
TIMe TIMe Electronic Textbook
10 Object Modelling
Introduction .2
Elements of an object model .3
Establishing an object model .4
Object classes with attributes, relations and connections. .4
Connections .5
Relations .5
Attributes .5
Generalisation/specialisation .6
Aggregation. .7
Classes with constraints on their environments .8
Behaviour associated with the object model .8
Localisation (nesting) .9

What is Object Modelling .10
Object classes with attributes, relations and connections. .11
Relations .13
Connections .13
Attributes .13
Generalisation/specialisation .14
Aggregation. .15
Behaviour associated with the object model .16
Localisation .17

Guidelines for the use of UML and SDL for object modelling 18
Constructive versus illustrative parts of object models .18
When to use UML and when to use SDL? .19
How to use UML and SDL in combination .19
How to map UML models into SDL models .19

List of figures .21
List of definitions .22

Object Modelling
Object Modelling 10 - 1 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Introduction TIMe10
Introduction

Object modeling is used for making both Domain Object Models and for System Design
Object Models.

In this theme the main elements of object modelling are covered, independent of lan-
guage/notation. Object models are described in UML or SDL.

• If you want an overview of object modeling, read Elements of an object model (p.10-
3).

• If you want a step-by-step introduction and guidelines to object modelling, you fol-
low the route starting with Establishing an object model (p.10-4).

• If you want a more in-depth treatment of the approach to object modelling behind this
method, read What is Object Modelling (p.10-10).

Throughout the text there will be examples (in UML and SDL) on the various parts of
object models, and there will be guidelines for the use of UML and SDL for object mod-
elling. In Guidelines for the use of UML and SDL for object modelling (p.10-18) there
are more general guidelines covering whole models.

In order to learn about UML and SDL, consult the UML Tutorial and the SDL Tutorial.

Domain Object Model

Application Object Model

Object Model

Figure 10-1: How object modelling is used in TIMe
Object Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1610 - 2

Elements of an object model 10TIMe
Elements of an object model

An Object Model consists of a set of different elements:

• Object classes with attributes, relations and connections

• Attributes

• Relations

• Connections

• Generalisation/specialisation

• Aggregation

• Classes with constraints on their environments

• Behaviour associated with an object model

• Localisation (nesting)
Object Modelling 10 - 3 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Establishing an object model
Object classes with attributes, relations and connections

TIMe10
Establishing an object model

Most object oriented methods and books on those contain useful guidelines and exam-
ples on how to identify the right (and best) objects and classes. Few of them are,
however, made for the purpose of being used together with SDL as a design language
and with typical SDL applications in mind. The following is therefore a set of guidelines
that emphasises this. It is recommended to learn from other object oriented methods, and
then use this method as a set of guidelines on what is important to take into consideration
when the design language is SDL.

The activity of establishing an object model consists of going through all the elements
of an object model.

The activity of establishing an Object Model in general is covered here, while the special
activities involved in making Domain and System Design Object Models are covered in
Making domain object model and Development application activities, respectively.

Establishing an Object Model in general consists of considering the following elements:

• Object classes with attributes, relations and connections (p.10-4)

• Relations (p.10-5)

• Attributes (p.10-5)

• Connections (p.10-5)

• Generalisation / specialisation (p.10-6)

• Aggregation (p.10-7)

• Classes with constraints on their environments (p.10-8)

• Behaviour associated with the object model (p.10-8)

• Localisation (nesting) (p.10-9)

Object classes with attributes, relations and connections

For a detailed description, look at Object classes with attributes, relations and connec-
tions (p.10-11).

The identification of object class with attributes and relations is the most fundamental
element of object modelling, and it is supported by most Object Oriented Analysis tools.

The identification of objects is based on the idea that they shall model phenomena in the
application area, and a classification of these phenomena.

So look for phenomena by considering the following aspects:

• Substance

• Properties of substance.

• Transformations on substance.
Object Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1610 - 4

Establishing an object model
Connections 10TIMe
Note that normally a phenomenon will have several of the aspects, but some may be the
dominant.

These aspects give certain guide-lines for selection of phenomena. We have to consider
tangible things where the major aspect is substance. We have to consider properties and
finally we have to consider the transformations on the substance.

Do not restrict yourself to the identification of typical “data” (property) phenomena, but
also look for “action” (transformation) phenomena. SDL provides the means for taking
such action phenomena and define classes and subclasses of these active objects. In the
first place it is not important to distinguish between active and passive objects - be pre-
pared that any object may become active, when actions to be done in order to fulfil
required properties are associated with objects.

If you know already that an class of object is a class of active objects performing con-
current with other objects, you may specify this (in UML by a comment or a stereotype,
in SDL by making it a process). If you do not know this, just make it an UML object.

Connections

For a detailed description, look at Connections in detail (p.10-13).

Connections are put between classes for which the objects will communicate. Connec-
tions between classes will imply that there is a number of mscs describing the interaction
pattern between objects of the classes.

Relations

For a detailed description, look at Relations in detail (p.10-13).

Relations come in two categories: constructive and illustrative relations.

We recommend to use UML relations for both kinds of relations. This implies that if
relations are illustrative, then the UML notation for relations shall be used. The seman-
tics of these may then not be defined in UML, but they have anyway to be implemented
specifically.

Attributes

For a detailed description, look at Attributes in detail (p.10-13).

When looking for attributes, consider typical “value” properties of objects.

The notation for attributes of identified classes is UML. They may either be collected in
one diagram or combined with a class/relation diagram.

UML nota-
tion for
classes and
relations

UML nota-
tion for
relations

UML nota-
tion for
attributes
Object Modelling 10 - 5 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Establishing an object model
Generalisation / specialisation

TIMe10

Guidelines

- Some attributes are obvious from a domain or design analysis, while other attributes
may have to do with the required properties. If some of these properties have been
specified, then go through them and make sure that the objects being involved have
the necessary attributes.

- Required behaviour does not have to be associated with objects only, but may also be
covered by attributes. This is done by defining the attribute type as a class and the
associate the behaviour with operations on the values of the attribute. The require-
ment is that the operation behaviour can be defined as pure functions with no side-
effects on the object.

- Attributes of objects do not have to be simple type attributes. Attribute types may be
some of the classes identified in the domain analysis. After having identified
attributes and their types, it should be investigated if these types also should be
included in the object model.

- When to use attributes and when to use relations? If a class is only related to one other
class, then consider if this property may as well be modelled by an attribute (of the
same class that is related).

- What about simple object references? Shall they be handled as relations? If one of the
endpoints of the reference is an active object that will not be an object in a database
part of the system, then define the property as an attribute of type Reference.

Generalisation / specialisation

For a detailed description, look at Generalisation / specialisation in detail (p.10-14).

Specialisation/generalisation is a special relation between classes. The notation for this
relation emphasizes that it is not just one among other relations between classes, but that
it has to be supported by the design and implementation notations.

UML supports this is as a special construct. The graphics for this relation is different
from the graphics for relations. The subclass relation is the obvious example on a con-
structive relation, that is it shall also be a relation in the SDL functional design, so UML
should be used for this purpose.

When describing generalisation/specialisation there are two different ways of doing it:

• Specify the relation between the classes as a whole, without considering the details
of any of the classes. This is normally referred to as describing the generalisation/spe-
cialisation hierarchy.

• Specify one class as a specialisation of another, including the details of what is inher-
ited and how the additional properties relate to these.

Guidelines

- Use only single inheritance. If properties of multiple classes are required use either
aggregation, delegation (if supported or easy to implement in the design/implemen-
tation language) or communication.
Object Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1610 - 6

Establishing an object model
Aggregation 10TIMe
- Be aware that for active objects the UML object model with inheritance shall be car-
ried directly over to the corresponding SDL design object model, with implied
inheritance of behaviour. This means that it is not sufficient to be sure that attributes
and operations of the superclass are common for all possible subclasses - behaviour
must also be common.

- S-rule: subclasses as models of specialised concepts.
Subclasses shall represent special concepts and not versions or variants of the super-
class. See to that general classes only get properties that are guaranteed to belong to
objects of all possible subclasses. A subclass inherits all of the attributes and opera-
tions of the superclass.For operations identify the properties they shall have
independent of possible subclasses and which are important for the use of the
operation.

- S-rule: virtual or non-virtual.
Classes are made reusable in two different ways: general either in the sense that oper-
ations can be redefined (virtual operations) or in the sense that the class depends on
some other entities in its context. The first is considered when defining general
classes intended for specialisation: mark the operations that shall be redefinable as
virtual operations, while those that are supposed to have the definition in all sub-
classes are not defined as virtuals. The second way of making classes general is
covered in Localisation (nesting) (p.10-9).

- S-rule: generality separation
Organise your classes in specialization hierarchies such that the general concepts
need no specific information about the different specialisations.

- A-rule: library search
See if there is a Y in a library which is similar to an X in your dictionary. When a
similarity is found, either make X a direct specialisation of Y or restructure your
library by making a Z which can be specialised to both X and Y.

- S-rule: controllability and flexibility
If you are designing both the general and the special concepts, do not sacrifice the
controllability of the general ones for flexibility of the specialised ones.

- S-rule: adaptable components (for SDL object modelling)
Achieve adaptable components by introducing virtual types. Ensure that such types
get proper general names. Balance the adaptability of virtuals by using ATLEAST; to
limit the redefinability.

- N-rule: ATLEAST and FINALIZED
In specialising, take care to balance flexibility and analysability properly using
ATLEAST; and FINALIZED to constrain the virtual types.

Aggregation

For a detailed description, look at Aggregation in detail (p.10-15).

Objects may be composed of other objects by means of aggregation.

UML has a separate construct for this (real aggregation).

UML nota-
tion for
aggregation
Object Modelling 10 - 7 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Establishing an object model
Classes with constraints on their environments

TIMe10

The recommendation is to use UML for real aggregation. Use real aggregation when the
aggregate is an object itself and when the part objects shall have a life-time that is the
same as the aggregate.

Guidelines

- Distinguish between “relation aggregation” and “real aggregation”. Be aware not
to confuse this with where the classes of the contained objects are defined. In SDL
terms use only “real aggregation” in cases where you would use blocks as part of
blocks, process sets as part of blocks or services as part of processes. In case of
process sets it shall be important that there are process sets connected with signal
routes and preferably that the process sets are (1,1) sets. If the number of processes
in the set vary and if processes are solely identified by PIds, then the process sets
and the signal routes do not really corresponds to objects being part of a “real
aggregate” object.

- Note that while UML supports an “open” aggregation (the outside entities can be
connected directly to the entities in the aggregate), SDL supports a “closed”
aggregation. SDL has in addition the combination of aggregation and nesting. Be
therefore aware that you may have to transform a UML open aggregate into a
closed SDL aggregate.

Classes with constraints on their environments

For the more important classes make a sketch that includes the most important classes
in the expected environments of the classes and express possible constraints on these.

The specification of classes in the class environment serves three purposes:

• Understanding the environment helps to understand the class.

• The roles played by the environment classes help to validate the application of
instances.

• The co-ordinates of relations that an instance may participate in can be precisely
specified.

If the class in question is considered without any specification of how it is composed,
then it is done in UML, the only difference from normal UML use is that only one of the
classes are fully specified with attributes and relations.

If the class and its constraints on its environment involves any of the components of the
class, then the notation for aggregation is used.

Behaviour associated with the object model

The objects of the systems that are the target of this method are not just data objects with
some associated operation, but the objects themselves exhibit behaviour and often in
interaction with other objects. Behaviour associated with the object model (p.10-16)
<!def!> is therefore important to describe.
Object Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1610 - 8

Establishing an object model
Localisation (nesting) 10TIMe
When we have identified SDL types in the object model for the functional design, then
we may specify the behaviour in terms of SDL process graphs.

Behaviour associated with functional roles belong to the property models.

Identified classes of objects may, however, also have behaviour that we want to express
before we go to the step of functional design in SDL. For this purpose we have the
choice of pure MSC (with naming conventions in order to integrate with the object
model) and sequence diagram in UML. The only alternative that gives standard MSC is
the first, and this is also the alternative that gives the best integration with the SDL
design.

In our descriptions we will use MSC.

Localisation (nesting)

For a detailed description, look at Localisation (p.10-17).

Guidelines

- S-guideline: Localise classes.
If it is known that a class is only meaningful within the context (scope) of another
class, express this informally or by a special relation (“origin” or “enclosing”).

- S-guideline: Localise first, then globalise.
If you do not know where to define a class, define it locally to the object where
you need the class. If it turns out that the class is not dependent upon other classes
in the enclosing class, then it may be defined globally.

- Try to identify collections of related classes.

- S-rule: context parameters (SDL for object modelling).
Achieve independence of signals and data types by introducing context parame-
ters. Balance this independence by constraining the context parameters.
Object Modelling 10 - 9 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

What is Object Modelling
Localisation (nesting)

TIMe10
What is Object Modelling

There are many approaches to object orientation. The approach followed in this method
is that an object model is regarded as a physical model, simulating the behaviour of
either a real or imaginary part of the world. In the same way as other perspectives on
modeling is based upon notions that are well-defined outside computer science (e.g
functions, logic), the physical modeling approach is based upon notions that are not spe-
cific for computer science. Physical models have been used in many other areas.

The physical modeling approach is followed by most existing object oriented methods,
while object oriented design and implementation languages are often based upon a more
programming approach to object orientation, with emphasis on objects being collections
of data and operations, on encapsulation and on code reuse. While the modeling
approaches advocate that subclasses model special concepts and therefore shall be
extensions of the superclass, the programming approach is more flexible in the sense
that it allows subclasses to override properties from the superclass.

The modeling approach requires that we have languages for analysis and design/imple-
mentation that matches, otherwise we would be forced to transform an analysis object
model according to the modelling approach to a design object model in a languages that
follows the programming approach. The method relies on UML for analysis and SDL
for design: they both follow the modelling approach, and it is therefore straight forward
to transform from UML to SDL. The following will contain a description of the object
modeling approach together with an indication of the corresponding concepts in UML
and SDL and of the transition from UML to SDL.

The main property of physical modelling is that it is based upon a conception and under-
standing of the application domain in terms of phenomena and concepts, and that
physical models will have elements which directly reflect these phenomena and con-
cepts. The physical model will consist of objects, that represent the phenomena, and of
classes that represent concepts. Note that even though there are no formal definition of
phenomena and concepts, then the representations of these by means of objects and
classes are based on a formal language.

Associated with phenomena and concepts are a number of structuring and abstraction
mechanisms:

• Identification of phenomena and the classification of these into concepts.

• Part/whole aggregation, that is phenomena as part of other phenomena.

• Relation composition, that is a phenomena has relations to other phenomena instead
of having them as parts.

• Specialisation of concepts. Classification relates all phenomena with the same set of
properties into a concept. Specialisation is a mechanism for the structuring of sets of
concepts with similar properties into general and specialized concepts.

• Localisation of definitions: Some phenomena and concepts are only meaningful
within the context of a specific phenomenon or concept.

Object oriented modeling according to this approach consists of applying these structur-
ing and abstraction mechanisms.
Object Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1610 - 10

What is Object Modelling
Object classes with attributes, relations and connections 10TIMe
An object model is based upon the classical notion of phenomena and concepts.

The classical notion of a concept is characterised by the following:

• extension, the collection of phenomena that the concept covers;

• intention, a collection of properties that in some way characterise the phenomena in
the extension of the concept;

• designation, the collection of names by which the concept is known.

Representing concepts by classes and phenomena by instances of these classes follows
this pattern: the instances belong to the extension, the class definition gives the intention
and the class name represents the designation.

Consequences of this approach are:

• Classes are not instances, not even sets of instances, but “only” the definition of com-
mon properties of instances generated according to this class.

• Generalisation/specialisation (inheritance) should be used to represent concept hier-
archies and it is represented differently from relations between sets of instances.

• Instances as models of phenomena shall be able to model the fact that phenomena
often consist of part-phenomena. Therefore we recommend a special notation for
aggregation, also different from normal relations.

• Not all classes are candidates for reuse. Some classes may only be meaningful within
the context of other classes and should therefore not be made more general than that.

Object classes with attributes, relations and connections

The identification of objects is based on the idea that they shall model phenomena in the
application area. This is of course not enough to hint on what kind of phenomena to look
for and how they shall be modeled by objects. The following aspects of phenomena
should be taken into consideration:

• Substance is the physical material that makes phenomena exist over time. Substance
is characterized by unique identity, a certain volume and a unique location in time and
space.

In UML objects are the elements that cover this aspect. Objects have a special nota-
tion that includes the name of the object, and the class of the object defines what kind
of attributes form the substance of the object.

The elements in SDL that represent this aspect are instances: that is blocks, pro-
cesses, services, procedure invocations, variables, signal instances. Part/whole and
relation composition stem from the modeling of this aspect.

• Properties of substance. All properties associated with substance have to be obtained
by measurements. A given property of some substance may be observed by perform-
ing a measurement.

Attributes of UML are the means for describing properties of objects. Operations

UML

SDL

UML
Object Modelling 10 - 11 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

What is Object Modelling
Object classes with attributes, relations and connections

TIMe10

with a result type may be used to model the fact that properties have to obtained by
a measurement.

Variables are the SDL means to represent properties. Values are used to denote the
result of measuring the properties. Value returning procedures are new mechanisms
in SDL92 to describe measurements.

• Transformations on substance. An information system is characterized by transfor-
mations which change its substance and thereby its measurable properties.
Transformations are partially ordered sequences of events. In object models, trans-
formation is the result of behaviour of objects, either involving properties of itself or
other objects.

UML covers this by operations on objects. UML has a separate dynamic (behaviour)
model for describing the action sequences of objects, while we associate this directly
with the objects. As SDL has support for this, we use SDL behaviour descriptions for
this purpose.

In SDL the transitions of processes/services and procedures are the means for
describing transformations. Actions of transitions may involve other instances, by
signal exchanges and by remote procedure calls.

Note that normally a phenomenon will have several of the aspects, but some may be the
dominant. Phenomena where transformation of properties are the most interesting,
(action phenomena), have a rich set of possible representations in SDL92: processes for
concurrent sequences of actions, services for alternating sequences and procedures for
sequences that are parts of larger sequences.

All phenomena in the real world are different. Abstraction arises from a recognition of
similarities between phenomena (and concepts) and the decision to concentrate on these
similarities, and to ignore the differences. An abstraction covers a group of phenomena
characterized by certain properties.

Classification is a process that either applies to phenomena (objects) and thereby gener-
ates concepts (classes) or is applied to concepts and thereby generates general or special
concepts.

Identified concepts are represented in UML by classes. The definition of the class rep-
resents the intension of the concept, while the objects according to this class represent
the extension of the concept.

Identified concepts are represented by types in SDL. The definition of the type represents
the intension of the concept, while the instances according to this type represent the
extension of the concept.

Classification may also be done on identified objects of an object model. It may be so
that the similarities become apparent when the objects are specified to some detail.

Objects may of different kinds, depending on whether they have their own action
sequence or not, and whether they perform concurrent with other objects or not.

Passive object do not have their own action sequence. They may have operations, which
may be executed by other objects.

SDL

UML

SDL

UML

SDL
Object Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1610 - 12

What is Object Modelling
Relations in detail 10TIMe
Active objects may either perform concurrently with other concurrent objects, or they
may perform alternatingly with other alternating objects as parts of concurrent object.
Alternation means that one object is executing at a time and that common attributes may
be accessed with synchronisation. Concurrent objects may either communicate by send-
ing messages or by synchronised execution of operations.

UML supports the distinction between active and passive objects, but not the distinction
between concurrent and alternating objects. UML only considers the behaviour of sin-
gle objects and not communication. UML is therefore not used to model this aspect.

SDL have processes that execute concurrent with other objects, and service as part of
processes execute alternating, depending on the incoming signal.

See Behaviour associated with the object model (p.10-16) for the behaviour of single
objects.

Relations in detail

A relation represents application specific relationships between objects of the involved
classes. Instances of a relation are called links and consist of tuples of object references.
Structural “relations” as subclass-of and part-of are not regarded as relations, but as sep-
arate constructs. As an example, the fact that a class is a subclass of another class does
not imply that there are any links between objects of the two classes.

UML supports relations directly by means of associations.

SDL does not support relations, only object references by means of PId variables.

Connections in detail

Objects are connected if they are involved in communication with each other. This is
different from objects being related, as this will only imply that the objects may be
reached by navigating along the relations.

For the use together with SDL as the design language, connected objects will mainly be
objects that in SDL will be represented by blocks or processes.

Attributes in detail

Attributes of objects are supposed to model the “value” properties of the corresponding
phenomena. These properties change value (state) over time and they are constituent
parts of the phenomena. Attributes will therefore be objects of some attribute type, that
defines the possible values of the attribute and these are obtained and changed. In con-
trast, relations are used to model properties that are not constituent parts of the
phenomena but rely on the existence of some other phenomena.

Some attributes model the fact that an object can refer to other objects. This is not the
same as relations, as the object reference is only valid as an attribute of some object.

UML

SDL

UML

SDL
Object Modelling 10 - 13 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

What is Object Modelling
Generalisation / specialisation in detail

TIMe10

Attributes are directly supported by UML attributes. Attributes can be of predefined
attribute types, and not of classes in the object model. UML introduces the possibility
that attributes can be of classes. Object references are supported by a special use of
associations.

SDL variables can be of user-defined types. This comes directly from the UML object
model. Object references are supported for processes (variables of type PId).

Generalisation / specialisation in detail

For classification of concepts we have the notions of generalisation and specialisation.
Generalisation is a means to focus on similarities between a number of concepts and to
ignore their differences. To generalize is to form a concept that covers a number of more
special concepts based on similarities of the special concepts. The intension of the gen-
eral concept is a collection of properties that are all part of the extension of the more
special concepts. The extension of the general concept contains the union of the exten-
sions of the more special concepts. The inverse mechanism is to specialise: to form a
more special concept from a general one.

In a corresponding object model, a class representing a specialised concept inherits the
properties of the class representing the general concept. It is also said to be a subclass
of the general (super)class.

From this follows that the generalisation/specialisation relation between classes is not
the same as ordinary relations. While two classes associated with a relation implies that
instances of these two classes are related, a subclass of another class implies that an
instance of the subclasses has the properties of the superclass and the properties speci-
fied in the subclass definition.

The approach followed here advocates that subclasses only extend the properties of the
superclass. It also advocates the distinction between virtual and non-virtual properties
of classes: virtual properties can be redefined in subclasses, while non-virtual cannot.
The benefit of this is that the specifier of a general class can assure that some of the prop-
erties will be the same for all subclasses.

Inheritance in this approach implies inheritance of both attributes, operations and
behaviour in terms of FSMs, that is:

• Inheritance of all attributes and operations, possibly redefinition of virtual
operations.

• Inheritance of states and transitions

• Inheritance and possibly redefinition of virtual operations as part of transitions

• Inheritance and possibly redefinition of virtual transitions.

In UML the specialisation is represented by inheritance between classes. If operations
are introduced in the UML object model, be aware that there is no mechanism for dis-
tinguishing between virtual and non-virtual operations.

UML

SDL

UML
Object Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1610 - 14

What is Object Modelling
Aggregation in detail 10TIMe
In SDL, specialisation are described by inheritance between types. The specialised types
will be described only by additional properties to those of the supertype and by redefi-
nitions of virtual types and transitions. Generalisation is supported by defining types
that have virtual properties.

Aggregation in detail

The part/whole composition is used to model that some phenomena are integral parts of
other phenomena. This is not the same as functional decomposition, but functional
decomposition is a special case, where the emphasis is on phenomena providing
functionality.

In most object-oriented languages there is little direct support for composition. It is usu-
ally supported indirectly through instance variables as in e.g.Smalltalk. Instance
variables (and thereby composition) are often considered implementation details and are
not part of the public interface of an object. Alternatively, composition is often simu-
lated using multiple inheritance. A consequence of this is that most object- oriented
languages have good support for classification, but poor support for composition.

In addition to the obvious purpose of modeling that wholes consist of parts, part objects
may also be used to model that the containing object are characterized by various
aspects, where these aspects are defined by other classes.

Composing/decomposing by means of aggregation is the counterpart to relation compo-
sition. The relationship to another object is a dynamic property - the related object may
at different points in time be different objects. A part object will be the same object
throughout the life-time of the containing object.

Representing parts by relations/references to separate objects is of course possible in
languages that do not support part objects, but it will not ensure that the relations/refer-
ences are not later changed to denote other objects.

Part objects may be compared with variables of types. The variable is the same object
throughout the life-time of the containing object, but its value may change.

Normally variables are of general or predefined types that are globally defined. The
approach followed here supports, however, that part objects may be objects of any class,
also of locally defined classes. As locally defined classes can be subclasses of globally
defined classes, it is possible to make part objects that both have general properties and
properties that are specific for the containing class.

In most cases part object are introduced because they model some important property of
the containing object - they are not just introduced as an “implementation” of the con-
taining object. In these cases it is important to be able to refer to part objects. The
approach therefore allows references to part objects, and it also supports the notion of
open aggregates.

An open aggregate is ...

Why open aggregates? It seems to be in contradiction to what is regarded as one of the
main properties of object orientation (encapsulation). These are the reasons:

SDL
Object Modelling 10 - 15 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

What is Object Modelling
Behaviour associated with the object model

TIMe10

• Aggregation is not only used for “implementation purposes”, that is parts of an aggre-

gate are not only introduced in order to implement the functionality/interface of the
container object. Often parts of an aggregate have a modeling purpose.

• Open aggregation is used to analyse situations that will end up in SDL designs where
the container objects are blocks and where the contained objects are processes, and
where the primary identification of the receivers of messages are identification of the
processes. The processes are here the main objects, and the blocks are just used for a
(static) structuring of many processes.
The corresponding situation would arise in C++ if C++ had a similar grouping con-
cept for objects and where the objects are still the main entities.
Aggregates may also turn up during design and implementation, introduced for
implementation purposes. In these cases open aggregation should not be used. In
SDL this situation will develop either block types where the contained processes will
send signals via gates and not directly to processes denoted by PIds, or process types
where the contained objects are services: they cannot not be addressed directly.

• Open aggregation may be used just for the purpose of distributing functionality
between parts (during analysis), while the design and implementation may choose to
close the aggregate. Communication links directly to parts are then just used as an
illustration. In SDL this implies that communication links to processes as part of a
block will either be turned into a corresponding number of gates, or all communica-
tion between blocks will be merged to one gate. This requires that the incoming
signals on a gate may be uniquely distributed to the contained processes and that
these either are contained in (1,1) process sets or it is not so important which process
of a process set that gets the signal.

Instead of multiple inheritance in order to give a class of object the properties of a set of
classes, it is possible to define the class to have part objects of the classes. The properties
are then indirectly available.

In UML this is directly supported by having part objects according to any class.

In SDL this is only supported in restricted forms: properties that may be defined as
properties of a set data types or as properties of a set service types can be made avail-
able for process types (by defining variables of these data types or by defining the
process type by means of services), while properties of a set of process types cannot be
made available for a process type.

Behaviour associated with the object model

Behaviour is associated directly with objects in the Object Model. Each object can have
one sequence of action. Partial sequences are represented by operations that are per-
formed by objects. Some objects may perform concurrently with other objects, while
other objects may be performed as part of the sequence of a concurrent object. This
means that if an object is supposed to model a phenomenon that have several sequences,
then this object is composed of objects, one for each sequence.

Behaviour is not handled by a separate model, but is handled as part of the object model.
The specification of inheritance in the object Model is carried over to the Behaviour
Model and has direct implications for the inheritance of behaviour.

SDL

UML

SDL
Object Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1610 - 16

What is Object Modelling
Localisation 10TIMe
Localisation

Some phenomena and concepts are only meaningful within the context of a specific phe-
nomenon or concept. Localisation of definitions supports this and gives rise to nesting
of definitions. Scope rules and binding rules determines how nested definitions may use
entities defined in enclosing definitions.

Most approaches to object orientation and most object oriented languages support local-
isation of methods: a method is located in the class defining the objects that may perform
the method, and from within the method definition the object attributes are visible.

UML does not support nesting of classes, so if this is required, either specify this in a
comment or by some naming conventions. Alternatively, make a class symbols within the
enclosing class symbol.

SDL definitions may be nested and thereby support localisation. Type definitions may,
however, be located where it is most convenient, as long as they are visible from they
are supposed to be used. If identified types in an early stage should be specified as part
of the system specification (and not yet as part of a package), they may simply be defined
at the system level, without considering where they in fact belong. General types of e.g
processes and procedures can be defined at system level, in order to be used in several
blocks of the system. More special types should be defined where they are used.

A package of types is the ultimate example on non-localised type definitions, while
exported procedures will most often be defined locally to the process (type) that exports
it. Signals are often defined in the nearest enclosing block in which they are used
between processes. As demonstrated in the example with composition of services, con-
text parameters provide the mechanism to make a type definition independent on the
enclosing scope.

UML

SDL
Object Modelling 10 - 17 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Guidelines for the use of UML and SDL for object modelling
Constructive versus illustrative parts of object models

TIMe10
Guidelines for the use of UML and SDL for object
modelling

Here we present:

• Constructive versus illustrative parts of object models (p.10-18)

• When to use UML and when to use SDL? (p.10-19)

• How to use UML and SDL in combination (p.10-19)

• How to map UML models into SDL models (p.10-19)

Constructive versus illustrative parts of object models

The use of UML relies on the following distinction between illustrative and constructive
parts of descriptions:

• An illustrative part of a domain object (or property) model description is a part that
is not automatically transformed into a corresponding design.
Examples are relations between what becomes SDL processes in the design that have
to be “implemented” because SDL does not provide relations.

• A constructive part of a domain object (or property) model description is a part that
may be automatically transformed into a corresponding design.
Examples are parts of object models with relations that may be transformed to data-
base schemes; a subtype relation between two types in the domain object model that
is transformed to the corresponding relation between the corresponding SDL process
types.

For illustrative parts of a description of e.g. an object model we recommend to use the
extensions to UML.

For constructive parts of a description of e.g. an object model we recommend to use
some existing object model notation, here exemplified by UML.

• UML for constructive parts of object models, including the specification of classes,
attributes and relations that are supposed to survive as relations in the functional
design. We recommend that the relation aggregation should not be used.

• UML for the illustrative parts of the conceptual model specification and for the
aggregation relation.

• MSC for the specification of behaviour properties associated with both classes and
roles.

• The UML notation for object modelling is described in the Tutorial on UML, while
an MSC Tutorial provides an introduction to MSC used for Property modelling.
Object Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1610 - 18

Guidelines for the use of UML and SDL for object modelling
When to use UML and when to use SDL? 10TIMe
When to use UML and when to use SDL?

As a general guideline, UML is used for domain object modelling and SDL for design
object modelling. The reasons for using UML for domain object modelling are:

• It is richer than SDL on relations that may be important for the understanding and
communication about the domain.

• It is easier to make incomplete descriptions, e.g just specifying the names of
attributes and not the types.

• It is not necessary to take decisions on whether an object is a block, process, service
or type value.

If these reasons are not important, then SDL may be used as well. SDL may also be used
for the domain object modelling in cases where

• state oriented properties of domain objects are part of the domain model,

• communication links should be described with great detail (signals and signal lists.

SDL will also be used when inheriting a domain model in terms of packages of SDL
types.

SDL is normally used for design object models, but there is one case where it may be
more appropriate with UML:

• the “system” really consists of a database component (in UML), a user interface com-
ponent (in some other language) and a “controlling” component (in SDL).

How to use UML and SDL in combination

This is the topic of the coming Z.109 standard SDL with UML, and a discussion on this
will be included in the next edition of TIMe.

How to map UML models into SDL models

UML may have been used for illustrative purposes, and for those parts the mapping may
require some work.

• Attributes of user defined classes
The classes defining types of attributes are mapped onto data types. Operations are
mapped to operators.

• Operations on objects
These are mapped to remote procedures.

• Real aggregations of active objects.
Two different cases apply:

- If the container object is just a container object, that is it has no attributes, operations
or behaviour, then the mapping is to an SDL block with processes.

- If the container object has attributes, operations or behaviour, then the mapping is to
a block with an extra process that gets the properties of the container object.
Object Modelling 10 - 19 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Guidelines for the use of UML and SDL for object modelling
How to map UML models into SDL models

TIMe10

• Real aggregations of passive objects.

- If the container object is just a container object, that is it has no attributes or opera-
tions, then the mapping is to a struct data type.

- If the container object has attributes or operations, then the mapping is struct object
with all the attributes and operations.

• How to map relations
SDL does not support as relations, so either this part of the UML model should be
covered by a database part of the application, or the relations shall be mapped onto
PIds, but this only works for processes.

• Specialisation
If only single inheritance is used, then the mapping is straight forward. Behaviour is
probably specified directly in SDL, so there is no need for a mapping. If UML is used
for describing the behaviour of objects, then the following mappings apply:

- tbd

• Localisation
Mapping is straight forward.
Object Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1610 - 20

List of figures
How to map UML models into SDL models 10TIMe
List of figures

How object modelling is used in TIMe . 2
Object Modelling 10 - 21 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
How to map UML models into SDL models

TIMe10
List of definitions

Aggregation . 22
Attributes . 22
Behaviour associated with an object model. 23
Class with constraints on its environment . 23
Connections . 23
Generalisation/specialisation . 24
Localisation (nesting). 24
Object classes with attributes, relations and connections . 24
Real aggregation . 24
Relation aggregation . 24
Relations . 25

Aggregation

All non-trivial systems are composed from components. The process of putting compo-
nents together to form a whole is called aggregation. Aggregation enables us to associate
a single concept and a name with a composite object. This helps to simplify matters con-
siderably when we are dealing with the object as a whole. But to build the object and use
it correctly we need to understand what it consists of.

An aggregate is an object in itself and the part objects are parts of this object only. This
is in contrast to aggregation just by using ordinary relations.

The opposite process of decomposing a whole into parts is called partitioning (or
decomposition).

We distinguish between relation aggregation and real aggregation.

Attributes

Attributes of objects are “value” properties that are not covered by part objects (aggre-
gation). Attributes are defined by a name and a type. In Domain Object Models this is
informally specified, but it is still worthwhile to use a type that will be defined as an
attribute type or class in the Design Object Model.

For the specification of attributes in UML, see attribute specification in UML.

For the specification of attributes in SDL, see variable definition in SDL.
Object Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1610 - 22

List of definitions
How to map UML models into SDL models 10TIMe
Behaviour associated with an object model

If a class of objects has been identified as part of the object modelling, then it is possible
to associate behaviour with objects of this class. If some behaviour has been identified
without being associated with any object or class (but a role), then it is possible to asso-
ciate it with classes later or combine it with other behaviour specifications to new roles
or classes.

Depending upon the nature of the behaviour that is desirable to express, it is either
expressed in terms of MSC or in fragments of SDL process graphs. The latter may be
applicable if the analysis is based upon existing specifications in SDL or in case it is
desirable to specify behaviour properties like “instance of type AccessPoint” shall
always (that is in any state) accept a Log signal and respond to the Logger with the cur-
rent status of the point”.

Class with constraints on its environment

Classes are often defined with a specific purpose in mind, and especially for the behav-
iour of a class (typically becoming a process type in SDL) it is necessary to know what
other processes will be in the environment. This is typical for the scenario with several
equally “important” objects that have to co-operate in order to do a task. It will, how-
ever, reduce the reusability of the class in other contexts where these other objects will
not be. A quite different scenario is the specification of a typical “server” object class
that should work in any context and where the behaviour is independent on the behav-
iour of the client objects.

A specification of a class with constraints on it environment contains the following
elements:

• The class definition in focus may contain a definition of the attributes of the class (the
intention).

• The environment of a class is important for the understanding of its purpose and con-
straints. Therefore, the environment of importance has been depicted outside the
class. Entities in the environment represent roles.

• When the class is instantiated there will be entities in the actual instance environment
that will play the roles. Therefore, all instances must comply with the roles given to
them by the other instances.

A class definition may include a prescription of what we consider a valid instance envi-
ronment. The entities and relations in the environment of a class represent roles that
shall be played by actors in the environment of an instance of the class.

Connections

Objects are connected if they are involved in communication with each other. This is
different from objects being related, as this will only imply that the objects may be
reached by navigating along the relations.

When using SDL as the design language, connected objects will mainly be objects that
will be represented by blocks or processes in SDL.
Object Modelling 10 - 23 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
How to map UML models into SDL models

TIMe10

Generalisation/specialisation

For classification of concepts we have the notions of generalisation and specialisation.
Generalisation is a means to focus on similarities between a number of concepts and to
ignore their differences. To generalize is to form a concept that covers a number of more
special concepts based on similarities of the special concepts.

The intension of the general concept is a collection of properties that are all part of the
extension of the more special concepts. The extension of the general concept contains
the union of the extensions of the more special concepts. The inverse mechanism is to
specialise: to form a more special concept from a general one.

Note that the exact meaning of specialisation will only be given when it is applied in a
formal language. When using specialisation in the domain object modelling it is recom-
mended to use it in a way that will not be very different from the meaning in the design.

Localisation (nesting)

Some phenomena and concepts are only meaningful within the context of a specific phe-
nomenon or concept. Localisation of definitions supports this and gives rise to nesting
of definitions. Scope rules and binding rules determine how nested definitions may use
entities defined in enclosing definitions.

Object classes with attributes, relations and connections

This aspect of object modelling has to do with identification of classes without consid-
ering how many instances there will be in a given system and also without considering
how they are used in the design of specific systems or other instances.

Real aggregation

Real aggregation is supported by UML.

Real aggregation implies:

• that the part object is only part of one object, and

• that possible relations specified with the part object (class) as endpoint only hold for
the part object and not for all objects of this class.

UML adorns the association with a filled diamond and calls it composition.

Relation aggregation

This is the form of aggregation where the part objects are just related to the composite
object with a special relation, but still just a relation. This was the only form of aggre-
gation supported by OMT.

UML adorns the association with a hollow diamond and calls it aggregation.
Object Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1610 - 24

List of definitions
How to map UML models into SDL models 10TIMe
Relations

A relation represents application specific relationships between objects of the involved
classes. Instances of a relation are called links and consist of tuples of object references.
Structural “relations” such as subclass-of and part-of are not regarded as relations, but
as separate constructs.

Relations can be used either as the basis for automatic generation of the corresponding
part of functional design (e.g. a database part of the design) - that is as constructive parts
of the conceptual model, or as illustrations of properties that will be “implemented” in
some way in the design.
Object Modelling 10 - 25 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
How to map UML models into SDL models

TIMe10
Object Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1610 - 26

	Introduction
	Figure 10-1: How object modelling is used in TIMe

	Elements of an object model
	Establishing an object model
	Object classes with attributes, relations and connections
	Connections
	Relations
	Attributes
	Guidelines

	Generalisation / specialisation
	Guidelines

	Aggregation
	Guidelines

	Classes with constraints on their environments
	Behaviour associated with the object model
	Localisation (nesting)
	Guidelines

	What is Object Modelling
	Object classes with attributes, relations and connections
	Relations in detail
	Connections in detail
	Attributes in detail
	Generalisation / specialisation in detail
	Aggregation in detail
	Behaviour associated with the object model
	Localisation

	Guidelines for the use of UML and SDL for object modelling
	Constructive versus illustrative parts of object models
	When to use UML and when to use SDL?
	How to use UML and SDL in combination
	How to map UML models into SDL models

	List of figures
	List of definitions
	Aggregation
	Attributes
	Behaviour associated with an object model
	Class with constraints on its environment
	Connections
	Generalisation/specialisation
	Localisation (nesting)
	Object classes with attributes, relations and connections
	Real aggregation
	Relation aggregation
	Relations

