
TIMe TIMe Electronic Textbook
14 Tutorial on MSC-92
Introduction .2
What is a message sequence chart? .2
The connection between MSC and V&V. .3
Early uses of MSC .4
Standardization of MSC .4

Instances and Events .5
Timers .8
MSC document and Conditions .10
Coregion and submessage charts .12
Instance creation and instance stop .15
Formal definition of MSC .16
Summary of tutorial .18
How to use MSC-92 effectively .19
MSC classification concepts .19
Step 0: Make explicit the company MSC strategy. .21
Step 1a: The first mscs .23
Step 1b: Establish the interplay with non-developers .25
Step 2a: Coping with variants and similarity .25
Step 2b: Approach the details .27
Step 2c: Express the inexpressible .30
Step 3: Approach the design specification .34
Step 4: Produce test mscs .39
Summary of MSC modelling methodology .41

List of figures .42
List of definitions .43

MSC-92 Tutorial
Tutorial on MSC-92 14 - 1 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Introduction
What is a message sequence chart?

TIMe14
Introduction

Here we give the background for the use of message sequence charts, its history and its
early uses. For a quick summary of MSC and a good starting point for linking to all
aspects of MSC look up Summary of tutorial (p.14-18).

The diagrams of this tutorial contain links to more information on the concepts
explained inside the diagrams. Please explore these links while you are trying to under-
stand the diagrams.

What is a message sequence chart?

Our domain is systems with a number of independent actors which interact through
sending messages to each other. The behavior of the actors are dependent upon the mes-
sages they receive. In this context there are two orthogonal perspectives:

1. Emphasize the behavior of each individual actor, and try to describe the behavior as
completely as possible;

2. Emphasize the interaction between the actors indicating that the interplay between
the actors is the most important aspect. Often only a small portion of the total variety
of behavior is described.

The first approach is the perspective of SDL, while the second approach is the view of
MSC. While SDL describes the painting of a picture, MSC describes the picture. MSC
thus describes the product while SDL describes how the product is reached – the pro-
cess. The skills needed to describe the process (how to paint) are not equivalent to the
skills needed to describe accurately the product (the painting). Just as a theater critic
may not necessarily be the best playwright (or vice versa), the customer may very well
be a good MSC user while the engineers take care of the SDL design.

MSC concentrates on describing the message-sending between instances. The important
invariant for messages is that a message must be sent before it is received.
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 2

Introduction
The connection between MSC and V&V 14TIMe
Figure 14-1: An MSC

Open figure

The Figure 14-1 (p.14-3) shows an msc which describes a very simple interaction
between a user and an access control system. The user presents (in some way) his per-
sonal code to the system which then returns that the user is eligible to enter the door. The
user then pushes the door open. This access control example will be used extensively
throughout this tutorial. The reader can find more about the example in [24].

This msc is of course only one situation, and from this msc one cannot deduce others.
On the other hand MSC can be understood by almost anyone. Even the market depart-
ment seems to be able to understand mscs.

The connection between MSC and V&V

In this report we shall look at how MSC can be used in order to improve the formaliza-
tion of the descriptions. Traditionally MSC (or notations similar to MSC) has been used
to sketch interaction sequences in the early phases of the development. In less degree the
mscs have later been used as references for more stringent scrutiny of the design or
implementation. This is, however, the aspect which we will address in this report.

We will also give a very brief tutorial on MSC to update reader unacquainted with MSC.

Through the standardization of MSC in ITU, the language has evolved from being a sim-
ple notation to being a formal description technique. It is theoretically possible and
practically feasible to check the consistency between an msc and an SDL description. In
that way the correctness and validity of the design can be ascertained.

User AC System

Code

OK

Push door

msc User_accepted

MSC heading

(more)

MessageEvent EnvironmentInstance

Timeline
(more)
Tutorial on MSC-92 14 - 3 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Introduction
Early uses of MSC

TIMe14

We will also argue that using MSC in a formal way will decrease ambiguity and improve
the overall understanding of the problem domain. Other SISU reports also cover MSC,
see [82], [88] and [172].

Early uses of MSC

Notations similar to MSC have been used by Norwegian companies for a number of
years. NFT-Ericsson, Garex, Stentofon and Telox have all used signal sequence dia-
grams to facilitate understanding, for intra team communication and for communication
with peripheral participants and customers. These companies are now beginning to used
case tools which include modules with MSC.

The early uses were mostly to sketch interesting situations in an informal way. The dia-
grams were decorated freely with proprietary annotations which added to the basic MSC
notation. Such annotations included referencing other mscs, alternatives within one msc
and looping [88]. We find mscs which are used as high level documentation and msc
which give a detailed account of some intricate feature. The different levels of abstrac-
tion cannot easily be compared without thorough insight into the problem domain and
the system in question.

Standardization of MSC

Several companies have used different dialects of message sequence charts for a number
of years. In the SDL user guidelines of 1988 [35] we can find a short section on such
sequence charts. At SDL Forum in Lisbon in 1989 a paper on “Extended Sequence
Charts” [70] was presented; it marked the start of an effort to define and standardize the
MSC language.

The standardization work was carried out by the CCITT Study Group 10 in question 8
on maintenance of SDL, and it led to the acceptance of the language MSC as a recom-
mendation [105]. There was agreement on a language which represents the most basic
concepts used within sequence charts. It was acknowledged that there may be a need for
developing the language further. For a detailed account of the history of MSC, see [69].

In the current standardization work, MSC is handled by a separate question in ITU Study
Group 10 (question 9). The work is organized in three parts. The overall responsibility
of MSC including extensions and modifications is given to Ekkart Rudolph of Siemens,
Germany, as the rapporteur of question 9. Furthermore the formal semantics for MSC
has been brought forth by the associate rapporteur on semantics, Sjouke Mauw, Eind-
hoven University of Technology in the Netherlands.

It was recognized already in the former study period that a number of users wanted some
concepts to structure their mscs better. Macro concepts and type concepts were sug-
gested in contributions, but the study group decided that the matter should be deferred
into the next study period. In this period Øystein Haugen was appointed associated rap-
porteur of structural concepts.
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 4

Instances and Events
Standardization of MSC 14TIMe
Instances and Events

In order to be sure that the reader can follow the more constructive parts of this method-
ology, we shall give a brief introduction to the language MSC 92 as it is standardized by
ITU[105].

The reader should bear in mind the purpose of MSC: to describe the interaction between
a set of communicating actors. The focus is on the communication itself, the sequence
in which the messages occur and not the reasons for why the messages are sent or what
will happen when they are received.

MSC can describe interaction within an SDL system, but MSC as a language is indepen-
dent from SDL.

The actors of an msc are called instances. They are described by an instance head and
an instance end connected by a timeline as shown in

Figure 14-2: Instance

Open figure

The instance head and instance end represent the start and end of events on the instance
timeline within the msc. They do not indicate anything about creation and termination
as we shall see below. The timeline of an instance contains a sequence of events. The
most basic events are output and input of a message. Each message has exactly one out-
put event and one input event. Messages are communicated between instances or
between an instance and the environment. The environment is represented by the frame
around the MSC diagram

User instance head

instance end

instance name

timeline (instance axis)
Tutorial on MSC-92 14 - 5 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Instances and Events
Standardization of MSC

TIMe14

Figure 14-3: MSC diagram

Open figure

The events are ordered along each timeline, but events on different timelines are not
ordered. This means that MSC cannot describe absolute time. In Figure 14-3 (p.14-6)
we can deduce that along the User timeline the order is: output of Code, input of OK,
output of Push door. From the figure we cannot deduce anything about the order of out-
put of Unlock and output of Push door. In fact this is what the reader may have
experienced with such a system. He tries to enter the door after having seen the OK sig-
nal from the display (a green light or similar), but pushing the door does not ensure the
door to open because the door has not quite been unlocked by the system. Gaining expe-
rience he will know how long to wait for the door to open. How long he will have to wait
cannot be described in MSC. The distances between the events on the timeline have no
significance.

Note also that MSC describes the possible sequences of events, but says nothing about
the underlying causes of the events. That the output of Code precedes input of OK does
not mean that the output of Code causes input of OK. If we know we are describing
behavior of SDL systems, we may deduce that the consumption of Code triggered the
sending of OK, but MSC only describes that there is a sequence. MSC does not indicate
that there are no other possibilities. Possibly there is another msc in the same MSC doc-
ument which describes that the message NOK follows the message Code.

MSC describe communication between instances. An instance need not be a process in
SDL terms. In Figure 14-3 (p.14-6) we see that AC System is an SDL system.

MSC describes asynchronous communication. Input is normally interpreted as con-
sumption of the message. When messages are asynchronous, it is important to be able
to describe message overtaking i.e. that one message may be consumed before another
event though the latter was output before the first one. Figure 14-4 (p.14-7) shows an
example.

User AC System

Code

OK

Push door

msc User_accepted_1

the msc name

Unlock

frame
(environment)

output

input

message to the

message name

environment
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 6

Instances and Events
Standardization of MSC 14TIMe
Figure 14-4: Message overtaking

Open figure

User AC System

Code

OK

Push door

msc User_accepted_2

UnlockCard out

input of
OK
comes
before
input of
Card
out

output
of Card
out
comes
before
output
of OK
Tutorial on MSC-92 14 - 7 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Timers
Standardization of MSC

TIMe14
Timers

We mentioned in Instances and Events (p.14-5) that MSC does not express duration as
distance on the timeline. As SDL MSC express time only through timers. A timer is a
message which is dependent upon time. A timer can be set (started) and reset (termi-
nated) by the instance and a timer may expire which means an input event. Reset timers
will not expire

Figure 14-5: Timer set and timeout

Open figure

In Figure 14-5 (p.14-8) we describe the situation where the User is accepted, but he for-
gets to push the door. Possibly he is distracted or he does not see the OK message. The
AC System will detect this through the expiration of the timer door. Then it will lock the
door such that no unauthorized persons will enter. The preferred situation, however, is
the following

User AC System

Code

OK

msc User_accepted_timeout

UnlockCard out
Timer door set

Timer door
timeout

door

Lock
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 8

Timers
Standardization of MSC 14TIMe
Figure 14-6: Timer set and reset

Open figure

The User actually pushes the door in Figure 14-6 (p.14-9) and the door opens, which
results in a message Opened to the AC System. This again makes he AC System reset the
timer door.

The syntax for timers shown here deviates from the Z.120 standard of 1992, but is
according to what will become the next standard (Rudolph 1994). The timer set con-
struct and the reset (or timeout) constructs may also be separated. This is practical when
the distance between the setting

and fulfillment is considerable like across page boundaries. The timer name must be
repeated at the fulfillment. When the timer timeout is separated from the set construct,
the hourglass must be repeated. In general the hourglass with corresponding timer name
may be repeated any number of times along the vertical line if that is used.

User AC System

Code

OK

msc User_accepted_reset

UnlockCard out

Timer door set

Timer door
reset

door

Opened
Push door
Tutorial on MSC-92 14 - 9 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

MSC document and Conditions
Standardization of MSC

TIMe14
MSC document and Conditions

We have in the preceding sections given a number of different MSC diagrams. Some of
them are only extensions of some of the others, but some also describe alternatives.
When we are faced with a complex reality we must expect to use more than one msc to
describe our system. The set of mscs that we use to describe a specific piece of reality
is called an MSC document. The question now is how we may describe relations
between different mscs within the MSC document. Z.120 includes a mechanism which
is called condition which is motivated by the need to combine mscs into larger mscs. The
term “condition” is inspired by the Hoare logic (Hoare 1969), but there is no predicate
logic behind the MSC term. The MSC condition is merely a label. The idea is that an
MSC may have a start condition and an end condition. Combining two mscs where the
end condition of the first is equal to the start condition of the second is legal. Combining
mscs with unequal conditions is not legal. Conditions may be shared by all instances of
an msc or by only a subset of the instances. The concept will become clearer when we
look at a small example (Figure 14-7 (p.14-10)) which builds upon the mscs that we
have already presented

Figure 14-7: Conditions

Open figure

We notice that the conditions also have the flavor of states. If an SDL system is
described by the MSC document it is feasible to let the conditions represent specific sys-
tem states. Normally the complete set of system states is too large to describe explicitly
as conditions

User AC System

Code

OK

msc User_accepted_3

UnlockCard outfinal
condition

Idle

Door unlocked

initial
condition
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 10

MSC document and Conditions
Standardization of MSC 14TIMe
Figure 14-8: Alternatives by conditions

Open figure

The two mscs Unlocked_reset and Unlocked_timeout in Figure 14-8 "Alternatives by
conditions" (p.14-11) represent alternative courses of action from the state Door
Unlocked. We also notice that they both end in Idle which is also the start condition of
User_accepted_3. This may be interpreted as describing an iterative situation.

Still one should bear in mind that the conditions are not synchronization primitives
meaning that the different instances are not “within the condition” all at the same instant.
The conditions are merely there for the combination of mscs.

The reader should likewise be aware that the interpretation of conditions in MSC docu-
ments is not trivial. The Question 9 group in Study group 10 of ITU have spent some
time discussing the issue. Do the presence of conditions mean that the legal combina-
tions of the mscs are implicitly performed? What is then the role of the mscs without
conditions?

User AC System

msc Unlocked_reset

door

Opened
Push door

Door unlocked

Idle

Closed

Lock

door

Lock

User AC System

msc Unlocked_timeout

Door unlocked

Idle
Tutorial on MSC-92 14 - 11 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Coregion and submessage charts
Standardization of MSC

TIMe14
Coregion and submessage charts

MSC 92 have some more features which in some ways increase the expression power of
the language, but which also decrease the simplicity of human understanding and formal
interpretation.

Coregion is a concept which is motivated by the fact that sometimes one does not care
in which order a set of events occur

Figure 14-9: Coregion

Open figure

In Figure 14-9 (p.14-12) the User does not care whether he receives/consumes Card out
or OK first.

The problem arises if we want to express the following extended situations. The User
does not care about OK at all, but whenever he receives Card out he will Push door.
Even if we assume only the three messages mentioned, it is not trivial to describe using
coregions. We cannot let the coregion comprise the output of Push door, since then there
is the sequence where Push door precedes the reception of the two other messages. We
could let the coregion comprise only the inputs of messages OK and Card out, and then
let the output of Push door follow outside the coregion. This is not quite right either
since then the sequence <input Card out, output Push door, input OK> is not described,
but it is within our informal statement. The fact is that coregion is not general enough.
This means that there is a chance that the MSC describer will describe something which
does not quite cover what he wants. And finally the greatest risk is that he believes he
has covered it, but formally he has not.

Submsc is motivated by the need to look into an instance for more communication
details. Our AC System instance obviously contains a number of “smaller” instances.
The requirement analysis may want to express details about the internal behavior of the
system

User AC System

Code

OK

msc User_accepted_4

Unlock

Card out

Idle

Door unlocked

coregion
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 12

Coregion and submessage charts
Standardization of MSC 14TIMe
Figure 14-10: Decomposed

Open figure

When we want to define a submsc of an instance we depict that in the instance header.
The decomposed instance must have the same interface as given by the instance in the
msc of higher granularity. With AC System of Figure 14-10 (p.14-13) we must have that
input of Code is followed in sequence by the outputs of Card out, Ok and Unlock

Figure 14-11: Submsc

Open figure

User AC System

Code

OK

msc User_accepted_5

Unlock

Card out

Idle

Door unlocked

declaring
decomposition

decomposed

Panel Local StationControl

Code

OK

submsc AC System

Unlock

Card out

pseudo-
message

Central Unit

Code
Code

OK

OK
Synch

submsc heading

decomposed
Tutorial on MSC-92 14 - 13 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Coregion and submessage charts
Standardization of MSC

TIMe14

Figure 14-11 (p.14-13) illustrates two problem areas of the submsc concept. Firstly the
static requirement that the interface should be exactly matching is not simple to cope
with. While one instance’ timeline is strictly ordered, it is seldom the case with the exter-
nal events of an msc with independent instances. In our example the message Synch has
been added for the sole purpose of forcing the output of OK from Panel to environment
to precede output of Unlock to the environment. Synch is then only a pseudo-message
only present for synchronization, a synchronization not actually wanted in reality. In this
case we could have loosened up the msc User_accepted_5 by containing the three out-
puts in a coregion of instance AC System.

Secondly there cannot be more than one submsc with the same name. This makes it
impossible to decompose instances with the same name from different upper level mscs.
This problem has been dealt with in MSC-96.
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 14

Instance creation and instance stop
Standardization of MSC 14TIMe
Instance creation and instance stop

Almost by definition since MSC is the description of the “picture”, it is hard to imagine
how we should describe an arbitrary number of instances. On the other hand that is what
dynamic creation is all about, to create a number of instances depending on the situation.
We shall not dwell in this philosophical corner, but show how creation and termination
of instances are described in MSC (see Figure 14-12 (p.14-15))

Figure 14-12: Instance dynamics

Open figure

The idea here (though rather far fetched) is that the CUControl needs to create a new
process in the big mainframe computer to perform the task of authorizing the received
Code. We see a situation where several Authorizers work in parallel. This would make
the Access Control System take more resources from the mainframe computer when
there is a heavy load on the access control (like in the morning or the afternoon).

CUControl

Authorizer

OK

submsc Central Unit

instance
stop

Code

instance
create
Tutorial on MSC-92 14 - 15 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Formal definition of MSC
Standardization of MSC

TIMe14
Formal definition of MSC

We present the ideas behind the formal definition of MSC in order to give the advanced
reader more background on the semantics of MSC.

Any notation which is driven by user needs is judged by its illustrative properties. This
means that the semantics of the charts are often left to the experience and imagination
of the readers. Still the use of the notation may serve its purpose well, and actually con-
tribute to the improvement of the description and the understanding. In general informal
semantics lends itself to ambiguities, and it was early recognized a need for a formal def-
inition of MSC. Two conceptually different approaches were investigated, one using
Petri-Nets [74] and one using process algebra [136]. After considerable discussion and
investigation and due to the resources available, a process algebra approach was
decided. The formal semantics is found in annexes of the standard Z.120 [107].

The formal semantics consists of a set of equations which are associated with the con-
structs of the language. Most of the equations can be seen as transformation rules which
transforms one term into another. The whole equational system of MSC can be made
into a rewrite system as indicated in [137]. This means basically that any chart in MSC
can be transformed into a canonical representation. The canonical representation is a
tree where each leaf node is an atomic action and each subtree root a basic operator. The

basic operators are the strict ordering operator
1
 and the non-deterministic alternative

operator
2
. The transformation of the msc into the canonical representation can be done

automatically. Two mscs are equivalent if they can be transformed to the same canonical
representation.

The formal semantics of [107] takes as basic notion that along each instance axis, the
atomic actions are strictly ordered. Atomic actions include output events and input
events plus events for timers, internal actions, creation and stop of instances. For sim-
plicity in this paper we consider only output and input events. The events of different
instances are in principle not ordered and parallel composition operator can be used on
the set of instances. This does not entirely suffice because there is an important invariant
in MSC that output of a message must occur before the corresponding input. The formal
semantics applies a variant of a “state operator” to filter away those sequences which
violates this restriction. For definition of the state operator, see [136].

We shall give a very small example (Figure 14-13 (p.14-17)) which still is complicated
enough to illustrate that interleaving of events quickly turn into a number of possibilities

1. a.b means that first a will happen then b will happen
2. a+b means that either a or b will happen
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 16

Formal definition of MSC
Standardization of MSC 14TIMe
Figure 14-13: An example for formal semantics

Open figure

The semantic expression becomes1:

out(i,env,u).in(env,i,t)

The expression is a tree of decisions. For each alternative (+) there is a decision between
equally eligible paths. Firstly either output of t or output of u may occur. If output of t
has occurred, then output of u must be the next event, etc.

1. out(env,i,t) means output event from environment to instance i with message name t

i

msc X

t
u

Tutorial on MSC-92 14 - 17 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Summary of tutorial
Standardization of MSC

TIMe14
Summary of tutorial

MSC is a simple language. MSC is based on intuitive concepts: instances communicat-
ing with messages which are described by arrows.

The intuitive nature of MSC is also its disadvantage as the user and reader may jump to
semantic conclusions which are not valid. The following properties are important:

• A message is asynchronous, the output must come before the corresponding input.
(See Introduction (p.14-2))

• The events on an instance’ timeline are strictly ordered (See Instances and Events
(p.14-5)) (if it contains no coregion shown in Coregion and submessage charts (p.14-
12)).

• The distance between events is not significant.

An MSC document consists of a set of mscs. Different msc within the same MSC doc-
ument are related by conditions. A condition is a label which signifies a global or local
state. Conditions can be used to mark situations where there are different alternative
continuations, and they may describe looping. (See also MSC document and Conditions
(p.14-10))

Structuring concepts are few. An instance (within an msc) may be detailed in a submsc
as described in Coregion and submessage charts (p.14-12).

A coregion is a part of a timeline which has the property that the events may come in
any order. The user should be aware of the power of this construct as it is not always
trivial to interpret intuitively.

 Instance creation and instance stop (p.14-15) can also be described.
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 18

How to use MSC-92 effectively
MSC classification concepts 14TIMe
How to use MSC-92 effectively

Even though MSC is simple and may be read and produced by engineers without much
formal training, it is possible to make bad MSC documents. It is possible to make beau-
tiful mscs which say nothing, and it is possible to make messy mscs which are meant to
convey critical information. It is possible to make terrible mscs in an early phase which
makes it impossible to design a sensible system in a later phase without altering the orig-
inal mscs considerably. As MSC is used extensively in very early stages of a project, it
is utterly important that the mscs are as good as possible. Any early deficiency is pun-
ished by multiple troubles later.

In this chapter we shall give some guidelines on how MSC should be used in order to
express the real desires. Furthermore we shall give indications about how mscs should
be in order to be used in formal contexts for model checking and test generation.

We will use the Access Control System as our example. Due to the very limited space
we cannot present more than a moderate extract of the MSC document in this chapter.
For the same reason we will refer back to diagrams shown earlier in the report as much
as possible.

MSC classification concepts

Validation predicates

Validation is the association of the description with the world. Literally it means to “give
value to” the description or system.

We may classify behavior which are expressed by MSC by the validation predicates as
can be seen in Figure 14-14 (p.14-19)

Figure 14-14: Venn diagram of validation predicates

Open figure

Normal
behavior

Exceptional behavior

Erroneous behavior

Impossible behavior

Critical behavior

Possible behavior
Tutorial on MSC-92 14 - 19 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

How to use MSC-92 effectively
MSC classification concepts

TIMe14

Normal behavior is the behavior which we expect. Very often the normal behavior is the
reason for making this system (or module). Exceptional cases are those which may hap-
pen, and which we should prepare for, but which we do not consider normal. The
erroneous behavior is behavior which we try to avoid, but which should not destroy our
system. Recovery should be performed gracefully. Impossible behavior is behavior that
cannot happen. The specifier will make certain that the impossible behavior cannot hap-
pen through formal reasoning and extensive testing. Critical behavior overlap the other
predicates. Critical normal behavior is typically behavior on which the success of the
system relies. Auxiliary requirements such as capacity demands are often attached to the
critical normal requirements. Critical erroneous behavior is behavior which should be
taken care of as smoothly as possible, but the user will normally accept to notice the
recovery. Critical impossible behavior is closely related to the overall safety require-
ments of the system. Some systems may overlook cases considered impossible. If they
still prove to exist, a system breakdown is not considered fatal. Other systems will spec-
ify recovery even for impossible cases.

Descriptive goal

The descriptive goal of an msc differs depending on when in the system development
process, for what purpose and to whom it was made.

Many mscs are used as intermediate sketches which only purpose is to increase the
understanding of the participants of some discussion. They are seldom meant to be
maintained, but become historical in the sense that they only exist in the record files of
the project. The life span of such mscs are very limited but their audiences may be fairly
large as they are often on a fairly high abstraction level. We call these mscs historical.

Other mscs are included in top level documentation and may sometimes be included in
contracts. They are typically maintained by the documentation system and have no for-
mal connection to the mscs of the dedicated case tool. Their instances and messages are
very high level. The system to be made is often seen as one instance. The message names
are non-technical. Such mscs are often partial. Their audience is high managers and non-
technical decision-makers. We call these mscs documentary.

Then we have the requirements specification. The target audience is project team mem-
bers and representatives of the customer (or market department). These mscs should be
maintained throughout the product life span within the dedicated case tool. The set of
requirements form one MSC Document on its own. It will be reviewed during system
acceptance.

Integrated case tools like Geode and SDT will encourage the designer to use MSC
together with SDL. Block behavior may first be described by an MSC before the com-
plete specification is done in SDL. Consistency can be checked continuously. We call
such mscs design mscs. The target audience is the project team.

Finally we have the test mscs. While the requirement mscs may constitute a subset of
the test mscs, the requirement mscs will normally not suffice since information and cre-
ativity have been added in design and implementation phases. The test mscs are detailed
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 20

How to use MSC-92 effectively
Step 0: Make explicit the company MSC strategy 14TIMe
descriptions of behavior which are important for the correct behavior of the system. The
target audience is the testers and the managers. The life span is long since the test suite
should be repeated automatically after each modification during maintenance.

Step 0: Make explicit the company MSC strategy

MSC is used in several ways in the system development process. The role of MSC is
different in the different situations. It is important that the company (or project) has a
clear notion of how they try to use MSC. In this section we shall develop a check list of
questions which should increase the awareness of the MSC strategy in the company.

What tools will be used to produce and maintain the mscs?

If the initial requirement specification is a large document where the bulk is pure textual
prose, it is reasonable that the mscs of the initial requirements are made within that doc-
ument preparation system. The argument is also that these mscs will not be transformed
through automatic means to a detailed requirement specification. With the advent of

integrated environments like Motif, Windows or Mac/OS1 it becomes easier to establish
document links between parts made by different applications. Thus diagrams of the ded-
icated MSC tool can more easily be integrate into the documentation system.

If MSC is supposed to be used for formal purposes, it is necessary to use a tool with inte-
grated MSC capabilities. There are dedicated MSC tools, but the most common
approach is to use an MSC tool which is integrated with the design tool. Joint mainte-
nance of MSC descriptions and the design is desirable.

How do the MSC documents cover the universe of mscs?

For each aspect where MSC is used for specification it is necessary to have some idea
about what the coverage of the description is. By coverage we mean how the set of
described behaviors relate to the set of all behaviors. It may in theory be possible to

Table 14-1: Target audience and life span

Descriptive
goal

Target audience Life span

historical project members,
managers, potential
customers

temporary

documentary managers, customers negotiations or product span

requirements customer, project
team

project

design project team project

test testers, customers product span

1. Trademarks of OSF, Microsoft and Apple
Tutorial on MSC-92 14 - 21 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

How to use MSC-92 effectively
Step 0: Make explicit the company MSC strategy

TIMe14

describe all possible behaviors, but it may not be practical. Then we should have some
strategy for the profile of the MSC document relative to the validation predicates
defined in .

The validation predicates are targeted to help the production of an MSC document
which does not have full coverage. In most projects full coverage is not considered prac-
tical and MSC 92 is not quite powerful enough to support it.

The company must decide how the set of behaviors shall be covered. Shall emphasis be
put on the normal cases? Should all erroneous cases be specified? What examples of
impossible behavior should be included?

It is generally advisory to include mscs of all categories. Safety critical systems should
have emphasis on exceptional and erroneous behavior, while systems where its features
are the most important asset would emphasize specifying normal situations. Methodol-
ogies like CleanRoom [53] will device coverage profiles based on statistical models of
the usage of the system. This approach is in good harmony with ours.

Our Access Control System is neither very safety critical nor very feature-oriented. We
will give an MSC document with a few mscs of each category.

Which MSC documents are to be produced?

Acknowledging that different msc may have different descriptive goals and thus differ-
ent life spans and different target audiences, the company should take care to decide
which MSC documents they will produce and how these relate to descriptive goals.

As a starting point the company should consider one MSC document for each descrip-
tive goal category. The different MSC documents serve not only different descriptive
goals, but also different organizational goals and it is wise to keep them apart in time
and space. Still the MSC documents need not be disjoint and they should preferably be
formally consistent.

The documentary MSC document can be used in contracts and the requirements mscs
are the bulk of the functional requirements. Both these MSC documents should not be
subject to continuous updates since they serve as baselines which define the product for
the customers and managers. The design mscs, on the other hand, serve as aids in the
design process and are updated ad lib along the design process. The test MSC document
defines the test suite and should include the functionality of the requirements
specification.

How is information not expressible in MSC attached?

Most companies find that MSC 92 is not 100% satisfactory to express their requirements
or documentary needs. They will want to add proprietary notation such that the inex-
pressible is expressed. The company should specify how the proprietary information is
attached. We return to this in Step 2c: Express the inexpressible (p.14-30).
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 22

How to use MSC-92 effectively
Step 1a: The first mscs 14TIMe
Step 1a: The first mscs

Our metaphor for building our MSC document is a news photographer covering a major
event. Firstly he will make sure to take pictures of the main characters – the normal
cases. Then he will look for some exceptional situation which might sell better to the
public and which may capture unexpected problems like the police horse galloping.
Then he digs for errors like the possible assassin in the bushes. Finally he could illustrate

the impossible by manipulating a picture like placing Forrest Gump1 with President
Nixon. As the set of photos increase the understanding of the situation improve by both
the photographer and his audience. The set of photos may never be complete, but all
interesting aspects should be covered.

Where do we start? Modern systems are rarely made totally from scratch which means
that the start is already there. The next move is dependent upon which initial documents
are available when the project starts. Such initial documents may include prose descrip-
tions of the product idea, standards which shall be used, documentation of existing
similar systems, project constraints decided by management.

The initial documents will often indicate some of the instances and messages of the sys-
tem. A rule of thumb is to start by a few mscs where the instances are the system to be
made as one instance, the human end users as another and the technical cooperating sys-
tems as either instances or as environment. We describe the system interface. In our
example Figure 14-5 "Timer set and timeout" (p.14-8) and Figure 14-6 "Timer set and
reset" (p.14-9) are a part of the system interface where the Access Control System is one
instance, the User is another and the door is considered a cooperating system in the
environment.

Figure 14-6 "Timer set and reset" (p.14-9) is a normal case. It defines behavior which is
the reason for making the Access Control System. One would expect that a very large
proportion of the executions will be according to Figure 14-6 "Timer set and reset"
(p.14-9).

Figure 14-5 "Timer set and timeout" (p.14-8) is an exceptional case. It shows a situation
for which we should be prepared, but which will not be common. For some systems the
exceptional cases may be the reasons for making the system. Surveillance systems are
typically of this kind. The most common situation is that no measures are taken by the
system. Still it is absolutely mandatory that when an exception occurs, the system will
detect it and perform the necessary actions.

An erroneous case is when the User opens the door, but does not close it as shown in
Figure 14-15 (p.14-24)

1. Forrest Gump was a box office hit in 1994 and they used extensive manipulation to place Forrest Gump in
authentic news events.
Tutorial on MSC-92 14 - 23 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

How to use MSC-92 effectively
Step 1a: The first mscs

TIMe14

Figure 14-15: An erroneous case

Open figure

. This may mean that he is blocking the door and this violates access security. This will
be considered an error in the system and an error message will be issued. This may mean
that an alarm goes and the identity of the violator is logged.

Obviously there are an infinite number of impossible cases. Sometimes it is easier to
describe the negation rather than the positive case. This is often the case in legislation.
The impossible cases that we choose to specify should serve one of two purposes. Either
their nonexistence is important to verify or they will guide the design of the system. In
Figure 14-16 (p.14-24) we want to express that it should be impossible to send two Code
messages from the User to the System before the User has consumed a Card out message

Figure 14-16: Impossible case

Open figure

User AC System

msc Unlocked_unclosed

door

Opened
Push door

Door unlocked

Idle

Alarm

door

Error

User AC System

Code

OK

msc Double_code

Unlock

Card out

Idle

Code
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 24

How to use MSC-92 effectively
Step 1b: Establish the interplay with non-developers 14TIMe
The implementation guidance of this requirement can be that the system will use a card
reader which keeps the card until it is explicitly released.

Critical for the success of our system is that nobody should be able to go through the
door without having entered an accepted code. Thus we would specify this as a critical
impossible case.

Step 1b: Establish the interplay with non-developers

The system interface mscs are often suitable as documentary as well as requirements
specifications. The customer will be interested in the end users’ situation and on how the
system is supposed to act with its surroundings. The project team is interested to validate
their views with those of the customer. The managers on both sides want to be assured
that the project is on the tracks.

The non-developers want to be informed and they want to be able to influence the devel-
opment, but they may not be prepared to take joint responsibility for the system.
Therefore the project team should be careful to demand that agreement or disagreement
should be recorded. The later position that the descriptions could not be understood
should be eliminated by involving the non-developers in producing additional mscs.

The non-developers easily get a strong sense for detail when they find themselves being
made responsible. Partly this is a deferring strategy and partly it is because they feel that
the situations described are not concrete enough for them. In our example the end user
representatives could argue that the user interface is not properly detailed as it says noth-
ing about how the Code message is entered. Messages as arrows may actually prove to
be too abstract, they need to see the actual hardware. Such illustrations may then be
associated with the corresponding MSC messages.

When the non-developers understand that they can handle MSC, they should be encour-
aged to take part in design as well as requirements specification. They will then be able
to see that the requirement side of the model checking is appropriate and will more eas-
ily accept the SDL design as the automatic verification ascertains the consistency with
the mscs.

We summarize our advice for the interplay with non-developers:

1. Require responsibility and approval from the non-developers;

2. Involve the non-developers in making additional mscs making sure that they under-
stand MSC and that they understand that they understand MSC;

3. Associate concrete input/output with the user interface.

4. Encourage the non-developers to use their MSC knowledge during the design and
model checking phases

Step 2a: Coping with variants and similarity

When the set of mscs grows, similarities will become increasingly more evident. The
need for organizing the maintenance also becomes increasingly urgent.
Tutorial on MSC-92 14 - 25 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

How to use MSC-92 effectively
Step 2a: Coping with variants and similarity

TIMe14

MSC 92 has few mechanisms to express similarity and variants. We expect that the
major difference in MSC 96 compared with MSC 92 will be the ability to cope better
with similarities and MSC structure.

In MSC 92 the concept condition is what we shall use. It was introduced in MSC doc-
ument and Conditions (p.14-10) where we showed that conditions are not like a
predicate, but rather like a label or state. The conditions which are shared by all
instances are called global conditions. The global conditions form a set of system
“states”. The problem with this association is that the condition is not a synchronization
mechanism meaning that the instances are not necessarily all “in the same global condi-
tion”. The conditions are non-existing at execution time. They represent possible
connection points at description time.

Still a good strategy during design is to associate MSC conditions with system states of
the design system (SDL system). To aid the maintenance of the MSC documents The
SDL Methodology Guidelines from 1993 [104] suggests what is later labelled road
maps. Mscs and conditions are placed in a directed graph.

Figure 14-17: Road map

Open figure

User_accepted_3

Idle

Unlocked_reset
normal

Unlocked_timeout
exceptional

Door unlocked

Unlocked_unclosed
error

Double_code
impossible

Code_incorrect
(exceptional)
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 26

How to use MSC-92 effectively
Step 2b: Approach the details 14TIMe
It is quite obvious from Figure 14-17 (p.14-26) that road maps are illustrative only when
there is a moderate number of mscs associated with each condition. For larger MSC doc-
uments a table may be more appropriate for maintenance purposes.

We recommend using only global conditions to keep the connection graph simple, but
MSC 92 also define local conditions which cover only a subset of the instances.

Step 2b: Approach the details

So far we have literally only scratched the surface. Neither the requirements specifica-
tion nor the design specification will suffice with seeing the system as one instance.
Furthermore our first attempts to define messages are most certainly very crude. Any
modern communication requires some kind of protocol where messages are passed back
and forth to make sure that the information has come properly across. Thus we need to
look into more detail the instances and the messages.

The instance hierarchy

MSC has submsc which is meant to describe the communication within an instance. Fig-
ure 14-10 "Decomposed" (p.14-13), Figure 14-11 "Submsc" (p.14-13) and Figure 14-12
"Instance dynamics" (p.14-15) form such a submsc instance hierarchy. As mentioned in
Coregion and submessage charts (p.14-12) the problem with the submsc concept is that
the submsc must match the strict ordering of the timeline of the decomposed instance.
This is often a much too severe requirement.

There are two practical approaches to this problem.

1. Relax the syntax requirement such that the ordering of the decomposed timeline is
contained in the set of traces of the submsc. Hope that your tool does not object.

Table 14-2: MSC document table

Pre-
condition

Msc Post-condition Category

Idle

User_accepted_3 Door unlocked Normal

Code_incorrect Idle Exceptional

Door
unlocked

Unlocked_reset Idle Normal

Unlocked_timeout Idle Exceptional

Unlocked_unclosed Idle Error

Double_code - Impossible
Tutorial on MSC-92 14 - 27 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

How to use MSC-92 effectively
Step 2b: Approach the details

TIMe14

2. Rewrite all the mscs which should have decomposed instances such that the submsc

substitutes the decomposed instance.

Neither of the two approaches are fully satisfactory. The first approach violates the lan-
guage definition and the latter does not use the obvious language mechanism. The latter
approach also has the disadvantage that either there will be considerably more manual
consistency checking during maintenance or most of the top level mscs will become his-
torical. Diagram space may also be scarce as the diagrams will contain an abundance of
instances.

Our advice is to follow the first approach if your tool gives the desired results. MSC 96
will most probably resolve the nuisance of the submsc concept.

The message hierarchy

We mentioned in Step 1b: Establish the interplay with non-developers (p.14-25) that
the message Code from the User to the system is too crude. If we think more detailed
about an Access Control System we find that Code consists of first entering a Card, then
typing a series of digits on a keyboard (the Personal Identification Number). During this
input there may be response from a Display.

MSC has no refinement on messages. Therefore the only legal approach is to rewrite the
mscs which include the message type to be refined, substituting with the refinement pro-
tocol. This approach has the same deficiency as described in The instance hierarchy
(p.14-27).

Again it is possible to add some proprietary semantics (and notation) to MSC. Include
the message refinement as an msc with a name derived from the message name. Produce
a table which associates messages with their refinements. The current tools will hardly
handle this properly. It depends on your verification targets whether this approach is at
all feasible. If model checking against SDL is the target, it depends whether the SDL
system recognize the high level message. Even though the concepts corresponding to the
high level messages are present in the SDL design as procedures or services, this pres-
ence are not exploited by the tools. To exploit such high level concepts needs
information additional to the standard languages. Nevertheless to keep the abstraction
levels of your initial analysis present in the SDL design is still highly recommended.

Let us return to our example where we want to refine the Code message from the User
to the AC System.
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 28

How to use MSC-92 effectively
Step 2b: Approach the details 14TIMe
Figure 14-18: Refinement of Code message

Open figure

We notice that Figure 14-18 (p.14-29) use instances of a submsc of Panel, and this is
typical for refinement that increasing the granularity of the messages will increase the
granularity of the instances.

Summary of granularity problems

The transition from lower to higher granularity is a difficult one. Firstly the MSC lan-
guage is only partly suited to support hierarchical system description. Secondly even for
languages which support hierarchical description it is not obvious how these hierarchies
should be exploited during the hierarchical system development. MSC has submsc to
refine the instances, but no means to refine messages.

The suggestions for object oriented MSC includes a type/object concept which together
with a shorthand (msc with a direction) should make the transition from lower to higher
granularity easier (Haugen 1994c).

We have in this section Step 2b: Approach the details (p.14-27) suggested some private
notation which, according to our opinion, improves the descriptive powers. On the other
hand these private notations are probably not supported properly by the tools. The only
safe strategy if the mscs are going to be used formally for verification is to perform sub-
stitution of refined concepts into the diagrams of lower granularity. The new diagrams
become more detailed, but the old diagrams probably had more documentary power
towards certain peripheral groups. The company (project) must decide whether both
versions are going to be maintained.

It should also be mentioned that the structuring of the MSC document need not in any
way coincide with the structure hierarchies of the corresponding SDL design even
though it is reasonable to assume that the hierarchies of instances coincide with SDL
block structure.

User Display

CardIn

“Give PIN”

msc Code_User_ACSystem

Digit

Keyboard

Cid

CidReceived
Key

CardReader

Panel-
Control

DigitKey

DigitKey
DigitKey
Tutorial on MSC-92 14 - 29 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

How to use MSC-92 effectively
Step 2c: Express the inexpressible

TIMe14

Step 2c: Express the inexpressible

There are aspects of the behavior of systems which MSC 92 cannot describe. We have
already seen in Step 2b: Approach the details (p.14-27) that MSC 92 has problems
describing behavioral structures. In this section we shall go into some areas where MSC
92 does not quite fulfill the needs, but which the users find absolutely necessary to
cover.

The idea in this section is that even though MSC cannot express the desired aspects, it
is valuable to have some uniform way to express these aspects in comments and to know
what their absence means in terms of formal verification.

Causality, dependency, partiality and priority

The concepts causality, dependency, partiality and priority are interlinked as we shall
see shortly. First let us repeat that MSC expresses merely that one event comes before
another. It does not express that the later event is a result of the earlier. Neither does it
express that the former has higher priority than the latter. In fact MSC says nothing
about whether there are messages between the instances which are not described. When
we express this explicitly it seems reasonable, but when users make their own mscs
assumptions about these matters are often made implicitly.

It is quite common to assume that all messages are included. We shall call this message
completeness. Message completeness may often be a reasonable assumption, but the
converse (partiality) is also often the case. Mscs on high abstraction levels should not
be crowded with all kinds of synchronizing messages or messages which serve only pro-
tocol purposes. Likewise if MSC is used to describe behavior of a windowing system,
most of the mouse movement events are removed or else the diagrams will fill up with
uninteresting mouse events.

For reactive systems it is reasonable to assume that the output an actor produces in some
way is dependent upon the input it receives. It is, however, not evident how this depen-
dency is and how it should be described. If MSC is used to specify a system of SDL 88
processes as instances and if we assume message completeness, we can deduce that the
outputs are dependent on the last input. This is because an SDL 88 process is driven
entirely by transitions triggered by the consumed input. We may call this (very strict)
assumption pure automata instances. It is clear that quite often instances will not act as
pure automata and we may feel the need to express causal dependence between an input
and a sequence of output on the same instance. Some companies have introduced their
own notation for this (See e.g. [88] for proprietary notation at NFT-Ericsson). The MSC
standard gives little room for extra graphical notation on the messages. The most rea-
sonable approach is to introduce a naming convention for the names of the messages or
a note associated with the message name. This will not change the semantics of the msc
and it can be used for verification which is normally not affected by causality.
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 30

How to use MSC-92 effectively
Step 2c: Express the inexpressible 14TIMe
Figure 14-19: Expressing dependency

Open figure

Even when we want to express dependency between an input and an output, it is not such
that whenever the given message type is received a message of the dependent type is
output. Even when the instances are pure automata this is dependent on the state of the
instance. MSC express no state information other than through the conditions, but they
have no such semantics.

ITU discusses in this study period an extension of MSC which will make the possibility
to express causality relation explicitly (Rudolph 1994). It is probable that such a nota-
tion will be included in MSC 96.

In principle priorities may also cause a change of behavior compared with what one
would expect without priorities. Either some messages have priority over other mes-
sages like interrupts, or some instances have priority over other instances like exception
handlers. MSC have no notion of priority as it is not a prescription but a description of
some behavior. In MSC where priorities have effect will appear as message overtaking
(cf. Figure 14-4 "Message overtaking" (p.14-7)). What the user wants to express is that
this message overtaking is due to priority and not to randomness. This is also most easily
achieved by naming conventions.

One should be aware that using priorities not necessarily limits the state space even
though it may look that way. Since MSC (and SDL) has no way to express duration of
transitions and since external messages may arrive at any time, the situation where pri-
orities affect the outcome is often equal to another situation where priorities had no
effect. In that situation the external events were such that messages entered the critical
instance in the desired order anyway. Nevertheless in a real world where transitions do
take time priorities may improve the implementations. There are of course elaborate pri-
ority schemes which do limit the state space like giving priority to internal signals in
certain blocks of SDL systems.

In summary we recognize the need to express dependency as a need to express more
about why something happens and not only what happens.

User AC System

msc Unlocked_reset

door

Opened
Push door dep on CardOut

Door unlocked

Idle

Closed

Lock

Push door is
dependent on
receiving Card-
Out.
Typography is
proprietary.
Tutorial on MSC-92 14 - 31 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

How to use MSC-92 effectively
Step 2c: Express the inexpressible

TIMe14

Capacity and Duration constraints

MSC is used for requirements specification. In requirements figures on capacity and
response times are often considered of ultimate importance. Therefore it is reasonable
to desire that such requirements can be put in the mscs. Even though the desire is rea-
sonable, the achievement is not trivial.

Let us first concentrate on duration constraints. We have the following different cases:

1. within one msc on one instance
The requirement is an expression about the duration between two events on the same
timeline. The duration may be either absolute or relative to some other duration. We
want to express statements like “The duration from the User inputs the Card until he
may enter the access zone should be less than 2 seconds more than the duration of the
typing of the PIN”. We may express such requirements in MSC 92 by using timers
which are not actually present in the implementation of the system or by attaching
comments to the individual events. Such pseudo-timers are shown in Figure 14-20
"Pseudo-timers to express duration constraints" (p.14-32). The advantages are that
the duration becomes very visible and that the duration will be present also in the for-
mal semantics. Disadvantages are that pseudo-timers are not easily distinguishable
from real timers and that the timers cannot formally be set and timeout exactly at the
same point in time as other events on the same timeline. Conversely the notation with
comments associated with events may not convey the sense of duration and they will
not exist in the formal semantics.

Figure 14-20: Pseudo-timers to express duration constraints

Open figure

2. within one msc, but between instances
Duration expression are not always confined to one timeline. Statements like: “The
CardReader should register the CardIn before the Keyboard registers the first Key”

User Display

CardIn

“Give PIN”

msc User_duration

Digit

Keyboard

Cid

CidReceived
Key

CardReader

Panel-
Control

DigitKey

DigitKey
DigitKey

D(2+t)

T(t)

OKOKOKCardOut
OKOKOK

Code
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 32

How to use MSC-92 effectively
Step 2c: Express the inexpressible 14TIMe
can only be expressed by comments to the events as shown in Figure 14-21 "Interin-
stance duration constraint expressed by comments" (p.14-33). There is some doubt
whether it is meaningful to assume a global clock.

Figure 14-21: Interinstance duration constraint expressed by comments

Open figure

3. over the MSC document
Statements like “The User will always get a reply back within 2 seconds after he has
typed in the last digit” refers not only to one msc but to the whole MSC document. It
assumes that the MSC document contains all relevant mscs. If we use the pseudo-
timer notation, we may then define a timer name associated with the requirement
which will occur wherever this requirement is expressed.

Capacity constraints are such statements as “The Access Control System should be able
to handle 5000 entries per hour”. These kinds of requirements can hardly be expressed
within the MSC document only. What we may put into the mscs are markers of events
which will be counted for capacity measurements. MSC actions may be used. An action
is just an informal text in a rectangle on a timeline.

Human Machine Interface

MSC is not targeted to describe aesthetics of the user interface. Neither is MSC partic-
ularly suited for describing users’ choices since modern user interface is not based on
sequences as they were in the old days. Modern user interfaces are based on operations
which can be performed almost ad libitum and the setting of their parameters. Parame-
ters may also be set in any order.

User Display

CardIn

“Give PIN”

msc User_duration

Digit

Keyboard

Cid

CidReceived
Key

CardReader

Panel-
Control

DigitKey

DigitKey
DigitKey

D(2+t)

T(t)

OKOKOKCardOut
OKOKOK

Code

time=t

time>t
Tutorial on MSC-92 14 - 33 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

How to use MSC-92 effectively
Step 3: Approach the design specification

TIMe14

To distinguish one user interface strategy from another with MSC seems inadequate.
MSC is normally on a higher abstraction level. In our example user interface as you may
see in Figure 14-21 "Interinstance duration constraint expressed by comments" (p.14-
33) is functionally defined. Nothing is said about the size of the keys of the keyboard,
color of the characters of the display or whether the card is a magnetic strip card or a
smartcard. From the MSC point of view we could not care less. Nevertheless the user
may find these questions most interesting, but other description techniques than MSC
should be utilized.

Extensions

There are some basic communication aspects which MSC does not handle.

• broadcasting/multicast
When one instance outputs equal messages to a set of receivers this cannot be
described simply by one message symbol. The only way MSC can describe this is by
repeating the broadcast message the appropriate number of times. This appropriate
number may not be fixed like the number of subscribers to a telephone conference.
In such cases we will include only a very small amount of instances as representatives
of the larger set of instances.

• synchronous messages
MSC messages are asynchronous, but synchronous ones are sometimes requested By
placing two messages very close together pointing in both directions, a synchronous
message can be simulated.

Step 3: Approach the design specification

We assume now that we have reached a situation where we have one or more MSC doc-
uments which describe the system. Our next step is to describe the more detailed design.

SDL is often used for this purpose, but other languages are also appropriate1. The design
phase may proceed in two different ways depending on its relation with the existing
MSC documents.

1. Produce design skeletons from the MSC document;

2. Produce design document from scratch and model check against the MSC document.

The first approach assures that the design is consistent with the requirements defined in
MSC. This seems intuitively attractive. The possible danger is that the system develop-
ment becomes too monolithic. There is only one perspective on which the design relies.
The second approach on the other hand assures that the design perspective is introduced
in addition to the MSC perspective. We mentioned in What is a message sequence
chart? (p.14-2) the difference in perspective between MSC and SDL. The second
approach will exploit this difference and consequently a better understanding of the
problem domain will be achieved.

1. We will in the following concentrate on SDL as the design language, but the method is equally applicable to
other languages which are suited for describing reactive systems.
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 34

How to use MSC-92 effectively
Step 3: Approach the design specification 14TIMe
The two approaches are principally different, but in practice a concrete development

might use a combined approach. If there is a tool which produces SDL from MSC1, still
the skeletons must be filled in properly. Some inconsistencies will be discovered, but
other inconsistencies may be introduced in the design phase. Therefore a subsequent
model checking activity is still needed. On the other hand if the development does not
use any automatic transition from MSC to SDL, the developers may still take advantage
of the understanding achieved through the requirement specification. Their competence
and experience with model checking may lead them to produce SDL which is well suited
for the subsequent phase.

Aligning SDL and MSC

When we have an MSC document and a supposedly corresponding SDL system it is nec-
essary to align the two descriptions. By aligning we mean to make explicit how the two
descriptions correspond. Which message corresponds to which signal? Which SDL
block corresponds to which MSC instance? Our advice is to let the names coincide and
make this part of the mapping simple.

Both MSC and SDL may describe non-terminating systems. SDL has initial transitions
to define the starting state, while MSC documents not necessarily have any explicit start
at all. Since the MSC document is normally not complete, we must specify correspond-
ing execution points between the mscs and the SDL system.

We recommend that in defining this execution correspondence the developer should

map SDL system states2 into MSC conditions. The developer must be aware that MSC
conditions do not imply synchronization as mentioned in MSC document and Condi-
tions (p.14-10). Therefore it may be necessary and advisory to add state invariants as
comments in both the MSC and SDL descriptions.

We present here part of the mapping between the example MSC document and the cor-
responding SDL system which is found in [24].

1. Such tools are definitely available as prototypes have been shown for a number of years. See e.g. (Arakawa
1994). The commercial tools have not yet offered this as a part of their recommended methodology.

2. An SDL system state is the tuple of all process states in the system. In some cases the internal queues should
also be included in the system state.

Table 14-3: The Access Control System correspondence

Kind of
concept

SDL name
Sce-
nario

MSC name
Defined first

in

Message/
Signal

Code 4.8 Code Figure 14-3
"MSC dia-
gram" (p.14-
6)

EjectCard 4.8 Card Out Figure 14-4
"Message
overtaking"
(p.14-7)
Tutorial on MSC-92 14 - 35 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

How to use MSC-92 effectively
Step 3: Approach the design specification

TIMe14
OK 4.8 OK Figure 14-3
"MSC dia-
gram" (p.14-
6)

Open 4.10 Unlock Figure 14-3
"MSC dia-
gram" (p.14-
6)

(not defined) Push Door Figure 14-3
"MSC dia-
gram" (p.14-
6)

Timers door_timeou
t

5.10 door Figure 14-5
"Timer set
and timeout"
(p.14-8)

Instances
/
block,pro
cess

AccessCon-
trol

4.2 AC System Figure 14-3
"MSC dia-
gram" (p.14-
6)

Central Unit 4.2 Central Unit Figure 14-11
"Submsc"
(p.14-13)

LS Control 4.10 Local Sta-
tion Control

Figure 14-11
"Submsc"
(p.14-13)

Panel
Control

4.12 Panel
Control

Figure 14-18
"Refinement
of Code mes-
sage" (p.14-
29)

(Environ-
ment)

User Figure 14-3
"MSC dia-
gram" (p.14-
6)

Table 14-3: The Access Control System correspondence

Kind of
concept

SDL name
Sce-
nario

MSC name
Defined first

in
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 36

How to use MSC-92 effectively
Step 3: Approach the design specification 14TIMe
From Table 14-3 (p.14-35) we see that model checking face more initial problems.
Firstly there is the partiality problem. The MSC document may not describe all the mes-
sages which the SDL system finds adequate to introduce as signals or the opposite way
around. In our example the Push Door message has no counterpart in the SDL
description.

Secondly the SDL system and the MSC system may not agree on what objects are in the
environment. In our example the MSC document describes the User as an instance while
the SDL system defines the user in the environment. Conversely the SDL system defines
the Door as a block while it is considered in the environment by the MSC document.

To overcome these discrepancies it is necessary to perform some alignment modifica-
tions. Some of the alignment modifications will be a permanent change to the
specifications while others are only modifications which are necessary for the model
checking to perform. In our example the message name Card Out could be substituted

with Eject Card. This could be made permanent1. The PushDoor message could be
eliminated temporarily so that its existence will not confuse the model checking.

The temporary modifications are often what we call reductions. A reduction is a simpli-
fication which has no effect on the result of the verification. Said differently the
simplification should be truthful to the original with respect to the purpose of the veri-
fication. Reductions may either be mandatory in order to make the model checking work
at all or they may reduce the amount of resources needed to perform the check. We may
reduce either the SDL description or the MSC description or both to achieve the most
practical correspondence.

Reductions may be statical or dynamical. Statical reductions are changes in the descrip-
tions which are based on the static semantics of the description. Such reductions are e.g.
elimination of messages and transitions which communicate with instances which are
not in the picture for the verification. See[116]. Dynamical reductions take into account

Door 4.10 (environ-
ment)

Figure 14-3
"MSC dia-
gram" (p.14-
6)

State/
condition

(idle,idle,loc
ked)a

Idle Figure 14-7
"Conditions"
(p.14-10)

(idle,idle,unl
ocked)

Door
unlocked

Figure 14-7
"Conditions"
(p.14-10)

a. The system state space is here considered only to be the states of the
three processes (LSControl, Panel Control, Door)

1. Integrated MSC/SDL tools often make sure that the mapping of instances and messages are trivial since they
demand that the MSC part uses the SDL names

Table 14-3: The Access Control System correspondence

Kind of
concept

SDL name
Sce-
nario

MSC name
Defined first

in
Tutorial on MSC-92 14 - 37 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

How to use MSC-92 effectively
Step 3: Approach the design specification

TIMe14

the actual execution of the system. Truthfulness can be achieved more accurately, but
the effort needed in the reduction is comparable to performing a reachability analysis.
See [169].

There are not adequate tools available to aid in this alignment phase. Therefore manual
walkthrough will be necessary to ascertain the consistency of the simplifications. It is
especially critical that the statements of truthfulness is made explicit and checked with
scrutiny. See [87] for more general information on walkthroughs.

Impossible and possible mscs

We have classified the individual mscs in the MSC document according to validation
predicate categories in Table 14-2 "MSC document table" (p.14-27). Our first effort in
model checking will be to check existence. Existence is quite simple to check manually
as well as automatically. Firstly the msc and the SDL system is aligned according to the
alignment information. At each point in time the msc defines a finite set of events which
are possible next events. Likewise the SDL system defines a finite set of events which
are possible after all transitions internal to blocks which are one instance in the msc are
executed. If the MSC set of events is a subset of the SDL set of events, the msc is still
perfectly possible, and we go on from the states given by the set of MSC events until we
reach all ends of instance. If the MSC set of events is not a subset of the SDL set of
events, but their intersection is non-empty, the msc is sometimes possible which means
there are sequences described by the msc which cannot happen in the SDL system. If the
intersection set is empty the msc is impossible.

Then we compare the verdict of the existence comparison with the category in the MSC
document table. Impossible mscs should have been categorized impossible. Mscs of
other categories should be perfectly possible. Mscs which are sometimes possible
should indicate that either the SDL or the MSC descriptions are slightly wrong. Most
often there are only small modifications needed.

Complete subtree

Sometimes checking for existence is not considered sufficient. The designer wants to
express that he has described the complete set of situations from a given starting state.
In our example we may state that “All that can happen to the user after he has entered
his card is that he gets OK or NOK to enter, and he gets his card back”.

The execution sketched in Impossible and possible mscs (p.14-38) results in a tree
structure of possible executions. This tree is just like the tree described by the formal
definition of MSC. We call such trees asynchronous communication trees. Our checking
for complete subtree means that the tree induced by a given MSC document (or part of
one) is identical to the tree induced by the SDL specification, but which is pruned prop-
erly. We may ignore all branches which go beyond where the MSC tree has terminated.
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 38

How to use MSC-92 effectively
Step 4: Produce test mscs 14TIMe
Figure 14-22: Checking for complete subtree

Open figure

The requirement is that the MSC document shall induce a tree which either includes all
successor nodes of a given node in the SDL tree or none of the successors. The problem
may become quite complex since the SDL tree may be infinite. The MSC tree may also
become infinite if we accept the interpretation that conditions give implicit combina-
tions which may result in loops (cf. MSC document and Conditions (p.14-10)). It is
reasonable to believe that such analysis involves too much book-keeping to be per-
formed manually. The minimum tool support should be an SDL simulator preferably
driven by MSC.

Manual model checking

The state space exploration techniques explained in Impossible and possible mscs
(p.14-38) and Complete subtree (p.14-38) are not sufficient to check the duration con-
straints and capacity requirements mentioned in Capacity and Duration constraints
(p.14-32). Tools may eventually provide user-supplied duration information associated
with each transition such that a simulation would also include simulation of the time it
takes. This may then be compared with the requirements.

For the time being the most practical way is to try and find the worst case through sim-
ulation and then do calculations on that manually.

Step 4: Produce test mscs

We refer the reader to the theses of Jens Grabowski [69] and Robert Nahm [142] for a
more thorough treatment of the matter. In this section we shall give a few hints to what
aspects of the earlier development work is important in this phase and requirements for
the test mscs.

aligned root

ACT induced
by SDL
system

ACT induced
by mscs

Tree bounds
given by msc
end instance
Tutorial on MSC-92 14 - 39 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

How to use MSC-92 effectively
Step 4: Produce test mscs

TIMe14

Isolating the IUT

Firstly it is necessary to find the most useful places to put the test probes and test stim-
ulants. We want to harvest as much information as possible from a test. Therefore the
interesting events should not be hidden to the test probes. On the other hand we may not
necessarily want to input a very long detailed sequence of messages. Thus in isolating
the “implementation under test” (IUT) we try to observe all interesting results with the
least input effort.

On the other hand the probes cannot be placed on instances which are not known to the
mscs we want to test. The requirements mscs will often have more high level instances.

Projecting the already existing mscs

Seen from the point of the requirements mscs, the test probes (and test stimulants) are
instances or set of instances. To get a test msc from a requirements msc, we must project
the requirements msc onto the instances of the test probes and stimulants. This can in
principle be done automatically.

Also documentary and design mscs may serve as bases for test mscs.

Finding new test mscs

The new test mscs should highlight the intricacies of the concrete design and the imple-
mentation. Areas of considerable concurrency should be covered concienciously.
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 40

How to use MSC-92 effectively
Summary of MSC modelling methodology 14TIMe
Summary of MSC modelling methodology

Figure 14-23: Summary of methodology

Open figure

Step 0: company strategy

• what tools
• what coverage
• what MSC documents
• How to attach informal text

Step 1a: the first mscs

• normal
• exceptional
• erroneous
• impossible
• critical

Step 1b: interplay with others

• require responsibility
• active involvement
• be concrete
• encourage further use of

MSC

Step 2a: Variants and
similarity

• global conditions
• road map
• MSC document

Step 2b: Refinement

• message hierarchy
• instance hierarchy

Step 2c:
Inexpressible

• dependency
• capacity and

duration

Step 3: Support the design

• alignment table
• checking existence
• checking full coverage
Step 4: Test mscs

• isolate IUT
• project existing mscs
Tutorial on MSC-92 14 - 41 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of figures
Summary of MSC modelling methodology

TIMe14
List of figures

An MSC . 3

Instance . 5

MSC diagram . 6

Message overtaking . 7

Timer set and timeout . 8

Timer set and reset . 9

Conditions . 10

Alternatives by conditions . 11

Coregion. 12

Decomposed. 13

Submsc. 13

Instance dynamics . 15

An example for formal semantics . 17

Venn diagram of validation predicates. 19

An erroneous case . 24

Impossible case . 24

Road map . 26

Refinement of Code message. 29

Expressing dependency . 31

Pseudo-timers to express duration constraints . 32

Interinstance duration constraint expressed by comments. 33

Checking for complete subtree . 39

Summary of methodology . 41
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 42

List of definitions
Summary of MSC modelling methodology 14TIMe
List of definitions

Condition (MSC 92) . 43
Coregion. 43
Environment. 43
Event . 44
Formal Semantics. 44
Instance . 44
Message . 44
MSC document . 44
MSC heading . 44
SubMSC (MSC 92) . 45
Timeline (instance axis) . 45
Timer . 45

Condition (MSC 92)

A condition describes either a global system state (global condition) referring to all
instances contained in the MSC or a state referring to a subset of instances (non-global
condition). In the second case the condition may be local, i.e. attached to just one
instance.

Coregion

The total ordering of events along each instance in general may be not appropriate for
entities referring to a higher level than SDL-processes.

Therefore a coregion is introduced for the specification of unordered events on an
instance. Such a coregion in particular covers the practically important case of two or
more incoming messages where the ordering of consumption may be interchanged.

Environment

An MSC describes the communication between a number of system components, and
between these components and the rest of the world, called environment. It is assumed
that the environment of an MSC is capable of receiving and sending messages from and
to the Message Sequence Chart; no ordering of message events within the environment
is assumed. Although the behaviour of the environment is non-deterministic, it is
assumed to obey the constraints given by the Message Sequence Chart.
Tutorial on MSC-92 14 - 43 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Summary of MSC modelling methodology

TIMe14

Event

The instance definition provides an event description for message inputs and message
outputs, actions, shared and local conditions, timer, process creation, process stop. Out-
side of coregions a total ordering of events is assumed along each instance-axis. Within
coregions no time ordering of events is assumed.

Formal Semantics

Formal semantics means explaining the meaning of the MSC description by referring to
a definition of the language in mathematical (logical) terms.

The formal semantics of MSC-92 is expressed in a process algebra. The point of describ-
ing the semantics mathematically is that proofs may be performed automatically and
stringently.

Instance

A Message Sequence Chart is composed of interacting instances of entities. An instance
of an entity is an object which has the properties of this entity. Related to SDL, an entity
may be an SDL-process, block or service. Within the instance heading the entity name,
e.g. process name, may be specified in addition to the instance name.

Message

A message within an MSC represents exchange of information between two instances
or one instance and the environment.

A message exchanged between two instances can be split into two events: the message
input and the message output. Messages coming from the environment are represented
by a message input, messages sent to the environment by a message output. To a mes-
sage, parameters may be assigned between parentheses. The declaration of the
parameter list is optional for the message input.

MSC document

A Message Sequence Chart document is a collection of Message Sequence Charts, and
sub Message Sequence Charts, optionally referring to a corresponding SDL-document.

MSC heading

The Message Sequence Chart heading consists of the Message Sequence Chart name
and (optionally in the textual form) a list of the instances being contained in the Message
Sequence Chart body.
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 44

List of definitions
Summary of MSC modelling methodology 14TIMe
SubMSC (MSC 92)

An instance of an MSC may be decomposed in form of a sub Message Sequence Chart
(sub MSC), thus allowing a top-down specification.

A sub MSC essentially has a structure analogous to an MSC. It is distinguished from the
MSC by the keyword submsc. Characteristic for a sub MSC is its relation to a decom-
posed instance containing the keyword decomposed and having the same name as the
sub MSC. The relation is provided by the messages connected to the exterior of the sub
MSC and the corresponding messages sent and consumed by the decomposed instance.

[In MSC-96 there is an extension to the decomposition phrase such that any MSC can
be specified as the sub MSC].

Timeline (instance axis)

No global time axis is assumed for one Message Sequence Chart. Along each instance
axis the time is running from top to bottom, however, we do not assume a proper time
scale. If no coregion is introduced a total time ordering of events is assumed along each
instance axis.

Timer

In MSCs either the setting of a timer and a subsequent timeout due to timer expiration
or the setting of a timer and a subsequent timer reset (time supervision) may be
specified.
Tutorial on MSC-92 14 - 45 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Summary of MSC modelling methodology

TIMe14
Tutorial on MSC-92 TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1614 - 46

	Introduction
	What is a message sequence chart?
	Figure 14-1: An MSC

	The connection between MSC and V&V
	Early uses of MSC
	Standardization of MSC

	Instances and Events
	Figure 14-2: Instance
	Figure 14-3: MSC diagram
	Figure 14-4: Message overtaking

	Timers
	Figure 14-5: Timer set and timeout
	Figure 14-6: Timer set and reset

	MSC document and Conditions
	Figure 14-7: Conditions
	Figure 14-8: Alternatives by conditions

	Coregion and submessage charts
	Figure 14-9: Coregion
	Figure 14-10: Decomposed
	Figure 14-11: Submsc

	Instance creation and instance stop
	Figure 14-12: Instance dynamics

	Formal definition of MSC
	Figure 14-13: An example for formal semantics

	Summary of tutorial
	How to use MSC-92 effectively
	MSC classification concepts
	Validation predicates
	Figure 14-14: Venn diagram of validation predicates
	Descriptive goal
	Table 14-1: Target audience and life span

	Step 0: Make explicit the company MSC strategy
	What tools will be used to produce and maintain the mscs?
	How do the MSC documents cover the universe of mscs?
	Which MSC documents are to be produced?
	How is information not expressible in MSC attached?

	Step 1a: The first mscs
	Figure 14-15: An erroneous case
	Figure 14-16: Impossible case

	Step 1b: Establish the interplay with non-developers
	Step 2a: Coping with variants and similarity
	Figure 14-17: Road map
	Table 14-2: MSC document table

	Step 2b: Approach the details
	The instance hierarchy
	The message hierarchy
	Figure 14-18: Refinement of Code message
	Summary of granularity problems

	Step 2c: Express the inexpressible
	Causality, dependency, partiality and priority
	Figure 14-19: Expressing dependency
	Capacity and Duration constraints
	Figure 14-20: Pseudo-timers to express duration constraints
	Figure 14-21: Interinstance duration constraint expressed by comments
	Human Machine Interface
	Extensions

	Step 3: Approach the design specification
	Aligning SDL and MSC
	Table 14-3: The Access Control System correspondence
	Impossible and possible mscs
	Complete subtree
	Figure 14-22: Checking for complete subtree
	Manual model checking

	Step 4: Produce test mscs
	Isolating the IUT
	Projecting the already existing mscs
	Finding new test mscs

	Summary of MSC modelling methodology
	Figure 14-23: Summary of methodology

	List of figures
	List of definitions
	Condition (MSC 92)
	Coregion
	Environment
	Event
	Formal Semantics
	Instance
	Message
	MSC document
	MSC heading
	SubMSC (MSC 92)
	Timeline (instance axis)
	Timer

