Configuration Management Tools, OVUM,
London. (December 1996)

OVUM (19974). Select Enterprise. OVUM Evaluates: Case Products - 1ssue 34,
OVUM, London. (October 1997)

OVUM (1998b). Object Geode. OVUM Evaluates: Case Products, OVUM,
London. (November 1998)

OV UM (1998c). SDT/Tau. OVUM Evaluates. Case Products, OVUM, London.
(November 1998)

OVUM (1998d). Paradigm Plus. OVUM Evaluates: Case Products, OVUM,
London. (November 1998)

OVUM (1998e). ObjectTeam (now: Cool:Jex). OVUM Evaluates: Case Prod-
ucts, OVUM, London. (November 1998)

OVUM (1999). Rational Rose. OVUM Evaluates: Case Products, OVUM, Lon-
don. (February 1999)

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and Lorensen, W. (1991).
Object-Oriented Modeling and Design. Englewood Cliffs, New Jersey, Prentice
Hall 0-13-629841-9

Rumbaugh, J., Jacobsen, 1. and Booch, G. (1998). Unified Modeling Language
Reference Manual. Addison Wesley Longman, Reading Mass. 0-201-30998- X
(December 1998)

Telelogic (1999). Methodology Guidelines. The SOMT Method. Telelogic
Manua SDT 3.5, Mamg

Verilog (1999). ObjectGEODE - Method Guidelines. Verilog Toulouse, France

110 -TIMe at aglance TIMe version 4.0 © SINTEF Modified: 1999-07-14

	Table of Contents
	Introduction
	Figure 1: TIMe activities, descriptions and languages
	Figure 2: The core themes of TIMe covered in this introduction, and supplementing themes
	Figure 3: Verification and Validation
	TIMe from SISU
	What’s in TIMe for the manager
	What’s is TIMe for the designer

	The Why, What and How of TIMe
	Figure 4: Sesam Sesam Inc
	Introduction

	TIMe Essentials
	Figure 5: Matching objects and properties
	Figure 6: Required and provided properties
	Figure 7: Simple interaction property model
	Figure 8: Interface and application given aspects
	Figure 9: Domain, environment, and systems
	Table 1: The three aspects of the access control system
	Figure 10: Context/content
	Figure 11: UML for object modelling
	Figure 12: MSC for interaction properties
	Figure 13: SDL for design and specification of behaviour

	System Development Activities
	Figure 14: The main activities in TIMe
	Analysis
	Figure 15: Analysing
	Domain analysis
	Figure 16: Domain Analysis Models and Descriptions for the Access Control Domain
	Domain Statement: what is it all about
	Figure 17: Domain Statement V1
	Domain object model: modeling the established domain concepts
	Figure 18: �The access control domain
	Figure 19: Attribute specification
	Dictionary: not just a data dictionary
	Figure 20: Domain specific Dictionary
	Domain property model: modeling the needs
	Figure 21: Domain Models
	Figure 22: MSC User_accepted
	Requirements analysis
	Figure 23: Analysing requirements
	Figure 24: System and its environment
	Application specification
	Figure 25: Contributions to the different aspects of a system
	Figure 26: Context models
	Figure 27: MSCs for domain- and system given properties
	Figure 28: System specific property: Blocking Status provided by system and initiated by Operator
	Figure 29: System Context/Design Outline
	Figure 30: Introducing PanelServer and DoorServer as part of AccessPoint
	Architecture specification
	Figure 31: Concrete system reference model
	Framework/Infrastructure specification
	Figure 32: Application framework reference model
	Table 2: Application, framework and architecture aspects for the access control system

	Design
	Figure 33: Specification and design related
	Application Design: where the real functionality is designed
	Figure 34: From domain objects to design objects
	Figure 35: Application design in SDL
	Figure 36: Behaviour of Controller according to User Accepted & User Not Accepted
	Figure 37: Block type AccessPoint with processes
	Figure 38: Evolution of domain object model
	Architecture Design: choice of implementation platform
	Framework Design: from Infrastructure to Framework
	Making infrastructure
	Figure 39: Application and infrastructure specific parts of systems into a framework
	Figure 40: Redesigned Access Control system V3
	Figure 41: Cluster with LocalUnits and ClusterUnits
	Figure 42: AccessPoint used in both LocalUnit and ClusterUnit
	Making frameworks
	Figure 43: Access Control System type as a framework
	Figure 44: Block type Cluster as part of framework for Access Control Systems
	Figure 45: An actual system based upon a framework

	Implementation
	Instantiation

	Object and Property Models - and the Languages for describing them
	Object Modelling
	UML for Object Modelling
	Figure 46: Attribute specification
	Figure 47: �The access control domain
	Figure 48: Possible classification of Access Points according to logging and blocking functionality
	Figure 49: Environment entities interact with parts of the system
	Figure 50: �Composite aggregation in UML
	SDL for Structure and Object Behaviour
	Figure 51: Application design in SDL
	Figure 52: Block type AccessPoint with virtual Controller process type
	Figure 53: Virtual process type Controller
	Figure 54: Block type BlockingAccessPoint as a subtype of AccessPoint
	Figure 55: Redefined process type with added states and transitions
	Figure 56: Package diagram SignalLib
	Figure 57: System using a package of type definition
	Guidelines on Object Modeling
	From UML Models to SDL Models
	Figure 58: Mapping classes, relations and connections to SDL
	Figure 59: Subclasses of container object classes mapped to block types in SDL
	Figure 60: Inheritance for signals
	Figure 61: Mapping real aggregation to aggregation in SDL
	Figure 62: Mapping relation aggregation in OMT to SDL

	Property Modelling
	MSC for Property Modelling
	Figure 63: An MSC
	Figure 64: Instance
	Figure 65: MSC diagram
	Figure 66: Conditions
	Figure 67: Alternatives by conditions
	Figure 68: Coregion
	Figure 69: Decomposed
	Figure 70: Submsc
	Guidelines on Property Modeling
	From MSC Property Models to SDL Object Models

	List of figures
	List of definitions
	Abstract system
	Aggregation
	Architecture
	Attributes
	Class with constraints on its environment
	Concrete system
	Connections
	Constructive part of a description
	Content
	Context
	Description
	Design oriented development
	Document
	Framework
	Illustrative part of a description
	Implementation
	Language
	Method
	Methodology
	Non-functional property
	Notation
	Object model
	Physical node
	Property
	Property model
	Property oriented development
	Real aggregation
	Relations
	Relation aggregation
	Role
	Software node
	Specification
	Synthesis
	System
	System family
	System instance
	Validation
	Verification

	References
	About TIMe and the SISU project
	About the authors

