
TIMe TIMe Electronic Textbook
6 Activities and
Descriptions in TIMe
Content and scope .2
Description overview .3
Activity overview .20
Analysing .24
Designing. .39
Implementing .41
Instantiating .43
Domain statement .44
Domain dictionary .49
Domain models .53
System family statement .70
System family dictionary. .73
Family implementations .76
Family auxiliary .78
Application .80
Application reference model .81
Application models. .86
Framework .120
Framework models .126
Developing framework .143
Architecture .154
Architecture models .164
List of figures .181
List of definitions .183

Activities and Descriptions
Activities and Descriptions in TIMe 6 - 1 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Content and scope TIMe6
Content and scope

Scope The core of The Integrated Method (TIMe) will be presented in the following. TIMe is
centered around a number of descriptions which are developed by activities. These
descriptions express domain knowledge, specifications in terms of external properties,
system family designs in terms of structure and behaviour, implementation mappings
and system instantiation. They are organised in three main areas of concern: the domain,
the system family and the system instance areas.

It is assumed that the Languages and Notations used to make descriptions and the Foun-
dation of TIMe are known to the reader.

Content The content is organised as follows:

3. Description overview (p.6-3) which introduces the main descriptions and how they
are organised.

4. Activity overview (p.6-20) which introduces the main activities and how they are
organised.

5. Description modules. Here we present the various descriptions as modules with asso-
ciated operations. They are organised according to the three areas of concern:

- Domain: Domain models (p.6-53), Domain statement (p.6-44) and Domain dictio-
nary (p.6-49);

- Family: Application models (p.-106), Framework models (p.-155) , Architecture
models (p.-202), System family statement (p.-86), System family dictionary (p.-
90) and Family implementations (p.-93);

- Instance: instance models, instance implementations.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 2

Description overview
The main descriptions 6TIMe
Description overview

The main descriptions

Figure 6-1: The main descriptions used in TIMe

Open figure

Areas of
concern

As can be seen from Figure 6-1 (p.6-3), the descriptions are organised within three areas
of concern: domain, system family and system instance. In each area there are formal
models and there are other descriptions (dictionaries, statements and auxiliary). The for-
mal core of the methodology is the models which are expressed using the well defined
languages UML, MSC and SDL.

Domain Descriptions

System Family descriptions

Instance descriptions

State-
ment

Dictio-
nary

Auxiliary

Statement

Dictio-
nary

Auxiliary

Architecture
models

Framework
models

Concrete
system

Application
models

Implemen-
tation

Instance
models

System Family models

Domain
models

Implemen-
tations
Activities and Descriptions in TIMe 6 - 3 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Description overview
The main descriptions

TIMe6

Goals These descriptions are necessary and sufficient to achieve central goals of TIMe:

The descriptions have been carefully selected. They are neither too few, nor too many.
There is little redundancy, as they describe different aspects and complement each other
in a complete, concise and readable documentation. TIMe keeps the amount of tempo-
rary (throw away) descriptions to a minimum, and emphasizes descriptions that end up
as final documentation. This does not prevent us from identifying partial descriptions
that are useful in their own right, such as specifications, and to issue them in separate
documents when needed.

Textual
explana-
tions

Textual explanations may be attached to models as well as to other descriptions.

Domain Domain descriptions are organised in:

• Domain models which are collections of classes with attributes, relations and associ-
ated properties. They may be organised in several abstractions. Since the domain is
about general concepts and processes that are common to many systems, it is likely
that some parts of the domain models will be used within the family models. These
parts will often be quite stable, reusable and resilient to change.

• Domain statements which are concise statements about the domain normally
expressed in prose.

• Domain dictionaries over common domain terminology. It is important that the ter-
minology used in other domain descriptions is harmonized with and defined in the
dictionary.

• Domain auxiliary descriptions, which are any other description used. Will often be
informal text and illustrations used to help reading the models.

Family Family descriptions are organised in:

• Family models which are object models and property models describing the family
on several levels of abstraction:

- Applications that describe what the user environment want the system to do (user
services).

- Frameworks that describe how applications are distributed and supported by an
infrastructure. Frameworks and applications together define the complete system
behaviour.

- Architectures that describe how frameworks and applications are realised in terms
of hardware and software nodes.

1. to improve common understanding and communication among the
people involved in all areas of concerns;

2. to achieve a controlled process towards quality results;.

3. to achieve flexibility in services and system designs;

4. to minimise cost and lead times and to increase reuse.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 4

Description overview
The main descriptions 6TIMe
• Family implementations which are implementations of family concepts. Here we
find the general parts of implementations that are stable over all instances.

• Family statements which are concise statements about the family: its main purposes,
its market and qualities.

• Family dictionaries which define the family specific terminology.

• Auxiliary descriptions which are any other description used, for instance test plans.

Instance Instance Descriptions are organised in:

• Instance models which define the particular system instance on all abstraction levels.
These may be self contained system models, but it is recommended to define
instances as configurations of families.

• Implementations which are the instance specific implementations such as configura-
tion files.

• Auxiliary descriptions which are any other description of the instance, for instance a
test suite.

Model organisation

As explained in Objects and properties, models have the facets illustrated in Figure 6-2
(p.6-5). In general there are object models and property models. Seen together they
define a context and a content. The context represents the entity being defined (e.g. a
system type) as a “black” box and details its environment, while the content details its
internal composition in terms of object structures and behaviour.

Figure 6-2: The facets of a type model

Open figure

A specification covers those aspects of a model that are relevant for its external repre-
sentation and use, while the design cover the internal composition and the internal
properties.

The distinction between specifications and designs is not so important in domain mod-
els, while in system family models it is important. This has been illustrated for
application, framework and architecture models in Figure 6-1 (p.6-3).

objects properties

context

content

specification

design
Activities and Descriptions in TIMe 6 - 5 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Description overview
The main descriptions

TIMe6

Specifications

A specification covers those aspects of a model that are relevant for its external repre-
sentation and use. The context part is often sufficient as a specification, but if parts of
the content are important it may be included in the specification. Specifications are asso-
ciated with the abstractions they belong to.

Specifica-
tions are
partial
models

TIMe emphasises that specifications are not special models, but integral parts of type
models. The reason is that we want to minimise the amount of descriptions that are
thrown away. In stead we want to make use of specifications throughout the lifetime of
a model:

1. first to express the required properties so they can be verified and validated;

2. then to synthesise the design in a way that satisfies the specification;

3. finally to describe its provided properties for later assessment, (re)use, validation and
evolution purposes.

Specifica-
tions vs
design

System Family specifications contain the specification parts of application, framework
and Architecture models. These are related to the design parts, as indicated below.

Figure 6-3: Specification and design related

Open figure

Application
specification

Framework
specification

Specification part of models

Architecture
spec

Application
design

Framework
design

Design part of models

Architecture
design

Application
models

Framework
models

Architecture
models
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 6

Description overview
The main descriptions 6TIMe
Specifications and designs are often developed in different phases. Specifications are
produced early and play a central role in quality and process control. Designs are pro-
duced later. Therefore, in a development project they are developed by separate steps as
illustrated in Figure 6-4 (p.6-8).

Require-
ments
specifica-
tion

In TIMe we consider a requirements specification as a document. It is normally pro-
duced early in a development project and used as a contract for the design work. It will
contain specifications and other items of relevance at that stage.

Specifications should be kept consistent with the properties provided by a design. We
foresee that specification are used:

• for marketing;

• for retrieval;

• for validation of applications;

• for evolution.

Qualities of
specifica-
tions

Important qualities of specifications are:

• precision and detail;

• unambiguity;

• traceability and verifiability;

• modularity that will support evolution and change.

Some specification rules

Context
specifica-
tion

• Make a context diagram where the entity being specified is identified and the system
environment is detailed. Describe communication interfaces and other relations the
entity will handle. <x>

• Do not show everything in the environment, only the parts that are related to the
entity being specified.

Content
specifica-
tion

• Avoid to state content requirements in specifications unless absolutely necessary and
well justified.

• Identify the parts that are subject to requirements. Avoid describing more than
required. <x>

• Use open aggregation to illustrate how entities in the environment are related and
connected to components. <x>

Development steps

Steps The descriptions within different areas of concern and on different abstraction levels are
developed in steps that help to reduce risk, and to improve quality and control. This help
to give better control and also to use the skills of different people better and to run activ-
ities in parallel.
Activities and Descriptions in TIMe 6 - 7 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Description overview
The main descriptions

TIMe6

Each model is developed in two main steps: first the specification step where the spec-
ification part (interfaces and the required properties) is made, and then the synthesis step
where the design part is developed.The main development cycles are illustrated in Fig-
ure 6-4 (p.6-8).

Figure 6-4: The main development cycle

Open figure

This is of course a simplified illustration of the main steps. Considered over time we will
see that the descriptions evolve gradually, that there are many iterations and that changes
take place due to better insight, new requirements and new technology. We will also see
that there are other, smaller cycles. For instance: to add a new service or feature to an
existing product we need not modify the domain. To produce a customized instance we
only need to add a new instance configuration.

Not only
waterfall

Please do not jump to the conclusion that TIMe only supports the classical “waterfall”
model! It is up to the actual projects to determine whether they will adopt a waterfall
strategy, a prototyping strategy, use incremental development or whatever.

What TIMe provides is a set of descriptions and some general development activities
including strategies and rules, see Figure 6-7 (p.6-20). The activities are described in
Activity overview.

implementation

instance

system

domain

needs
configurationMarket

specification

application design

domain

family

instance needs
needs

needs

needs

satisfies needs

instance

framework design

architecture design

family needs

domain needs
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 8

Description overview
Domain descriptions 6TIMe
Domain descriptions

What is a domain?

A domain is a part of the world where a system instance may be a (partial) solution to
some need (the problem).

As a part of the real world the domain may be very large and not well delimited from
other parts of the world. Obviously, the domain descriptions cannot describe it all. It is
necessary to focus on those parts that are important for the family of systems in consid-
eration. A natural consequence is to consider only a subset of the world that may
somehow be served by a family member

The domain consists of physical entities such as persons, cards and doors as well as con-
ceptual entities such as transactions and rules. The entities may be linked by physical
connections that enable entities to communicate or by associations.

Important entity classes are:

• Stake holder. These are persons, institutions or systems with direct or indirect interest
in the domain, such as users, owners, and producers. Needs originate from the stake
holders, so it is extremely important to have a clear understanding of who they are,
what they want to achieve and what their priorities are. These stake holders may have
quite different needs that are not easily conveyed in a single model. Consequently, it
will be important to identify the various classes of stake holders and possibly develop
a set of models to properly describe their different views on the problem domain. In
the Access Control system for instance, the operator´s view is different from the
user´s view. A very important category are the Actors of the domain, the stake holders
that take part in the services or processes of the domain. These are later going to be
supported and/or represented by the system.

• Helpers. These are general tools that are used by the actors to provide services.
Examples are communication systems, radar equipment and keys.

• Subject entities. These are entities that are subject to manipulation, representation or
control in the domain. They may be materials in the case of a material transformation
domain, e.g. moulding, or they may be entities represented in an information system,
e.g. flights and seats, or they may be controlled machinery, e.g. a paper mill.

• Transactions. These are entities representing transactions or events in the dynamic
behaviour of the domain, e.g. the purchase of a car, or a user passing a door.

In general the entities seeks to accomplish some services or transformation processes.
Their basic need is to provide these in the best possible way.
Activities and Descriptions in TIMe 6 - 9 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Description overview
Domain descriptions

TIMe6

Figure 6-5: Elements of the Domain

Open figure

The domain descriptions help to describe and clarify the needs of all the stake holders.
Needs may be classified as needs to:

know about entities and relationships, e.g. the identity of users and which doors they
are allowed to pass;

communicate among objects, e.g. for two persons to communicate;

transform objects from one form to another, e.g. to peel shrimps, to send a fax or to
compile a program;

control something, i.e. to control or manipulate knowledge, transformations and
communications, e.g. to control a fax machine.

Difference
from
systems

The problem domain has a wider scope than any system in the domain, as its focus is on
what the systems are (to be) used for, i.e.WHY the systems are needed. Compared to a
system context, it should be wider and more general. By studying the whole it is easier
to see the purpose of the parts.

Thus, by studying a wider context, it is possible to get a better understanding of WHY
the system is needed and what properties it should have. For instance, if the system is a
communication system, we may consider why the communication is needed. In what
kind of processes is the communication to be used? What are the success criteria for
those?

Domain

Stake holders
Actors

Helpers

Subject
entities

Processes

Connections

Associations

Services

Objects Properties

Transactions
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 10

Description overview
Domain descriptions 6TIMe
By asking such questions we get a better understanding of the underlying needs and may
be able to suggest new solutions. Perhaps the real need is not for a communication sys-
tem after all? Or, perhaps the need is for a completely new kind of integration between
communication and transaction systems?

A problem domain may well be modelled as any other system. Compared to systems in
the solution domain there are some differences, however:

• The domain will normally include people, so it is a socio-technical system.

• The domain need not have well defined interfaces as it is not going to be used as a
component.

• The domain need not be completely composed or operational to the same degree as
systems. It may well be described by many fragments.

• The domain avoids system specific solutions.

System
indepen-
dence

The enterprise view in ODP serves the same purpose as the domain here. However, in
the domain we do not wish to identify a particular system or system context. We want
the domain to be general and independent of particular systems for several reasons:

• Open system analysis. We want the domain as a foundation for system analysis. It
should not bind the solution but allow us to investigate many alternatives.

• Common concepts. We want the domain to describe common concepts and terminol-
ogy that can help different communities to communicate: users, marketing,
development, engineering.

• Reuse. We want to identify concepts and properties that will be needed in many dif-
ferent system families, and thereby promote reuse. The domain given parts of
systems (see System reference models) contain such reusable parts.

Modelling In principle, the problem domain can be modelled as a (socio-technical) system, more
ore less, like any other system. In practice a more fragmented view, with focus on the
needs of various stake holders is more useful. It enables us to describe and to analyse
different viewpoints without enforcing the completeness and consistency required in a
system model at this stage.

The domain may be described on all three abstraction levels (see Abstractions in mod-
els). Normally only the abstract application level is considered and this is what most
methods consider as the “domain”. It is also what we shall consider the domain unless
otherwise stated.

However, it is also possible to describe e.g. the infrastructure domain and the platform
domain. Here we may describe common features of infrastructures, say user interfaces,
and platforms, say middelware like CORBA [145]. These other domains will end up in
other parts of the system such as the interface given parts or the platform.

It is not always obvious what to include in the problem domain. One should avoid sys-
tem specific solutions, but concentrate on more general concepts and properties that will
be common to many systems. For information systems this will typically be types of
passive objects (see Active and passive objects) and associations that will be represented
in every system in the domain. For instance it is reasonable to believe that every seat
reservation system will handle flights, seats and passengers.
Activities and Descriptions in TIMe 6 - 11 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Description overview
Domain descriptions

TIMe6

System specific solutions should be avoided, but general objects/types and functions
performed by (parts of) systems shall be covered.

Why make domain descriptions?

Domain descriptions are used to define a domain and its terminology. domain descrip-
tions serve three main purposes:

• To provide a firm basis for communication and common understanding amongst dif-
ferent Stake holders such as: end users, owners, developers, marketing and
production.

• To provide a firm basis for product planning, i.e. to analyse needs, to seek possible
solutions and to specify the goals for a new product development. In this it is
extremely important to consider variability and to plan a system family from the
beginning that will cater for the variability. During product planning it is also impor-
tant to consider existing systems and competition.

• To boost productivity and quality by systematically capturing and maintaining com-
mon knowledge in one place (possibly at a strategic company level) rather than
arbitrarily in various system specific documents. Domain descriptions will hold for
many different systems and identify stable, reusable concepts and properties. Com-
ponents that are derived from them are likely to be quite stable and therefore reusable
across systems and system families. The domain given part of the application refer-
ence model has been introduced to highlight this aspect, see Domain given (p.-101).

• To establish a common understanding of terminology, phenomena, concepts, and
tasks by making domain descriptions (a set of models and a set of rigorous prose
specifications).

• To describe general objects/types and properties that is common to many systems in
the domain and thereby achieve a high degree of reuse.

Domain description content

Domain descriptions contain the following description modules:

Domain statement (p.6-44), Domain dictionary (p.6-49), Domain models (p.6-53) and
auxiliary domain descriptions.

Domain relationships

With
Families

The domain will normally include entities that will be part of (the domain given part of)
systems, see Figure 6-6 (p.6-13).
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 12

Description overview
Domain descriptions 6TIMe
Figure 6-6: Parts of the (application) domain will be realised in the domain given part of
systems

Open figure

We seek to keep the domain given parts of systems formally related to the domain.
These parts may not only contain “data objects” (passive objects), but also active
objects. In the end, the domain models should cover all the domain given parts of
systems.

Harmonising domain descriptions

Within domain

The various domain descriptions should be harmonised as much as possible with each
other: phenomena and concepts in the dictionary should have their counterparts in the
domain object model. If properties are properties of entities in the dictionary, then the
terminology introduced there should be used in the property models.

Domain
harmonisa-
tion

• Align the domain object model, the property model, the statement and the dictionary
with each other. At least define every main term in the statement in the dictionary.

As an example of this guideline, look at the example descriptions and see
how Access Zone, Access Point and User are treated in them.

Details will be given for the component descriptions: Domain statement
(p.6-44), Domain dictionary (p.6-49), Domain object models (p.6-54) and
Domain property models (p.6-60).

With family

When system families are introduced, domain descriptions will be harmonised and
extended to cover what is common for many systems or system types. Domain descrip-
tions are extended and detailed so that they take domain specific system elements into
consideration. The purposes are:

Domain

included in
family x

included in
family y

Family x

domain
given

interface
given

system
given

Family y

domain
given

Domain
Statement,
Dictionary,
Domain
Object
Model,
Property
Model.
Activities and Descriptions in TIMe 6 - 13 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Description overview
Family descriptions

TIMe6

1. to promote reuse;

2. to improve traceability;

3. to simplify maintenance;

4. to simplify design.

There are two sub-activities:

• Reuse analysis: to analyse the design looking for object types and properties that will
be common to most systems in the domain. They will then be re-used in system
designs (families and system instances):

- add new object types and properties to the domain descriptions;

- adjust the domain descriptions to correspond as closely as possible with design
without introducing system specific details.

• Establish links: define the relationships between design and domain descriptions.

Details will be given for each description module: Domain statement (p.6-44), Domain
dictionary (p.6-49), Developing domain object models (p.6-63) and Domain property
models (p.6-60).

Family descriptions

What is a family?

What A system family contains the generic result of systems development. It represent a prod-
uct base on which a company may capitalise by producing and selling system instances.
As explained in Abstractions in models, systems are modelled on several levels of
abstraction:

• application;

• framework;

• architecture;

• implementation.

Each level is developed in two main steps: the specification step which emphasises
external properties and the design step which emphasises the internal content. The gen-
eral approach is to work from the application level towards the implementation level and
from the specification towards the design within each level.

Note that applications, frameworks, and architectures are somewhat independent and
interchangeable. An application may, for instance, fit into several frameworks, and a
framework may accommodate several applications. Each may use components that are
shared between families.

In most cases a system family is designed to serve one market segment within a domain.
As the application level is closest to the market needs, it seems natural that the system
family should be defined on the application level. However, to fully generate system
instances, we need information provided in the framework, architecture and implemen-
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 14

Description overview
Family descriptions 6TIMe
tation levels. Therefore these levels must be included when we want to produce concrete
system instances. To produce an abstract system instance for simulation purposes, on
the other hand, the application level is sufficient.

Types and
Families

Object models in the family area will contain types defined with a context and a content,
see Anatomy of object models. To some extent it is possible to define a system family
formally as a type, e.g a System Type in SDL. But to define the family as just one type
would probably be too restrictive:

• it would make the family specific to the level (application, framework, architecture)
where the type belongs;

• it would not capture the component libraries involved;

• it would be restricted to what is formally expressible in the languages.

In stead we consider the system family as a more loose organisation (library) of types
and other generic entities, which are used to generate system instances within a domain.
A system family need not be self contained. It may well import parts from and export to
other system families.

When to use There are cases (one-of-a-kind systems) where a family may seem to be overkill. But
even in such cases it appears that most results are generic in the sense that they can be
used to produce many similar system instances. They may also contain parts that can be
used in different systems. Therefore there is an implicit system family, which is made
up by the generic system descriptions that are produced anyhow, even in these cases.

In more interesting cases many instances with a range of different properties shall be
produced. In such cases it is desirable to analyse the needs for variability, and to design
the family so that instances can be configurated and build as cost effectively as possible.
This may require some additional design effort that has to be balanced by savings later
on when system instances are configurated and built.

Variability Variability can be represented in two principally different ways:

• By different versions of descriptions. This kind of variability (outside the descrip-
tions) is traditionally handled by configuration management systems, see Software
configuration management.

• By variable parts in the descriptions, typically by parameters, configuration vari-
ables, virtuality. This kind of variability is expressed in the notations and languages
we use.

Our main focus here will be on the latter kind of internal variability. It involve all the
descriptions in a system family.

Why make family descriptions?

The central idea behind the system family concept is that companies will benefit from
being more “product oriented”. Rather than being driven by the short term goals of indi-
vidual system deliveries, which is tempting since each system sold give immediate
payback, development effort should be invested in lasting results that can generate a bet-
ter business in the long run. Companies that focus too much on individual systems tend
Activities and Descriptions in TIMe 6 - 15 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Description overview
Family descriptions

TIMe6

not to have a clear picture of what their products are and how they relate to the market.
They often have difficulties in keeping the cost down and to keep schedules. After some
time they get trapped in vicious circles where they never have time nor money to
improve.

Ideally:

• development effort should be invested where the results can be resold many times;

• the cost of each adaptation and sale should be as low as possible

The family concept is introduced to achieve these goals and to given an overall cost
reduction.

Content of family descriptions

A system family contains the following main description modules:

System family statement (p.-86) - a concise prose statement that characterises sys-
tems in the family.

System family dictionary (p.-90) - a dictionary over family specific terminology.

System studies (p.6-17) - which are temporary descriptions of alternative system
principles made in order to assess alternatives and choose the best

Application models (p.-106) - which define the system behaviour related to user
needs.

Framework models (p.-155) - which define additional behaviour needed to support
the application.

Architecture models (p.-202) - which define the physical platform and how the
framework functionality is implemented.

Family implementations (p.-93) - which contain the implementation details in pro-
gramming languages and hardware description languages.

Family auxiliary (p.-96) - which contain other descriptions such as methods for evo-
lution and instantiation.

The needs for variability is considered on each abstraction level and for the system fam-
ily as whole. An important result is a method for binding the variability and configuring
system instances.

Another important result is a method for flexible introduction of new services. One main
goal is that the method shall lead to a flexible framework and Architecture that will
allow us to add new services mainly by working on the application level.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 16

Description overview
System studies 6TIMe
System studies

Objectives System studies are made in order to create deeper understanding of the technical prob-
lems and solution possibilities at an early stage. By exploring the “solution space” for a
given problem they seek to find innovative solutions that will lead to better systems.
“Better” in the sense that the quality is good, that the cost is competitive the solution is
flexible for change.

What System studies are not a special kind of descriptions, but rather incomplete family
descriptions that are sufficiently detailed that alternative solutions may be compared and
assessed. This means that it must be possible to compare development costs, production
costs, risks and potential user satisfaction. It may be necessary to perform prototype
developments and laboratory experiments.

Note that system studies involves all the abstraction levels, and builds on the activities
described for those. It can be seen as the start of system specification.

The results are system sketches consisting of rough specifications and content outlines.
They need not be very detailed, but sufficiently detailed to identify all critical parts and
the principle for implementing all services. They should be more detailed where there is
uncertainty concerning technology, performance or cost.

Note that the resulting descriptions (for the selected system concept) are not to be
thrown away. They are to be gradually elaborated into complete descriptions. However,
if well formed, they may later serve as an executive introduction to the system.

Two cases:

1. Feasibility studies which are performed when a new system family is to be made.

2. Impact studies which are performed when an existing system family is to be evolved.

System
study
notations

• Do not feel obliged to use only UML in all sketches needed during this activity. It is
more important that all possible elements of the system and its environment come for-
ward. Make competing sketches. Have possibly one person responsible for
“formalising” these sketches into UML sketches.

Instances

A system instance is a (real system which can perform behaviour and provide services.

The system instance area of concern contains system instances produced from system
families.An instance description describes a system instance.

When a system family is defined, a system instance can be defined by reference to a sys-
tem family using relatively simple configuration statements to binds the variability in
the family. If there is no family however, it is necessary to define each system instance
completely in self a contained instance description.This can only be recommended for
one-of-a-kind developments.

In TIMe, system instance descriptions are organised in:

• Instance models that formally define the system instance, usually by configuration of
some family;
Activities and Descriptions in TIMe 6 - 17 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Description overview
Relations and traceability

TIMe6

• instance auxiliary descriptions that provide supplementary documentation.

• instance implementations which are the instance specific implementations such as
configuration files.

Relations and traceability

Rationale It is clearly necessary to establish and maintain clear and traceable relationships
between the various descriptions and models. There are several reasons:

• Since each model or description is concerned with a limited area of concern and
abstraction, a complete documentation is made up of a set of interrelated models/
descriptions. In order to read and understand this complete documentation it must be
possible for a reader to navigate in the descriptions and to understand the relation-
ships as easily as possible.

• We need to trace the relationships from required properties to the design objects
where they are provided. There are at least, two reasons for this:

- quality assurance need to check that every requirement is satisfied;

- when a requirement is changed we need to analyse what impact it will have on the
design.

• We need to ensure consistency both between models and within models. This can be
achieved either correctively by comparing models or constructively by ensuring that
models are derived according to rules, e.g. by automatically translating from abstract
models to implementations.

Relation-
ships

Relationships between all the models and other descriptions shown in Figure 6-1 "The
main descriptions used in TIMe" (p.6-3) must be defined. There are:

• Domain to family relations:

- object to object;

- property to property.

• Family to instance relations:

- object to object;

- property to property.

• Family internal relations:

- application to framework relations,

- implementation relations,

- property to object relations,

- specification to design relations,

- validity of interfaces,

- dictionary, statement and model relationships.

• Domain internal relations:
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 18

Description overview
Relations and traceability 6TIMe
- dictionary, statement and model relationships.

• Instance internal relations

The precise definition of relationships depend on the languages that are used. They will
be elaborated under the various description modules.
Activities and Descriptions in TIMe 6 - 19 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Activity overview
Relations and traceability

TIMe6
Activity overview

Figure 6-7: The main activities in TIMe

Open figure

General
activities

As illustrated in Figure 6-7 (p.6-20), TIMe consists of five main activities:

• Analysing (p.6-24). The purpose of this activity is to analyse a domain and to specify
the requirements to a new system family. It makes the following descriptions for the
first time:

- domain models;

- domain and family statement;

- domain and family dictionary;

- application, framework and architecture specifications.

Domain descriptions

System Family descriptions

Instance descriptions

State-
ment

Dictio-
nary

Auxiliary

State-
ment

 Dictio-
nary

Auxiliary

Concrete
system

Implementa-
tion

Instance
models

Domain
models

Specifi-
cations

Designs

Analysing

Analysing domain

Analysing requirements

Designing

Designing application

Designing framework

Designing architecture

Implementing

Instantiating

Configuring

Building

Testing

Application

Application

Framework

Framework

Architecture

Architecture

Implemen-
tations
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 20

Activity overview
Relations and traceability 6TIMe
• Designing (p.6-39). The purpose of this activity is to develop the design part of appli-
cation, framework and architecture models, including the detailed behaviour of all
objects.

• Implementing (p.6-41). In this activity all the detailed implementation descriptions
are produced including source code for the software and detailed hardware
descriptions.

• Instantiating (p.6-43). The purpose of this activity is to produce (executable) system
instances that satisfy specific suer needs.

For each activity we seek to give practical strategies and rules that will help to produce
high quality descriptions and target systems. As far as possible the approach will be
illustrated by practical Examples.

These main activities consists of sub-activities. At the lowest level, sub-activities are
seen as tasks (operations) that “belong to” description modules, for instance domain
object models. Such tasks will be described under the description modules they belong
to.

Specifications and designs have been identified as separate entities in Figure 6-7 (p.6-
20) in order to distinguish the specification and design activities. The reader should we
aware that this does not imply a separation of the models.

System development is rarely a straight forward process where the optimal solution is
found at first attempt. It is more of a trial and error process. By working with a particular
solution we often learn how it can be improved or get ideas for radically better solutions.
Therefore it is recommended to spend some time investigating the solution space before
selecting the system concept to develop. For this purpose we develop System studies
(p.6-17) which are compared and analysed with respect to cost, technical feasibility and
market potential. The most favorable alternative is then selected for further develop-
ment, if indeed it has sufficient business potential.

Ordering There is no specific ordering imposed on the activities themselves, but in practical
projects they will be ordered, and indeed the ordering is significant. It is essential that
specifications, designs and implementations follow each other in that order for each part
of the system. But it is not necessary that every part is developed at the same time.
Therefore it is possible to start design before all parts are specified, and to start imple-
mentation before all parts are designed. This is further elaborated in the Process models.

It is important to note that the activities are not independent, but influence each other in
various ways. As an example, a design activity may lead to insight that triggers a change
in the domain models. These mutual interactions are not indicated in Figure 6-7 (p.6-
20), but will be explained in the text. We have sought to describe the activities in a
generic way that can be used in most processes. However, the best way to carry out an
activity depends on the actual state of its input descriptions and output descriptions at
the time when it is invoked. In order to take this into account, we provide some alterna-
tive strategies and activity subcategories.
Activities and Descriptions in TIMe 6 - 21 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Activity overview
Relations and traceability

TIMe6

Activity categories

Activity
categories

As explained in Activity categories there are three main categories of development
activities:

• Make activities which make or synthesise descriptions for the first time, possibly
based on other descriptions, e.g. to make SDL process graphs from requirements
expressed using MSC.

• Evolve activities which perform (incremental) development of existing descriptions.
They may either add new properties, e.g. add a new service to existing application
models, or change existing properties, e.g. correct errors.

• Harmonise activities which ensure that models/descriptions are consistent with each
other, e.g. to make the domain dictionary consistent with the domain object models.

Making family

We may distinguish two cases:

1. Developing from scratch, where a new domain and a new system family is developed
without any product base to start from. The starting point is just some needs or a prod-
uct idea.

2. Developing from existing families where a new system family is developed using
existing families as basis. In principle we go through the same steps as when devel-
oping from scratch, but now we seek to utilise as much as possible from the existing
Families. Design by reuse is a central concern. This case is considered the normal for
development of new system families in a company that have used TIMe for some
time. Such companies have established extensive domain descriptions and compo-
nent libraries which are taken into account in all new developments.

Both cases will follow the same overall strategy, but the detailed activities will be dif-
ferent. Normal development will put more emphasis on reuse and adaptation of existing
solutions. If, for instance the framework and the architecture is reused from an existing
family and only the family is modified, then the effort will be far less than when devel-
oping from scratch.

Evolving family

Evolution is caused by new requirements. It may be requirements for new services or
service features, it may be requirements for a new platform, or requirements for a new
interface. The abstractions and the system reference model we use in TIMe has been
chosen with evolution in mind. Areas that are likely to change independently of each
other are separated:

• Changes in services or user interfaces are defined on the application level. Here the
distinction between domain given, system given and interface given parts, help to
further isolate changes.

• Changes in implementation platform are defined on the architecture and the imple-
mentation levels.

• Changes in infrastructure are defined on the framework level.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 22

Activity overview
Relations and traceability 6TIMe
The situation today is characterised by increasing demands for service flexibility. In
order to stay ahead of competition, the lead time for specifying and implementing new
services must be as short as possible. At the same time, many products must be sup-
ported on a range of different platforms. This means that system Families should be
designed with flexibility and diversity in mind and supported by tools.

The various evolution activities are dealt with for each description module separately.

Harmonising family

The harmonising activities take care of the iterations and feed-back between the various
descriptions.
Activities and Descriptions in TIMe 6 - 23 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing
Relations and traceability

TIMe6
Analysing

Objectives The objectives of analysing are:

• To understand the domain and what users and other stake holders want to achieve, i.e.
their needs.

• To find improvements they will consider valuable.

• To plan new product families that will give valuable improvement and thus create
business in the future

What Analysing is part of product planning which is a more or less, continuous task in any
prosperous company. It is constrained by the company’s strategic plans and seeks to
come up with ideas for new products or enhancements to existing products.

Figure 6-8: Analysing

Open figure

Central to the task is a deep knowledge about a problem domain and existing system
solutions. It seeks to identify a problem, i.e. some deficiency or opportunity for
improvement, that a new system family may solve. This should not be just any problem,
but something that would mean considerable improvement and thus have sufficient
value for some stake holders to justify an investment in the new system. Thus the core
of the task is to understand needs and find solutions.

The concrete results are domain descriptions, system studies and specifications for sys-
tem families that may create future businesses. A business is created when a product and
a production meets a market. Thus, commercial success depends on more than the prod-

Domain
Descriptions

Market
people, us-
ers, design-
ers, domain

experts

System
studies

 Family
descriptions

Analysing
solutions

Specifying

Own systems,
competing
systems

Business plan,
product strategy

Analysing

Analysing
domain

Analysing
requirements

 Family
descriptions
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 24

Analysing
Relations and traceability 6TIMe
uct qualities. It also depend on the marketing and the production. Consequently it is
recommended to develop the product, the market and the production in parallel.The
domain relates clearly to the market, and the instances to production. In this way TIMe
supports integrated development of all three areas.

Sub-
activities

Analysis consists of two activities:

• Analysing domain (p.6-28)which produces domain descriptions. The main purpose
is to understand what various stake holders want to achieve, not what the product is.
The domain descriptions must be sufficiently complete to: achieve common under-
standing of terminology and concepts; understand the real needs of stake holders, and
analyse improvements.

• Analysing Requirements (p.6-32) which produces:

- System studies (p.6-17). These are design studies for alternative system solutions.
The idea is to asses the feasibility and the business potential of each and to select
the most promising alternative for further development, or to stop further devel-
opment if no alternative is sufficiently attractive.

- System family statement (p.-86).

- System family dictionary (p.-90).

- System family specifications, i.e. Application specification (p.-115), Framework
specification (p.-158) and Architecture specification (p.-206) which are used as
input to designing the family.

Actors Analysis require multidisciplinary teams. Key personnel are domain experts such as
marketing people and real users, but system developers should also participate both to
improve their own problem understanding and to help finding improvements. It is a task
where experts in the problem domain meets experts in the solution domain and new
opportunities arise out of their combined effort.

There may also be existing literature, existing systems and possibly existing domain
descriptions to use. Existing systems is an important source. Consider what parts of the
domain they cover. Can competitive advantage be gained if we cover more? or less?

What to do

“How can you possibly find the solution if you haven’t grasped the problem?” (adapted
form a wise saying at Ericsson).

This wisdom tells us that understanding the problem should come first: start by describ-
ing and analysing the domain, and go from there towards possible solutions. However,
when the domain is well defined and the challenge is to gain competitive edge through
innovative solutions, the solution comes first.

Therefore, the strategy will depend on the quality of existing domain descriptions, and
whether the challenge lies in the problem or in the solution.
Activities and Descriptions in TIMe 6 - 25 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing
Relations and traceability

TIMe6

Iterations Note that domains are not entirely independent of design concepts or technology. New

technology enable improvements that were not feasible and perhaps even not imagin-
able before. For instance: the access control domain was different before cards were
introduced than after. Before there were keys, but no need for person identification.
After, person identification is a central issue.

Figure 6-9: Domain - system iterations

Open figure

The old solution was traditional keys that were hard coded according to access zones.
With new technology it became feasible to use personal cards and PIN codes instead and
thereby achieve more flexibility and security. This change led to a changed domain
model where person identification and authentication is a central issue.

In order to get a good start with the first domain descriptions it may be a good idea sim-
ply to model the current reality first. If the challenge is to re-engineer existing systems,
then first establish a domain description corresponding to the usage of the existing
systems.

When initial understanding of the problem domain is established, the next step is to start
looking for improvements in terms of new technologies, innovative system solutions or
just better ways to organise work. What are the problems today, and what may be
improved? Answering these questions and setting goals for improvement is the soul of
product planning and should not be taken lightly.

If the improvements have effect on the domain, then make an new or updated domain
description.

When the goals for improvement has been set it is time to start looking for technical
principles and solutions. We start by Analysing solutions (p.6-36) seeking to come up
with alternative system ideas that may be evaluated and compared. How this is to be
done depends on the problem, but it will involve making a mixture of object models and
property models for the new family (or system instance if it is a one-shot development).
These models are called System studies (p.6-17).

existing
system

alternative
system studies

new system

first domain
model

changed
domain model
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 26

Analysing
Relations and traceability 6TIMe
In the beginning, these models may be independent of any particular system boundary.
In fact it may be a good idea not to identify the system initially, but use the models to
analyse what shall be done, and how it may be done. When this is well understood, the
next step is to decide what shall be done by the system, and what shall be done by the
environment.

The result will be a number of alternative product outlines that may be analysed with
respect to technical feasibility, risks, cost and schedules.

Finally, the most promising system concept is selected among the alternatives, and a go/
no-go decision is made based on business criteria, available resources and schedules. If
it is go, then a specification is developed.

A major goal for analysing is to decide what parts of a problem domain to include or
support by a new product. Obviously the domain analysis should be more detailed for
those parts. Therefore there is a mutual influence between domain analysis and solution
analysis.

Strategies We define two main strategies: analysing from scratch and analysing from existing
domain.

Analysing from scratch

If the problem domain is new or the quality of existing domain descriptions low the fol-
lowing strategy can be used.

It is quite normal that domain models and system family models influence each other.
Therefore it may be a good strategy to start analysing solutions before the domain mod-
els are completed.

Analysing from scratch (new domain)

1. Start by analysing the new domain in order to get the
fundamental understanding of the domain and its
needs. Use the strategy for Making domain descrip-
tions (p.6-30).

2. Continue by analysing requirements, performing
solution analysis and, if a decision to go ahead is
made, specifying a system family that will satisfy (a
subset of) the needs. Use the Making requirements
(p.6-34) strategy.

3. Finally harmonise the domain descriptions with the
Activities and Descriptions in TIMe 6 - 27 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing
Analysing domain

TIMe6

Analysing from existing domain

If the problem domain is well described, and the main challenge is to find new technical
solutions, then the following strategy is recommended.

Analysing domain

Objectives We perform domain analysis in order to:

• understand the domain and make domain descriptions;

• analyse the domain seeking improvements of value for the stake holders;

• evolve and harmonise the domain descriptions.

What Domain analysis is primarily concerned with the problem domain. In addition to general
knowledge of the problem domain, knowledge about existing systems is important. It is
important to identify the strong and the weak sides of existing solutions. It may be useful
to first model the existing domain including existing systems, and then look for ways the
domain may be improved. As a result a future domain may be described. If systems are
used in different markets for different purposes, several domains may be described.

Analysing from existing domain

1. Use the existing domain descriptions as input, and
analyse requirements to specify a system family that
will either satisfy some new domain needs or provide
better solutions than previous systems. Use the strat-
egy for Evolving domain descriptions (p.6-30).

2. Then harmonise the domain descriptions with the
specifications if necessary, see Harmonising domain
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 28

Analysing
Analysing domain 6TIMe
Figure 6-10: Analysing domain

Open figure

Sub-
activities

We perform domain analysis by means of the following sub-activities:

• Developing domain statement (p.6-46)

• Developing domain dictionary (p.6-51)

• Developing domain models (p.6-62)

Actors The people to involve are stake holders in the domain such as users and other actors,
market people and other domain experts.

What to do Which sub-activity to start with will be a matter of choice. For a new domain it is rec-
ommended to start with the domain statement and the dictionary, and continue with the
object models and the property models. For an existing domain, it may be better to start
with object and property models. In both cases there will be iterations between domain
descriptions and design descriptions.

Domain
dictionary

Market
people, us-
ers, design-
ers, domain

experts

Domain
statement

Domain
models

Own systems,
competing
systems

Business plan,
product strategy

Analysing domain

Developing do-
main dictionary

Family
descriptions

Developing do-
main models

Developing do-
main statement
Activities and Descriptions in TIMe 6 - 29 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing
Analysing domain

TIMe6

Making domain descriptions

In this activity we seek to define a domain for the first time. The main purpose is to
understand the domain in terms of concepts, objects and relationships and to understand
the needs that various stake holders have (the problem). We have no existing system
family to consider (but there may be other existing systems in the domain).

Work on the object and property models will normally lead to clarification and more
complete understanding which should be used to improve the dictionary and domain
statement.

Evolving domain descriptions

Here the purpose is to analyse and improve existing domain descriptions. A typical rea-
son may be that we have revealed imperfections or are looking for improvements that
will lead to a new and better domain description or that we need to add details. This will

Make domain descriptions (new domain)

1. As a first step make the first domain statement. This
will normally be a first sketch that gradually will be
improved. See, Making domain statement (p.6-46).

2. Based on the domain statement, make the first domain
dictionary. This will also be gradually improved. See
Making domain dictionary (p.6-51).

3. Then continue in parallel with:

- Making domain object models (p.6-64) to formally
model the objects, classes and relationships in the
domain. This will explain how the concepts in the
dictionary relate to each other.

- Making domain property models (p.6-67), to for-
mally model services and other domain properties.

- Harmonising domain descriptions (p.6-13) (within
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 30

Analysing
Analysing domain 6TIMe
typically be the case when we plan new products in an existing domain. The strategy will
depend on the circumstances, but since we already have a domain statement and a dic-
tionary, it may be a good idea to start with the formal models in this case.

Summary of dynamic domain rules

Domain
modelling
approach

• Establish contact with domain experts and other sources of information about the
domain.

• Present your results and have frequent discussions with domain experts.

• Do not use too much time on problem domain analysis if experiences with making
systems in the domain are poor. Iterate with system analysis and possibly system
design.

• Study existing systems, and make use of existing descriptions and literature about the
problem domain.

• Iterate with requirements analysis to explore new solutions and to find ways to
improve the problem domain. (Remember that some problems may go away, and new
opportunities be opened, when new ways are found. E.g. with personal cards, lost
keys are not a problem any more.)

Finding
domain
objects

• A problem domain may be very comprehensive. Do not try to model everything that
might be considered part of the domain in some wide sense. Concentrate on parts that
may be supported by new products.

• As a start, consider how things are done today and describe the existing domain.
Then consider how it may be improved and develop a new domain description.

• Focus on abstract objects that are essentially needed and avoid system specific solu-
tions. This does not exclude elements that eventually will be part of systems. The
essential thing is that the problem domain generalises over system specific solutions.
Classes of objects coming from an analysis of the problem domain are candidates for
reuse across systems, but reuse requires at least one use.

• When systems are defined, use the Application reference model (p.-99) to classify the
entities into interface, system, and domain specific parts. Generalisations of the
domain specific entities should be included in the problem domain.

Evolve domain descriptions (existing domain)

1. First update the domain models by:

- Evolving domain object models (p.6-64) to
include the new or changed parts.

- Evolving domain property models (p.6-68) to
include the new or changed properties.

2. Then ensure that the domain descriptions are inter-
nally aligned and consistent by Harmonising domain
Activities and Descriptions in TIMe 6 - 31 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing
Analysing Requirements

TIMe6

Model the
actors

• Be sure to represent each type of stake holder in the domain statement, dictionary and
object model.

• For each stake holder, describe their needs for services and interfaces.

• Represent every actor as a type with context in the object model and describe its ser-
vices in property models.

Analysing Requirements

Objectives Analysing requirements is performed in order to analyse needs and to develop specifi-
cations. Not just any specifications, but specifications for system Families with a
business potential. domain descriptions where needs for improvement are identified is a
good starting point for this activity.

Figure 6-11: Analysing requirements

Open figure

Domain
Descriptions

Market
persons,

users, de-
velopers,

production
and sales
persons

Family
auxiliary

Family
statement

Application
specification

Own systems,
competing systems

Business plan,
product strategy

Analysing requirements

Analysing
solutions

Developing
family statement

Developing
family dictionary

Specifying
framework

Specifying
application

Specifying
architecture

Specifying
methods

Family
dictionary

Framework
specification

Architecture
specification

Specifying

System
studies
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 32

Analysing
Analysing Requirements 6TIMe
The activity is crucial for the success of a system family as it seeks to answer questions
like:

• what parts of the problem domain should be supported by the system family;

• what should be the environment and the interfaces of the system family;

• what should be the positioning properties and the duty properties of the system
family;

• what should be the main technological principles;

• what are the requirements to future instantiation and evolution.

What A central issue is to balance the needs against technical feasibility and cost. To this end,
system studies are made where alternative system concept can be evaluated and com-
pared. (These may be seen as mini developments.) If any of the alternatives seems
feasible and attractive from a business viewpoint, the best is chosen for further
development.

For the selected concept a specification is produced.

It is of course possible to make specifications without (explicitly) analysing the domain
and analysing solutions first, but it will be more difficult. Parts of these activities will
then have to be done implicitly in the specification activity. With explicit domain
descriptions and system studies, the goals for the system development are known, and
the task of specification is to express them precisely and detailed.

Actors Developers, market persons, and stake holders in the domain should all participate. Go/
no-go decisions will of course involve management.

What to do The first thing to do is to make system studies seeking for a viable overall system con-
cept. If such a concept is found the next step is to develop a system family statement and
start on a dictionary, and then to develop specifications.
Activities and Descriptions in TIMe 6 - 33 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing
Analysing Requirements

TIMe6

Making requirements

When making requirements for the first time, we assume there are domain descriptions
to use as input, but there is no existing family (apart from those that other companies
might have on the market).

Make requirements

1. Start by Analysing solutions (p.6-36). This activity explores alterna-
tive concepts for a new system family and selects one concept having
a good business potential for further elaboration. Once a system con-
cept has been chosen, time has come for Specifying (p.6-36) the new
system. Do this by:

2. Making system family statement (p.-89). This sets forth the goals for
the new system family.

3. Making system family dictionary (p.-91) to establish the first version
of the family specific dictionary.

4. Then specify the system family formally by:

- Evolve Application specification (p.-139) to express the func-
tional requirements.

- Making framework specification (p.-183) so the requirements to
infrastructure and handling of the application in a framework
becomes clear (if anything can be said at this stage.)

- Making architecture specifications (p.-218) so the non-functional
requirements to the implementation becomes clear.

5. Make requirements to methods for code generation, system instanti-
ation and application evolution.

6. Harmonising family (p.6-23) to ensure that the family descriptions
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 34

Analysing
Analysing Requirements 6TIMe
Evolving Requirements

In this case we have existing system family descriptions to start from. We assume the
reason for evolution is that some external requirements have been added or changed.
(Changes caused by internal iterations are handled by harmonising) In this case too, we
start with the formal specifications

Summary of dynamic requirements rules

Require-
ments
analysis
approach

• This is a creative activity, so creative techniques such as brain storming may prove
useful.

• At an early stage do not be afraid of unconventional solutions. On the contrary, look
for them.

• Remember that the purpose is to find a new and better way to satisfy the needs of
stake holders. Therefore, close interaction with stake holders and domain modelling
is strongly recommended.

• The main purpose is not to find design solutions, but to determine the external prop-
erties and interfaces, in particular which services the system are going to provide.
Therefore the focus should be on context, and not content.

• Elaborate content only where this is necessary to assess the feasibility or to estimate
cost an risk. Be prepared to reconsider content that is sketched at this stage.

• Use prototyping when this is cost effective, i.e. when the additional cost of a prototype
is justified by improved communication, decision making and/or reduced risk.

Initial
require-
ments

State explicitly the project and product requirements. These requirements are often
requirements to the tools and languages of the project.

Evolve Requirements

1. Start by stating the new requirements.

2. Perform impact study: analyse the new requirements
and decide which parts that must be changed. Then
evolve the appropriate specifications by:

- Evolving application specifications (p.-139)

- Evolving framework specification (p.-184)

- Evolving architecture specifications (p.-219)

3. Then update the family statement by Evolving system
family statement (p.-89),

4. and the dictionary by Evolving system family dictio-
nary (p.-92)
Activities and Descriptions in TIMe 6 - 35 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing
Analysing solutions

TIMe6

Analysing solutions

What The purpose of analysing solutions is too consider the needs and how they may be sat-
isfied. It is an interplay between the what and the how.

Inputs to the activity are needs and domain descriptions. Central decisions to be made
are what needs to satisfy, in particular which services to provide, and what technology
to use.

The activity is the first step in turning needs into solutions. It can consist of many mini-
development projects with the purpose of exploring alternative solutions. The activity
may therefore produce a number of alternative system Sketches. The detailing of these
sketches depends upon the knowledge about the desired system and the risks involved.

Feasibility
study

For each system concept:

1. Selecting services to support.

2. Sketching the environment.

3. Sketching the application.

4. Sketching the architecture.

5. Identification of and assessment of risk and critical issues.

6. Assessing cost and schedules.

7. Evolution and maintenance.

When some promising alternatives have been sketched they shall be compared and the
best selected. This forms the input to make family statement and Make Specifications.

Specifying

What The main inputs to this activity are informal statements about needs, the domain descrip-
tions and system Studies.

Outputs are precise specifications expressed on the relevant abstraction levels. The
focus is on properties and context. The challenge is to structure the input information,
find missing detail and organise the specification. Clarifications and iterations will be
needed.

Actors Specifications are developed by development persons in close cooperation with users
and other stake holders. System and market departments should also take part, if not in
the detailed work, at least in major decisions.

What to do Turning needs into specifications is not always straight forward. On one hand it is nec-
essary to clarify the needs in order to make the specifications sufficiently precise and
detailed. On the other hand it is necessary to consider technical feasibility, economy and
schedules. Finally it is necessary to consider how each particular requirement will inter-
act with other requirements. An iterative process is required where users and other stake
holders take actively part.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 36

Analysing
Specifying 6TIMe
It is assumed here that specification is proceeded by system studies where an overall sys-
tem concept has been selected. It is clear roughly what parts of the domain that shall be
covered by the system family, and what properties it shall have. The goal is to state this
more precisely and with more detail.

For a general approach to making specifications more precise and detailed, see The dia-
lectics of refinement.

Making specifications

When specifications are developed for the first time, the following strategy may be used.

Make specifications

1. Making system family statement (p.-89). This sets
forth the goals for the new system family.

2. Making system family dictionary (p.-91) to establish
the first version of the family specific dictionary.

3. the specify the system family formally by:

- Making application specifications (p.-137) to
express the functional requirements including
services.

- Making framework specification (p.-183) so the
requirements to infrastructure and handling of the
application in a framework becomes clear (if any-
thing can be said at this stage.)

- Making architecture specifications (p.-218) so the
non-functional requirements to the implementation
becomes clear.

4. Make requirements to methods for code generation,
system instantiation and application evolution.

5. Finally ensure that all descriptions are aligned and
Activities and Descriptions in TIMe 6 - 37 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Analysing
Specifying

TIMe6

Evolving specifications

When new requirements lead to changes in specifications, follow this strategy:

Summary of dynamic specification rules

Incremen-
tal
specifica-
tions

• In order to achieve flexibility in the development process and the product, try to make
the specifications modular so it is as easy as possible to add or change specifications.

• If flexibility is important, express this as clearly as possible in the specification (in
the Auxiliary descriptions, in the statement or in textual annotations to the models).

• State clearly the requirements to methods for (incremental) evolution, code genera-
tion and instantiation.

Evolve specifications

1. Start by stating the new requirements.

2. Perform impact study: analyse the new requirements
and decide which parts that must be changed. Then
evolve the appropriate specifications by:

- Evolve Application specification (p.-139)

- Evolving framework specification (p.-184)

- Evolving architecture specifications (p.-219)

3. Then update the family statement by Evolving system
family statement (p.-89),

4. and the dictionary by Evolving system family dictio-
nary (p.-92)
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 38

Designing
Specifying 6TIMe
Designing

What The main inputs to this activity are the formal specifications: Application specification
(p.-115), Framework specification (p.-158) and Architecture specification (p.-206).

The main outputs are the corresponding design models:Application design (p.-119),
Framework design (p.-160) and Designing architecture (p.-219). In addition one should
consider how implementations shall be generated, how instances shall be produced and
how evolution is to be done, in particular how services shall be added. This is described
as part of the Family auxiliary (p.-96) descriptions.

Figure 6-12: Designing

Open figure

Designing is not a monolithic activity. It is composed from activities that each require
considerable effort, especially when developing from scratch:

• Designing applications (p.-140) which synthesises the application design from the
application specifications, and verifies that the specifications are satisfied by the
design. Both when making and evolving a design it is recommended to take existing
components into account (designing with reuse) and to keep a close relationship

Domain
Descriptions

 developers,
production

people,
product

managers

Auxiliary:
methods for
evolution,

code genera-
tion,...

Family specifi-
cations

Application
design

Own systems,
competing systems

Business plan,
product strategy

Designing

Designing
Framework

Designing
application

Designing
Architecture

Designing
methods

Family
dictionary

Framework
design

Architecture
design

Family
statement
Activities and Descriptions in TIMe 6 - 39 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Designing
Specifying

TIMe6

between service roles, interface roles and design objects (service orientation). When
a new object behaviour must be designed, try to synthesise object behaviour from ser-
vice and interface roles.

• Designing architecture (p.-219) which synthesises the architecture design from the
architecture specification and the application design. The goal of this activity is to
define an implementation architecture which will implement the application and sat-
isfy the non-functional requirements. This activity will often require a cut and try
approach, where an architecture is suggested, and then evaluated with respect to per-
formance, error handling, and other non-functional properties. As platforms become
more standardised, this activity can focus more on the application specific
architecture.

• Designing framework structure (p.-185) and Designing framework behaviour (p.-
189) which takes the infrastructure required by the implementation architecture into
account and define a framework. It also verifies that the specification part is satisfied.
Once the framework has been defined it is likely that the application must be harmo-
nised so that it uses the infrastructure part of the framework. It should be noted that
a framework is useful only when there is an infrastructure to consider and may be
omitted in other cases. It may also be the case that the framework is omitted in the
first system development, but introduced later in order to better support evolution and
production.

• Designing methods which define methods for the future handling of the system fam-
ily: methods for automatic code generation, methods for system instantiation and
methods for system evolution, see Family auxiliary (p.-96). Such methods are not
needed for one-of-a-kind systems, but essential for cost-effective product handling.
An important goal of TIMe is to free resources that traditionally has been tied up in
maintenance, evolution and production activities.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 40

Implementing
Specifying 6TIMe
Implementing

Implementations are detailed and precise descriptions of the hardware and the software
that a concrete system is made of. They define the physical construction of systems in a
family. The software part will be expressed in programming languages such as Java,
C++ or Pascal, while the hardware part will be expressed in a mixture of hardware
description languages such as circuit diagrams, cabinet layout diagrams and VHDL.
Software plays a dual role. Firstly, as a description to be read and understood outside the
system, and secondly as an exact prescription of behaviour to be interpreted inside the
system.

Concrete
system

Concrete systems consist of:

• The application and the framework software. State-of-the-art tools allow this soft-
ware to be automatically derived.

• Special application and framework hardware. This will be special hardware designed
to perform part of the application or the framework.

• The platform, which consists of:

- the support software which normally is a layered structure containing operating
systems, middleware for distribution support, SDL runtime systems, DBMS and
interface support;

- the general hardware which normally is an network of computers.

What to do For every new system development, the platform is an important design issue, as it
determines important properties such as cost, reliability and flexibility. It also influences
the way that applications and frameworks are implemented.

Figure 6-13 (p.6-42) illustrates some aspects of implementations. Note that the code
generated from application frameworks will interface with code coming from different
sources. To produce a concrete system these various parts of code must be linked
together and loaded on the hardware.
Activities and Descriptions in TIMe 6 - 41 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Implementing
Specifying

TIMe6

Figure 6-13: Software implementation

Open figure

Once the platform and the code generation strategy is defined, it is possible to rely on
automatic code generation for application and framework evolution for those parts
where SDL is used. The code which is generated for the application and the framework
must be adapted somehow to the platform. Here the Vendors of code generators use two
different strategies. One is to adapt the code generator so the generated code fits the plat-
form. Another is to adapt the generated code to fit different platforms by means of
interface modules and/or macros.

It should be noted that even if automatic code generation is used, there is likely to be
some hand generated code (e.g. for input/output drivers) and possibly legacy code from
existing solutions. It may also happen that different parts are generated using different
tools, e.g. SDL tools for the control parts and UML tools for database parts.

Consequently there are many issues to consider, and many tool problems to solve before
the implementation activity is well defined for a new system family. However, once
defined it may be used over and over again to produce new implementations.

support SWApplication SW

Infrastructure

Application
framework

models

Automatically
generated

code

Hand
written code

Application
support

code

General
support

code

HW

Generate code

compile and link compile and link

Foreign
code

link and load
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 42

Instantiating
Instantiation 6TIMe
Instantiating

In the instance area of concern, the main thing is to configurate and to build a system
instance. This can be done both on the abstract level, using SDL, in the implementation
architecture, and in the implementation. The common practice in most companies is to
do this on the implementation level using configuration files and tools like Make. An
alternative is to use special configuration languages in this area.

Instantiation

Objective System instances are what companies sell and customers buy. The purpose of instantia-
tion is to produce system instances from family descriptions and instance configuration
descriptions.

What In the instance area of concern, the main thing is to configurate and to build system
instances. Ideally we should perform configuration at the level where it belongs: func-
tionality at the application and/or framework levels, and implementation at the
architecture and/or implementation levels.

It is possible to perform some configuration at the application and framework levels
using SDL, but due to limitations in the language, this is restricted.

The common practice in most companies today is therefore to do configuration on the
implementation level using configuration files and tools like Make. (An alternative is to
use special configuration languages.)

We recommend that a method for configuration and building of system instances is
defined as part of the architecture design work.
Activities and Descriptions in TIMe 6 - 43 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Domain statement
Domain statement outline

TIMe6
Domain statement

Objective The domain statement leads to the very first understanding of what this problem domain
is all about. It helps to clarify needs and to understand the real purpose of systems in the
domain. It also serves as an introduction to the other domain descriptions.

What A (problem) domain statement is a concise description of the problem domain with
focus on stake holders and their needs, the essential concepts, functions and work pro-
cesses, rules and principles. It should also clearly state the nature of the problem, i.e.
what one tries to achieve.

It will normally be sufficient to express the domain statement informally using natural
language and drawings, but one should try to be as clear and precise as possible.

The domain statement can often be based on existing prose descriptions. There may be
descriptions of earlier systems, there may be textbooks on the subject and there may be
informal statements about the system.

The domain statement may also contain required properties if these exist at this point of
time, but for an initial development of a new system these may be vague or non-existing.

Domain statement outline

Executive summary

This should be a very brief summary with focus on the key issues. It may well be written
in a style directly suitable for market purposes. Stake holders in the domain should
immediately recognise and accept the description.

Area of concern/context

High level description of the area of concern or the context of the domain. E.g. the inter-
bank financial market, the security in buildings area.

Stake holders

Stake holders are persons or institutions with direct or indirect interest in the domain:
companies, users, operators, owners, etc. The various stake holders have responsibilities
and tasks to perform that give rise to needs. Therefore the domain statement should men-
tion every class of stake holders, their overall objectives, needs and responsibilities. The
Actors are of course important, but do not forget other stake holders that have a more
indirect interest (often economic), e.g. managers or owners.

Subject entities

These are all the entities that are manipulated, represented or controlled in the domain:

- Passive entities that need to be represented as data, and their associations.

- Manipulated entities that are transformed or handled in the domain such as : mate-
rials, commodities, assets.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 44

Domain statement
Domain statement relationships 6TIMe
- Controlled entities, such as some machinery, that are under control by other enti-
ties in the domain.

Be sure to mention every category of subject entities and explain their role in the
domain.

Helpers

These are the entities that are used by the actors to perform services and transformation
processes. Be careful not to make the helpers too system specific. Try to capture the gen-
eral features needed irrespective of particular systems.

Services

List all the main functions, their purpose, which objects that collaborate and describe
how they are performed in terms of textual use cases.

Work processes and materials

If the domain contains non-trivial transformations, describe each transformation stating
its inputs, outputs and constraints. This is particularly useful for material transformation
processes, e.g. to pick potatoes or peel scrimps.

Rules and principles

State general rules and principles that apply to the domain as a whole or to specific parts
of the domain.

Trends

If there are trends in how the domain will develop: describe them.

Existing systems

Brief summary of systems that are common to use in the domain, their strengths and
weaknesses.

Problems - improvements needed

Identification of problems or shortcomings that need to be solved.

Domain statement relationships

Within
domain

Every domain term used in the domain statement shall be defined in the dictionary.

Every type of actor and entity shall be represented in the object models under the same
name as in the statement.

Every service and transformation shall be represented in the property models under the
same name as in the statement

With family No particular constraints.
Activities and Descriptions in TIMe 6 - 45 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Domain statement
Developing domain statement

TIMe6

Harmonising domain statement

Make sure the relationships with other domain descriptions are satisfied. Make an entry
in the dictionary for every domain specific term . Important objects, classes, relation-
ships and properties in the domain models shall be mentioned in the statement.

Developing domain statement

Objective To collect domain knowledge and make a Domain statement (p.6-44), and to keep the
domain statement updated and in harmony with other descriptions

What The source information will normally be fragmented, informal and imprecise by e.g. not
using the same terminology or by stating the same required property twice, but with a
slight difference. It may also be unbalanced in its coverage of essential versus not so
essential information. This activity, together with the one making the dictionary, shall
transform these informal specifications to a more precise, yet informal, specification,
where the essential parts are emphasised.

Actors As for the domain at large.

Making domain statement

This activity may well be subdivided according to the topics of a domain statement, for
instance like this:

Make Domain Statement

1. Describe area of concern/context

2. Describe stake holders

3. Describe subject entities

4. Describe helpers

5. Describe services

6. Describe work processes and materials

7. Describe rules and principles

8. Describe trends

9. Describe existing systems

10.Describe problems and improvements needed

11.Make executive summary
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 46

Domain statement
Make Domain Statement 6TIMe
Make executive summary

This part is best written after the other parts of the domain statement. Consider what is
the essential message of the problem domain descriptions. Express it in a way everybody
can understand. Make it short (half a page).

Describe area of concern/context

Try to state concisely what the area of concern is about and what its environment is.

Describe stake holders

Ask yourself who has an interest in this domain? Try to identify every type of stake
holder/person-role in the domain and describe their overall responsibilities and tasks.
Note down what kind of problems they have and what kind of improvements they would
consider valuable.

Describe subject entities

Try to identify all passive entities (including the stake holders), manipulated entities and
controlled entities. Explain their roles in the domain and how they are connected and
related to each other. Do they communicate? How? Consider only entities and associa-
tions that are relevant to some services or work processes in the domain.

Describe helpers

Are any helpers needed to perform the services? Try to abstract from particular system
solutions and identify the general features needed. Note that the helpers are likely can-
didates for improvement. If it is very difficult to generalise, then describe the existing
helpers, and consider improvements afterwards.

Describe services

List all services (functions) needed and give a concise description of what each does.
Again it is important to abstract as much as possible from how services are implemented
in existing systems. Try to focus on what essentially needs to be done.

Describe work processes and materials

For each material transformation, give a concise description of what it does. What are
the inputs and the outputs? What are the sub-transformations? What are the constraints?
Note that the purpose is not to describe technical solutions, but to clarify the goals.

Describe rules and principles

Rules that regulate the problem domain should be referenced, as should general princi-
ples. You will have to consult domain experts to find out about these issues. Be aware
that law may severely constrain the technical solutions that are available, as well as it
may create new business opportunities.

Describe trends

Important trends regarding functionality, work processes, regulations and technology
should be stated.
Activities and Descriptions in TIMe 6 - 47 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Domain statement
Make Domain Statement

TIMe6

Describe existing systems

The purpose here is to briefly explain the main features of existing systems with empha-
sis on their strong and weak points. Consider also the competition here. This will help
to identify duty bound and success properties for new products.

Describe problems and improvements needed

Analyse the domain described so far and try to identify the problems with existing solu-
tions and how they may be improved. Interviews with domain Actors and other stake
holders will be important here.

Evolving domain statement

When new insight or new requirements leads to a modification of the domain descrip-
tions, then the domain statement shall be updated accordingly. This activity follows
from other activities in domain analysis or solution analysis.

Note that the domain shall be relatively stable compared to the system solutions. It shall
not be updated so often. However, a new domain is likely to be updated more frequently
than a well established one.

Summary of dynamic domain statement rules

Consistent
domain
statement

• Check that the terminology is internally consistent, using the same terms for the same
entities throughout the statement.

• Check that the statement is unambiguous, that each term has only one meaning.

Maintain-
able
domain
statement

• Check that the statement is maintainable. i.e. modular and without redundancy that
makes it difficult to maintain.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 48

Domain dictionary
Domain dictionary content 6TIMe
Domain dictionary

Objective The objectives of a domain dictionary are to define terminology and thereby enable pre-
cision and efficiency through:

• common use of terminology;

• improved communication and coordination;

• common understanding.

What A dictionary is a reference book listing words or terms and giving information about a
particular subject or activity (Collins 86).

A dictionary in TIMe need not be a book, but it shall contain a list of terms with an
explanation of their meaning.

An informal Domain statement (p.6-44) is normally not sufficient. We will need a more
precise definition of the most important phenomena and concepts and the corresponding
terminology. We therefore improve our understanding by listing the concepts in a dic-
tionary. For some domains, dictionaries are readily available, but for other areas, an
important task is to define one.

A dictionary is based upon the three aspects of concepts: designation, intention and
extension. The designation is the entry in the dictionary and the explaining text is a
description of the properties that phenomena shall have in order to belong to this con-
cept. The extension are all the phenomena covered by the concept.

Producing a dictionary adds to the understanding of the subject being analysed. Further-
more, it will help people to communicate more precisely. A dictionary helps to bridge
the gap between people with specific knowledge of the application area and people new
to the area. Later in the development the concepts in the dictionary will often find their
way into the system description as types (of objects). We suggest that the dictionary
should be maintained along with the other permanent documents.

Be aware of the difference between concepts and sets. A set has cardinality, and a given
entity may or may not be member of the set. A concept is not a set of phenomena, but
just a definition of the properties of the corresponding phenomena. This should be
reflected in the wording of the dictionary - the reason is that the domain may have real
sets.

Domain dictionary content

The dictionary may simply be an alphabetic list of terms with informal explanation. All
terms used in the problem domain should be included, such as :

- terms for phenomena and concepts;

- terms for entities;

- terms for properties;

- terms for services;
Activities and Descriptions in TIMe 6 - 49 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Domain dictionary
Relationships

TIMe6

- terms for relationships;

- terms for connections and interfaces;

- terms for processes;

- terms for roles in particular human roles like users, operators etc.;

- terms for materials.

TIMe may, in later versions, provide a template for dictionaries.

Relationships

Within
domain

There is a more or less direct road from a dictionary to an object model. Concepts are
represented by classes: the name of the class corresponds to the designation and the class
definition to the intention of the concept. objects according to the class represent the
extension. Therefore the names used for object types shall be the same as the name used
for the corresponding concept in the dictionary.

With family The domain given terminology used in Families shall be the same as in the domain dic-
tionary. It is possible to define additional terminology in separate Family dictionaries.

Harmonising domain dictionary

Within
domain

Ensure that the relationships with the other domain Descriptions are maintained. See
Relationships (p.6-50).

With family Ensure that the general domain terminology is applied in the Families. If family specific
Dictionaries are developed, they should refer to the domain dictionary for all domain
given terminology and avoid redundant definitions (which may develop into inconsis-
tent definitions).

Summary of static domain dictionary rules

Domain
dictionary
entries

• Represent each essential problem domain phenomena and concept by an entry in the
dictionary.

• For entries in the dictionary that correspond to concepts that will be represented
directly by types (classes), it may be a good idea (if this is known) to use the same
name on the type as the designation of the concepts.

Update d
domain
dictionary

• Keep the dictionary updated throughout the development. If desired classify the
entries as coming from analysis or design, domain, environment or system. This may
help in updating the dictionary and also to answer questions like “Is this phenome-
non covered by the domain of the system?” or “Is this type of entity handled by the
system?”
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 50

Domain dictionary
Developing domain dictionary 6TIMe
Domain
specialisa-
tion
hierarchies

• For each concept in the dictionary (and the corresponding Developing domain
object models (p.6-63)), ask whether all the objects that fall within the extension of
the concept/class have the same properties. If they have not, find specialisations,
which may or may not extend the dictionary. During the specialisation, extend the
description in the dictionary with properties which add to the understanding of the
concept.

Developing domain dictionary

Objective To make a Domain dictionary (p.6-49).

What The activity makes an entry in the dictionary for each term in problem domain.

In general, the dictionary comes from the other domain Descriptions, as its purpose is to
define the terminology used there. Thus, the dictionary is developed more as a spin-off
from making the other descriptions, than as an independent activity.

When object models and property models are developed, the dictionary should cover all
the objects/types, associations and properties represented in those models.

Actors Same as for domain Analysis at large.

Making domain dictionary

The dictionary is made for the first time as part of the first domain analysis, see: Making
domain descriptions (p.6-30).

The first dictionary comes from a (prose) Domain statement (p.6-44). By studying the
nouns in the Domain statement (p.6-44) we can make the initial dictionary. But the dic-
tionary shall contain more than the nouns, it shall also include services or functions and
associations which may be visible in the domain statement as verbs.

A practical approach is to analyse the text of the domain statement and mark every term
that refer to a domain specific concept or phenomena.

For each term thus marked, make an entry in the dictionary which define the term.

editorial 1. should the dictionary be organised in some way? e.g. according to the domain state-
ment categories, according to the kind of entity (concept, property, entity, relationship,
service)

2. should the dictionary contain references to object models and property models?

Evolving domain dictionary

The dictionary is evolved as part of the evolution of domain Descriptions, see Evolving
domain descriptions (p.6-30). Changes may be due to evolution of the domain statement
as well as the domain models. Whenever existing terms are modified or new terms are
introduced in any of the other domain Descriptions, the dictionary should follow up.
Activities and Descriptions in TIMe 6 - 51 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Domain dictionary
Developing domain dictionary

TIMe6

Summary of dynamic domain dictionary rules

Finding
domain dic-
tionary
entries

• Develop the dictionary as a consequence of other domain descriptions.

• Use the dictionary actively as a source of terminology when making the other domain
descriptions.

• Do not add new terms to any model without checking that there is no appropriate
term in the dictionary already.

• Analyse each entry checking that it is precisely and unambiguously defined. Look for
similarities among entries. Avoid to use the same term for different things, and to use
different terms for the same thing. If necessary define synonyms explicitly. Clarify
relationships between related entries, e.g. subtype relationships.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 52

Domain models
Developing domain dictionary 6TIMe
Domain models

Objective The purposes of domain models are:

• To describe formally how objects and properties in the domain are related.

• To define generic types that may be used in many system families and system
instances serving the domain.

What Domain models are composed from Domain object models (p.6-54) and Domain prop-
erty models (p.6-60), and organised as illustrated in Figure 6-14 (p.6-53).

Figure 6-14: Domain Models

Open figure

Domain models will mostly be application abstractions. But the possibility to model
more concrete aspects (e.g. infrastructure and platform) will not be excluded. It may for
instance be useful to model various technical solutions which are common for the prob-
lem domain. It is perfectly relevant to make more concrete object models whenever
there are concrete matters in the domain needing to be described, e.g. physical materials,
concrete interfaces. Implementations are not part of domain models.

Domain object models

Actor-1 view

Actor-2 view

Domain property models

Service-a

MSC Service-a1

Plays role of

Plays role of

role
structure

Text

Interface-x

MSC Interface-x1
role
structure

Text
Activities and Descriptions in TIMe 6 - 53 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Domain models
Domain object models

TIMe6

Figure 6-15: Domain model notations

Open figure

Domain object models

Objectives Domain object models serve:

• To improve understanding and communication by rigorously describing how con-
cepts and objects in the domain are related.

• To give a more precise meaning to terms in the Domain dictionary (p.6-49).

• To clarify the basic needs existing in the domain.

• To promote reuse by describing objects and classes that are common to most systems
in the domain.

What Domain object models (p.6-54) describes the problem domain from an object oriented
perspective.

Object Model Property Model

Application

Implementation
Architecture

Implementation not relevant not relevant

various

Infrastructure

Domain

UML
SDL

MSC

UML
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 54

Domain models
Domain object models 6TIMe
Figure 6-16: Domain Object Models

Open figure

It defines types which represent concepts in the problem domain, and objects which rep-
resent phenomena in the problem domain. It defines the attributes, the operations and
the behaviour of objects as well as associations and communication links between
objects. It shall be complemented by Domain property models (p.6-60).

Domain object models will describe active objects as well as passive objects.

Active and
passive
objects

Objects of the real world are by nature active. They interact with other objects and have
a dynamic behaviour. When we consider the domain as a part of the real world, all
objects are potentially active. However, we do not need to model them all as active
objects in the domain models. Some may be active, some may be passive and some may
be both. This is a decision we make in the models.

At some stage we must decide the level of detail and the kind of behaviour we will spec-
ify for each object type. For active objects, we specify a “real” behaviour, whereas for
passive objects we specify a “data” behaviour which is very different from the “real”
behaviour. Considered as an active object an AccessPoint in the Access Control domain
have a reactive behaviour that interact with real users. As a passive object, represented
in the validation database, is has a simpler behaviour that responds to validation queries.

Normally there will be only one active object representation of a domain entity, but there
may be several passive object representations. The behaviour, the attributes and the con-
text may be very different in each case. Therefore we may need to develop one active
and several passive component models representing the same domain entity.

The advantage of the object models over prose descriptions are that they show the rela-
tionships between objects in a rigorous way, and that they use a graphical notation.

Domain object models

Describes

Domain objects

Actor-1 viewpoint

Actor-2 viewpoint

Stake holders
Actors

Helpers

Subject entities

Connections

Associations

Transactions
Activities and Descriptions in TIMe 6 - 55 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Domain models
Domain object models

TIMe6

The domain object model is not only made in order to get a better understanding of the
domain. It is also made to identify types that are common to all systems in the domain.
It is a goal to describe at least every object type that will be part of the domain given
parts of systems and system environments. It may be difficult to find all of those without
considering any system. It will normally help to study existing systems, and also to work
on the new system design. Consequently, when complete, the domain object models will
be influenced by existing systems as well as the design of new ones.

However domain object models may well include more objects than those that will
eventually be in systems or system environments. They should also describe related
objects that are important for the purpose of systems in the domain.

Components for reuse are supposed to be identified in this activity, and correspondingly
components identified in earlier domain object models are used here. Classes of objects
that are identified as belonging to the problem domain will have more chances for being
reused in other systems than classes being made in the design of a specific system. Types
(classes) identified in the domain object model are therefore supposed to be made as
general as possible, and there may even be sub-activities that have this as their main pur-
poses: to prepare for reuse. Apart from this, TIMe believes in the fact that reuse comes
after a successful first use.

Since the domain as we consider it, is a generalisation it may be modelled as a type (in
SDL) or a class (in UML). It will normally contain components that are defined with ref-
erence to other types (SDL) or classes (UML), see Anatomy of object models. In most
cases these component types are more useful than the domain model itself.

There are several reasons for this:

• In many cases the domain is not well defined enough or contains too much variability
to capture in a single model. A collection of component types is less restrictive and
more flexible. They provide more information than can be said in a single model.

• Within the domain there will be many different views that we need to understand and
reconcile, e.g. the views of different actors. Component types offer a formal way to
describe the relative views of each component type through its context expressions.

• Reuse will be in terms of component types and not complete domain models.

For this reason we recommend the following rule

Make com-
ponent type
models

• Make a type model showing the context and content of each actor, helper and subject
entity.

In order to get a better overview, one should try to put the components together in com-
plete or partial domain models where possible. A useful compromise may be to develop
several viewpoint models.

Consequently, domain object models will normally contain two main parts:

• Domain structures which give a structural overview of the domain representing all
objects, connections and associations. It may be a single model, or it may be com-
posed from several viewpoint models. In the case of a single model, the entire domain
is viewed from the same angle (somewhere “above” the domain), see Figure 6-17
(p.6-57). In the case of viewpoint models the domain is seen from different angles
(from some “side”). Viewpoint models may be simpler to make since they may dis-
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 56

Domain models
Domain object models 6TIMe
card aspects that are not relevant from that angle. At the same they allow us to make
the differences between different viewpoints more clear. UML supports viewpoints
by using Packages.

• Component type models which define each component type (class) separately with
context and associated properties. These models serve to give the relative views that
each component type has on the domain, see Figure 6-18 (p.6-57).

Figure 6-17: The access control domain

Open figure

Figure 6-18: The class definition of Access Zone

Open figure

Domain object modelling belongs to a subset of more general object modelling. Object
models can be described using either UML or SDL, depending on whether they are
domain or design object models and depending on the formality needed.

may enter
bounded by

AccessZone

AccessPoint User

may enter
through*

1,..*

*

1

11

may enterAccess Zone

controls

Door

Name
Number
Level

may accept

accessed through

AccessPoint

Authorizer

has know-

ledge about
User*

1,*

1

1

1

1,2
1

1

* *
Activities and Descriptions in TIMe 6 - 57 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Domain models
Domain object models

TIMe6

Domain object model languages and notations

Object models are expressed using UML or SDL. It should be noted that UML is
designed primarily for passive objects, while SDL is designed for active objects.

Domain
object
notations

• Use SDL for abstract component models where (concurrent) state transition behav-
iour is central. If associations and passive objects are important as well, make
supplementary models in UML. Use:

- Block types where there are concurrent behaviours;

- Process types where there is only sequential behaviour.

• Use UML for component models where associations are central and state transition
behaviour less central.

• Use UML for structure models where the nature of components is association heavy
or unknown.

• Use UML for concrete models.

Make separate object models for active and passive objects?

Abstract domain object models

Domain object models are abstract models unless otherwise stated. They are abstract in
two senses:

• they model the world without considering the physical details of entities;

• they model parts that will be realised in systems without going into system specific
detail.

The abstract models will normally concentrate on the application abstraction, and only
consider infrastructure in special cases where the infrastructure is general for the
domain. Frameworks are normally not considered as they belong to the family area.

applica-
tion:

At this level we find the bulk of domain object models. Every actor, helper and subject
entity should be represented in a component model.

In addition the domain structure may be represented in a number of viewpoint models
or in a single model.

Infrastruc-
ture

This level will consist of component models for infrastructure components that are com-
mon to the entire domain. System and family specific components should not be
included.

Make com-
ponent type
models

• Make a type model showing the context and content of each actor, helper and subject
entity.

Concrete domain object models

Implemen-
tation
architecture

At this level we find models for platform components that are general for the entire
domain.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 58

Domain models
Domain object models 6TIMe
models at this level are only made if the domain is about platforms, or if the platform is
standard for the domain.

Domain object model relationships

Within
domain

• Every object type shall be mentioned in the dictionary under the same name.

• Every object type shall have associated property models.

• Object models refer to properties through service names and role names.

• The association between objects and properties are maintained through service
names and role names.

• The functional properties specified for an object shall be satisfied by the object
behaviour, i.e. be a proper and valid projection.

• The behaviour of every object type shall be strongly input consistent in every role.

• Every object instance shall be valid in all assigned roles.

With
Design

• Domain given design objects shall be related to domain object through inheritance or
implementation relations.

Harmonising domain object models

In this case the domain object model is harmonised within the domain and with design.

Within
domain

Ensure that the rules for domain internal relationships are correctly maintained:

• Every type name shall be defined in the dictionary.

• Every object type shall have associated property models.

With
Design

Ensure that the rules for Design relationships are correctly maintained:

• Every domain given object in design shall be related to an object type in the domain
object models. The relationship shall either be pure inheritance or an implementation
relation.

Summary of static domain object model rules

Use the general rules for object modelling and the following special rules:

Make com-
ponent type
models

• Make a type model showing the context and content of each actor, helper and subject
entity.

Domain
object
notations

• Use SDL for abstract component models where (concurrent) state transition behav-
iour is central. If associations and passive objects are important as well, make
supplementary models in UML. Use:

- Block types where there are concurrent behaviours;

- Process types where there is only sequential behaviour.
Activities and Descriptions in TIMe 6 - 59 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Domain models
Domain property models

TIMe6

• Use UML for component models where associations are central and state transition

behaviour less central.

• Use UML for structure models where the nature of components are association heavy
or unknown.

• Use UML or SOON.hs, SOON.ss for concrete models.

• Make separate object models for active and passive objects?

Domain property models

Objectives To improve understanding and communication about the domain by rigorously describ-
ing the properties applying to domain objects, services and interfaces.

What Domain property models are used to describe the problem domain from the property
perspective. It includes functional and non-functional properties.

Functional properties are considered as projections of object behaviour, and described
using text, role structures and MSC, see Figure 6-14 (p.6-53).

Text is used to give a textual explanation of a service or interface. Role structures are
UMLinstance diagrams that represents the roles of the service or the interface. The
objects in role structure diagrams can be considered as anonymous objects. They will be
related to object model objects by role association links, and to the instances in the ser-
vice MSCs through the same name.

When the system is designed, the domain property models will also be valid property
models of the corresponding (domain specific) system objects. Properties belonging to
the domain will be candidates for properties of several system in the domain.

It is an implicit assumption that models of the domain will not cover design dependent
properties. Such properties will be added in design models. However, the domain may
well cover concrete properties as long as they are general for the domain and not specific
to particular systems or families. Domain properties shall be related to domain objects
if they can, but it is allowed to describe properties without reference to objects. One
example is roles where the actor objects are unknown or irrelevant in the domain.
Another example is general properties applying to the domain at large. property descrip-
tions will typically be quite fragmented.

Abstract domain properties

Applica-
tion:

Services: Text, role structure diagram and UseCases in MSC.

Interfaces: Text, Role structure diagram and Use Cases in MSC.

General properties: safety, liveness, user friendliness etc.

Infrastruc-
ture

Services: as above.

Interfaces: as above.

General properties: as above.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 60

Domain models
Domain property models 6TIMe
Property
modularity

• Make property models that are as self contained and independent of other properties
as possible.
Motivation: to enable property (service) flexibility through modular property
composition.

Concrete domain properties

Applica-
tion
implemen-
tation

General constraints and requirements that are common to the domain:

reliability, safety, modularity, performance, size, technology.

Platform As above.

Other About general properties of the environment, materials, processes, etc.

Domain property model relationships

Within
domain

• Every service shall be mentioned in the dictionary.

• The MSC instances shall represent either service roles or interface roles.

• Object models shall refer to properties through service names and role names.

With
Design

• Interfaces of domain given design objects shall be an implementation of the corre-
sponding domain interfaces.

• Services of domain given design objects shall be implementations of the correspond-
ing domain services.

Harmonising domain property models

Within
domain

Ensure that the rules for property-object model relationships within the domain are sat-
isfied, see Domain property model relationships (p.6-61).

Ensure that every service mentioned in the dictionary and statement has an entry in the
service lists and corresponding MSCs.

With design Ensure that the property-property relationships with design are satisfied, see Domain
property model relationships (p.6-61).

Summary of static domain property model rules

Property
modularity

• Make property models that are as self contained and independent of other properties
as possible.
Motivation: to enable property (service) flexibility through modular property
composition.
Activities and Descriptions in TIMe 6 - 61 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Domain models
Developing domain models

TIMe6

Developing domain models

Objective The goal is to make domain object models and domain property models and to keep
them aligned and in harmony with other descriptions.

Figure 6-19: Developing domain models

Open figure

The main inputs are domain knowledge that come from people, and general domain
knowledge that can be found in the literature. The domain statement and the domain dic-
tionary give important input too. When a system family has been defined, it may
influence the domain models. The outputs are the domain object models and the domain
property models.

What This activity is composed from two sub-activities:

• Developing domain object models (p.6-63);

• Developing domain property models (p.6-66).

Summary of static domain model rules

• Switch between object modelling and property modelling, as each of these activities
may contribute to the other. Object modelling and property modelling go hand in
hand.

 Family
descriptions

Market
persons,

users, do-
main stake

holders,
domain ex-

perts

Domain object
models

Own systems,
competing systems

Business plan,
product strategy

Developing domain models

Developing
property models

Developing
object models

Domain
statement

Domain prop-
erty model

Domain
dictionary
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 62

Domain models
Developing domain object models 6TIMe
Developing domain object models

Objectives • to make and evolve Domain object models (p.6-54);

• to analyse the models looking for improvements;

• to keep the models updated and in harmony with other descriptions.

What This activity produces a (set of) Developing domain object models (p.6-63)s, some of
which may be adaptations of existing object models (which will be the normal case dur-
ing evolution and reengineering).

The main inputs to this activity are existing domain object models (if any) the Domain
statement (p.6-44) and the Domain dictionary (p.6-49) supplemented by domain knowl-
edge and the Domain property models (p.6-60). It is also influenced by existing systems
and the design of new ones.

As explained in Domain object models (p.6-54), it is possible to model the domain as a
single structure, but we recommend to develop viewpoint models and component type
models as well. In a single domain structure it is not so easy to distinguish between
active and passive objects. Therefore we may start to develop the domain structure with-
out considering whether objects are active or passive. In viewpoint models we are more
likely to see differences, and in the component models we must be clear about it. The
following guidelines help to identify active and passive objects:

Active and
passive
domain
objects

• Use connections primarily to link active objects. Therefore objects with connections
attached will be active.

• Use relations/associations primarily for constructive relations. Therefore objects
participating in relations/associations are likely to be represented by passive objects.

• It follows that objects with both connections and relations will have both an active
and a passive representations in the models

As an example consider the user of the Access control system, see Figure 6-17 "The
access control domain" (p.6-57). The model indicates that there will be two user con-
cepts: active users seeking services, and passive users representing those that are valid
users in the domain.
Activities and Descriptions in TIMe 6 - 63 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Domain models
Developing domain object models

TIMe6

What to do?

Making domain object models

In this case we have no existing object model or property model, only a first domain
statement and a domain dictionary. The task is to develop the first domain object model.

In all steps above, variability, generalisation and specialisation should be considered.

Using this strategy it is natural to develop two models, an active object model and a pas-
sive (information) object model. Here the active model will map to active (domain
given) objects in the systems while the passive will map to known entities represented
by passive (domain given) objects in the systems.

An alternative is to combine active and passive objects in the same models.

Evolving domain object models

In this case an existing domain object model is evolved to take new domain knowledge
or requirements into account. Inputs are the existing models and knowledge about the
changes to be made. The reasons for change are either:

• an extension of the domain;

• some new services to be added;

• a restructuring due to better insight;

Make Domain Object Model (new Domain)

1. Active objects.

- Look through the dictionary and represent every
active object mentioned. Consider every stake
holder and be sure to include every actor.

- Make an object structure showing the interconnec-
tion between objects.

- Identify component types and define each type
separately in a diagram where its environment is
described, i.e. its interaction links with other object
roles.

2. Passive objects:

- Look through the dictionary and represent every
type of passive object mentioned.Consider every
subject entity and transaction.

- Make an (information) object structure showing
the classes and associations.

- Identify component types and define each type
separately in a diagram where its environment is
described, i.e. its associations with other object
roles.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 64

Domain models
Developing domain object models 6TIMe
• some major changes in the system technology (such as replacing mechanical keys by
magnetic cards).

Note that updates due to system design normally is handled in the harmonising
activities.

Summary of dynamic domain object model rules

Domain
object mod-
elling
approach

• Take the entities that a system must know about and possibly control as starting
points for classes of objects.

• If working with the domain alone is too abstract, consider in stead systems in the
domain and try to generalises from them.

• Classes of objects may very well be identified in a process where the required prop-
erties of a system are analysed. These may just be lists of requirements, or expressed
in terms of Use Cases (MSC), preferably involving people representing the users and
people being responsible for the required properties.

• Switch between identifying attributes and relations between classes of objects, as it
may be a matter of choice if a property is a relation or just an attribute.

Make com-
ponent
models

• Take each of the classes and make a model that includes the most important classes
of objects in the environment of this class. Identify the constraints on the classes
stemming from this model.

Evolve Domain Object Model (existing Domain)

1. Express the new features required and analyse the
impact on the existing models. Modify the models as
required.

2. Active objects.

- Identify new object types and develop new compo-
nent type models.

- Change the component types that must be
changed.

- Update the object structure using the set of compo-
nent types now available.

3. Passive objects:

- Identify new object types and develop new compo-
nent type models.

- Change the component types that must be
changed.

- Update the object structure using the set of compo-
nent types now available.
Activities and Descriptions in TIMe 6 - 65 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Domain models
Developing domain property models

TIMe6

Using
domain
object
notation

• For parts where the system Design object model is to be specified in SDL, the prop-
erties of SDL should be taken into consideration.
Examples: As it is known that SDL has single inheritance, it would be a bad idea to
make a domain object model in UML with extensive use of multiple inheritance. SDL
has a strong notion of real aggregation that depends upon which kind of objects to
aggregate (services as part of processes, blocks/processes as part of blocks) - if
aggregation is part of the domain object model it should take this into consideration.

Domain object modelling is a special kind of object modelling. In addition to the general
guidelines for object modelling; the following special guidelines apply:

• Object classes with attributes, relations and connections
If attributes are not known, just introduce the class. Include any relation or commu-
nication link that may be important - in the design activity these will be refined and
detailed (or thrown away). Do not use too much time on signals on communication
links, unless they are given from the domain statement.
Communication connections between classes indicates that there will be Interaction
models between instances of these. For each of the communication connections check
if this is important enough to call for Interaction models.

• Relations
Do not be afraid to use illustrative relations, but be aware that they may have to be
“implemented” during design.

• Attributes
If the type of an attribute is not known, simply introduce the attribute without any
type, or introduce the attribute type as a class - this will then be defined during
design.

• Aggregation
Use only real aggregation when it is obvious that this is the case. If in doubt, use rela-
tion aggregation, as this the most flexible.

• Classes with constraints on the environment

• Behaviour associated with the object model
This will mostly be in terms of Interaction models by use of MSC. If state information
is important for the behaviour of an object, sketch an SDL process graph fragment
for this part of the behaviour.

• Localisation(nesting)
Do not consider this unless it is quite obvious. In case SDL is used for domain object
modelling it will produce a set of packages of type definitions. These will mostly be
independent of actual context. If domain modelling go so far as defining system and
block types, then apply the general rules of localisation.

Developing domain property models

Objectives • To make domain property models.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 66

Domain models
Developing domain property models 6TIMe
• To analyse the property models seeking to identify problems and find possible
improvements in the domain (and thus in systems).

• To keep the property models updated and in harmony with other descriptions.

What This activity produces the Domain property models (p.6-60), including only properties
of entities visible in the Domain object models (p.6-54). Functional Properties that can
be expressed as Use Cases by means of function lists and MSC are considered the most
important, but Non-Functional Properties are also considered when they are part of the
domain. A speciality of TIMe is that objects in the domain object model are not just pas-
sive “data objects” - they may also be active objects. If such active objects are identified
in the analysis of the domain, then an analysis of their properties also belong here.

Who to
involve

The people to involve are the same as for domain analysis in general. However, in order
to get the service properties right, it is important to consult actors in the domain, and in
particular those that may become users of the systems.

What to do Consider each of the active object types in all their different roles and describe, by
means of role structures, text and MSC, what they need to do or need others to do for
them. For each service, identify the roles or actors involved in role structures, and
describe the collaborations using MSC.

Be sure to cover all general tasks where systems in the domain are involved. Consider
also work situations and tasks to be achieved by means of the systems, i.e. consider a
wider context of purposes than the systems in question.

Making domain property models

As part of the Developing domain models (p.6-62) activity this activity runs in parallel
with Making domain object models (p.6-64).

The main inputs are the domain statement and the domain dictionary together with the
object model developed so far and general domain and system knowledge.
Activities and Descriptions in TIMe 6 - 67 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Domain models
Make Domain Property Models

TIMe6
Evolving domain property models

In this case the starting point is existing domain models and some requirements for new
or modified properties. TIMe seeks to support property flexibility by promoting modu-
lar property models. However, undesirable interactions may occur between properties
and they should be detected and resolved.

Make Domain Property Models

1. Identify separate services which should be offered in the domain.

2. For each service provide a prose description.

3. For each service define which roles provide the service.

4. For each service, make the description more precise by:

- Formalizing (1): Transform those aspects which may into a for-
mal language. The behavior should preferably be described in
MSC or SDL. See language specific methodology for details
(MSC-92, MSC-96, SDL).

- Formalizing (2): Those aspects which do not lend themselves
easily to descriptions in MSC or SDL should be described in
semi-formal prose (see The dialectics of refinement) and struc-
tured comments.

- Narrowing: Find out what questions were not addressed in the
prose version and make decisions on these matters.

- Supplement: Make sure that the precise description covers all

Evolve Domain Property Models

1. Make new Property models to represent the new or
modified properties.

2. Analyse the impact of the new property models on the
existing property models. Consider the property inter-
action problem.

3. Add the new property models to the total set of
domain property models and remove those that are no
longer valid. Modify properties that are affected, i.e.
where an undesired property interaction may occur.

4. For properties associated with objects, make sure the
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 68

Domain models
Evolve Domain Property Models 6TIMe
Summary of dynamic domain property model rules

Domain
property
modelling
approach

• Use the domain statement as starting point and consider the needs of all
stakeholders.

• Use the domain object model as starting point, and consider especially objects that
are connected by communication links.

• Make a Service List stating all the services (or functions) that needs to be performed
and possibly may be supported by systems in the domain. Explain what each service
does.

• For each service, identify the object roles involved and as far as possible, which
objects are the actors of the roles.

• For each service, describe the most important Use Cases using MSC. Apply the
guidelines of the MSC methodology.

• Follow the MSC guidelines for the MSC part. See How to use MSC-92 effectively.

Follow the rules for MSC usage:

Rule for
MSC usage

• Identify all initiatives. For every initiative; describe the sequences that may follow
until the next initiative. Use one MSC for each alternative.

Domain
behaviour
properties

• Describe abstract (behaviour) properties in a way that eases composition into object
behaviours and comparison with projections of object behaviour.
Motivation: ease of synthesis, quality by construction, ease of validation and
verification.

Domain
non-func-
tional
properties

• Identify concrete (non-functional) properties that are relevant for the domain models,
i.e. properties that any concrete system must abide.

• If the system design is considered, look especially for properties that are inherent in
the domain and describe them in a general way.

• If the system is considered, then it is preferably considered as one object, and it is
only decomposed if this helps in identifying properties of the domain objects.
Activities and Descriptions in TIMe 6 - 69 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

System family statement
What is a system family statement?

TIMe6
System family statement

What is a system family statement?

The system family statement is a concise description of the system family with emphasis
on specifications, i.e. the external properties. A system family statement is normally
expressed in prose, but may well be supplemented by illustrations.

Objective The system family statement is the first introduction to the system family. It serves two
main purposes:

• To concisely express the goals for the system development.

• To serve as a top level introduction to the system family.

System family statement outline

Executive summary

This should be a very brief summary with focus on the key issues. It may well be written
in a style directly suitable for market purposes. Stake holders in the domain should
immediately recognise and accept the description.

How it relates to the domain

Briefly about the domain (with reference to domain descriptions) and what needs in the
domain the system family addresses. Which actors in the domain will be supported, and
what other stake holders may benefit.

How it relates to the environment

Describe the system context with emphasis on the system boundary and the system envi-
ronment Explain who are the users, operators and other systems that may connect to the
system.

What services it provides

A summary of the main functionality with a list of all the main services, their purpose,
and how they are performed.

Interfaces

A brief description of the interfaces with emphasis on user interfaces.

Other properties

Give a brief account of the general properties and the non-functional properties pro-
vided. Emphasise positioning properties. If maintenance properties are important they
should be mentioned.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 70

System family statement
System family statement notations 6TIMe
Variability and evolution

Consider flexibility for change, variability and other issues related to market adaptation
in space and time.

Technology issues

If technological principles used or other design aspects are important at this stage, they
should be mentioned.

System family statement notations

The family statement will be expressed in prose, supplemented by figures.

Family statement relationships

With
domain

The statement is likely to refer to the domain descriptions, but it may also use terminol-
ogy from the domain. Therefore the domain given terminology used shall have entries
in the domain dictionary.

Within
family

The statement is likely to use some system family specific terminology. Such terminol-
ogy shall be defined in the system family dictionary.

Harmonising system family statement

With
domain

Be sure to use a terminology which is consistent with the domain terminology.

Every domain term used should be defined in the domain dictionary.

With family Every family specific term should be defined in the family dictionary.

For every service mentioned there shall be a corresponding entry in the Specifications.

Summary of static family statement rules

t.b.d.

Developing system family statements

What It is assumed that the creative work which actually determines what the system is going
to be is performed in other activities, mainly in the system Study activities and Specifi-
cation activities. The task here is simply to express what has been decided. The form
shall be suitable for a broad audience within the company (not only developers) and pos-
sibly for external use. It will be used for internal decision making and control.

Actors The system family statement should be written jointly by market persons and develop-
ers. Management should be involved in approving it.
Activities and Descriptions in TIMe 6 - 71 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

System family statement
Make system family statement

TIMe6

Making system family statement

The activity may be subdivided according to the topics of a system family statement:

Evolving system family statement

The system family Statement should be written in such a way that it can be kept as stable
as possible. Nevertheless, some evolution is likely to occur either because the Statement
needs improvement or because new features are added to the systems in the family.

How to proceed depends on the nature of the change.

Make system family statement

1. Describe How it relates to the domain (p.6-70).

2. Describe How it relates to the environment (p.6-70).

3. Describe What services it provides (p.6-70).

4. Describe Interfaces (p.6-70).

5. Describe Other properties (p.6-70).

6. Describe Variability and evolution (p.6-71).

7. Describe Technology issues (p.6-71).
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 72

System family dictionary
What is a system family dictionary? 6TIMe
System family dictionary

What is a system family dictionary?

The system family dictionary is organised in the same way as the Domain dictionary (p.-
59). The two dictionaries are used together to give full coverage of the relevant terms.
They may even be organised as two parts of the same dictionary.

Objective To define system family specific terminology in order to:

• improve precision and efficiency in the process;

• facilitate training of new people;

• facilitate reading system documentation.

System family dictionary content

The general format is:

<term><explanation>[example][synonyms]

The family dictionary is related to the domain dictionary. The two dictionaries may
physically be different parts of the same dictionary.

System family dictionary relationships

Relationships system family dictionary - domain

The domain given terminology used in families shall be the same as in the domain
dictionary.

Harmonising system family dictionary - domain

Ensure that the general domain terminology is applied in the families. family dictionar-
ies should refer to the domain dictionary for all domain given terminology and avoid
redundant definitions (which may develop into inconsistent definitions).

Relationships system family dictionary - rest of family

For entries in the dictionary that correspond to concepts that will be represented directly
by types (classes), it may be a good idea (if this is known) to use the same name on the
type as the designation of the concepts.
Activities and Descriptions in TIMe 6 - 73 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

System family dictionary
Summary of static system family dictionary rules

TIMe6

Harmonising system family dictionary - rest of family

Ensure that the relationships with the other family descriptions are maintained. See Sys-
tem family dictionary relationships (p.6-73).

Summary of static system family dictionary rules

• Represent each essential system family phenomena and concept by an entry in the
dictionary.

• Keep the dictionary updated throughout the development. If desired classify the
entries as coming from analysis or design, domain, environment or system. This may
help in updating the dictionary and also to answer questions like “Is this phenome-
non covered by the domain of the system?” or “Is this type of entity handled by the
system?”

Developing system family dictionary

What In general, the dictionary comes from the other family descriptions, as its purpose is to
define the terminology used there. Thus, the dictionary is developed more as a spin-off
from making the other descriptions, than as an independent activity.

When object models and property models are developed, the dictionary should cover all
the objects/types, associations and properties represented in those models.

Actors The dictionary is most likely made by the developers.

Making system family dictionary

The family dictionary is made for the first time as part of the first requirements analysis,
see: Making requirements (p.-40).

The first family dictionary comes from the System family statement (p.6-70), the Sys-
tem studies (p.-20) and the System family statement (p.6-70). By studying the nouns in
the System family statement (p.6-70) we can make the initial dictionary. But the dictio-
nary shall contain more than the nouns, it shall also include services or functions and
associations which may be visible in the domain Statement as verbs. It shall include
every term used in the system specifications. Note that domain terminology is not to be
covered.

editorial 1. should the dictionary be organised in some way? e.g. according to the domain state-
ment categories, according to the kind of entity (concept, property, entity, relationship,
service)

2. should the dictionary contain references to object models and property models?

Evolving system family dictionary

The dictionary is evolved as part of the evolution of family descriptions. Whenever
existing terms are modified or new terms are introduced in any of the other family
descriptions, the family dictionary should follow up.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 74

System family dictionary
Developing system family dictionary 6TIMe
Summary of dynamic system family dictionary rules

• Develop the dictionary in parallel with other family descriptions.

• Use the dictionary actively as a source of terminology when making the other
descriptions.

• Do not add new terms to any model without checking that there is no appropriate
term in the dictionary already.

• Analyse each entry checking that it is precisely and unambiguously defined. Look for
similarities among entries. Avoid to use the same term for different things, and to use
different terms for the same thing. If necessary define synonyms explicitly. Clarify
relationships between related entries, e.g. subtype relationships.
Activities and Descriptions in TIMe 6 - 75 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Family implementations
Implementations

TIMe6
Family implementations

Implementations

What Implementations are detailed and precise descriptions of the hardware and the software
that a concrete system is made of. They define the physical construction of systems in a
family. The software part will be expressed in programming languages such as Java,
C++ or Pascal, while the hardware part will be expressed in a mixture of hardware
description languages such as circuit diagrams, cabinet layout diagrams and VHDL.
Software plays a dual role. Firstly, as a description to be read and understood outside the
system, and secondly as an exact prescription of behaviour to be interpreted inside the
system.

Figure 6-13 (p.6-42) illustrates some aspects of implementations. Note that the code
generated from application frameworks will interface with code coming from different
sources. To produce a concrete system these various parts of code must be linked
together and loaded on the hardware.

Figure 6-20: Software implementation

Open figure

support SWApplication SW

Infrastructure

Application
framework

models

Automatically
generated

code

Hand
written code

Application
support

code

General
support

code

HW

Generate code

compile and link compile and link

Foreign
code

link and load
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 76

Family implementations
Implementations 6TIMe
Architecture models contain information that may be used to direct the transformation
from application frameworks into implementation code and the building of a concrete
system.

Automatic
code
generation

State-of-the-art tools allow the application framework software to be automatically
derived. The code which is generated for the application framework must be adapted
somehow to the software environment (operating system, input-output, middleware).
Here the vendors of code generators use two different strategies. One is to adapt the code
generator so the generated code fits the platform. Another is to adapt the generated code
to fit different platforms by means of interface modules and/or macros.

Once the platform and the code generation strategy is defined, it is possible to rely on
automatic code generation for those parts of applications and frameworks where SDL is
used.
Activities and Descriptions in TIMe 6 - 77 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Family auxiliary
Why family auxiliaries?

TIMe6
Family auxiliary

Why family auxiliaries?

In addition to the formal models and the less formal statements and dictionaries there is
always a need for more informal descriptions.

An important category are made up by procedures, or methods, for handling of families.

Method for evolution

In order to stay ahead of competition today, it is necessary to shorten the lead times
needed to introduce new services and service features. To this end TIMe seeks to
achieve a requirements oriented mode of systems engineering, where service flexibility
and incremental evolution is a key issue. Aspects to consider are:

• Modularity in application property models. How to describe services (and other prop-
erties) in a modular way so that new services may be added or existing services
modified with minimum impact on other services?

• Application flexibility. How to structure applications in a modular way so that the
impact of an new or changed service is limited, and how to incrementally evolve the
application.

• Implementation flexibility. How to follow up application increments in the generated
implementation code, and how to update existing systems.

For any system family where evolution is an issue, one should try to define guidelines
for how to perform evolution.

Method for framework code generation

Objectives Once the architecture is defined, much can be gained if the remaining development
effort can concentrate on application evolution. That will be possible only if there is a
well defined method, supported by automatic tools, for derivation of implementations.

What The method needs to consider several issues:

• Automatic code generation. How to produce implementation code that fits into the
application software environment? How to handle incremental generation?

• Hand generated code. What are the rules that hand generated code shall follow?

• Integration of automatically generated code with hand generated code, foreign code
and support code.

How the code shall be divided into modules for ease of generation and handling?
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 78

Family auxiliary
Method for system instantiation 6TIMe
Method for system instantiation

Objectives The purpose is to enable cost effective production of system instances that:

• satisfy customer requirements;

• supports future evolution and maintenance.

What This method should define the procedures and the tools that shall be used to generate
system instances. Problems to solve are:

• how to specify configurations at the various abstraction levels: application, frame-
work, platform;

• how to generate or produce the various parts;

• how to compose the parts into a system;

how to load and initialise the software.
Activities and Descriptions in TIMe 6 - 79 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application
Content and scope

TIMe6
Application

Content and scope

The application provides the main services of a system and is therefore the most valu-
able part of a system from a user point of view. Application models are very central in
TIMe:

• they are the soul of service orientation, as they model both the services and the object
that provide the services;

• they enable service flexibility and service evolution at a high abstraction level rather
than on the (concrete) implementation level;

• they enable quality assurance of services before they are implemented;

• they are used as the starting point for implementation architecture design;

• they are used as source when generating application (implementation) code.

In this Chapter we shall describe:

• The Application reference model (p.6-81): the generic structure of application
systems.

• Application models (p.6-86): how application systems are represented in models.

• Developing applications (p.6-106): how we go about developing the application
models:

- Application specification (p.6-93),

- Application design (p.6-96).
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 80

Application reference model
Content and scope 6TIMe
Application reference model

It is
abstract

The application is an abstract system which provides the services that users and other
systems in the environment need. It determines the quality of the system services.

As an open systems it exists in a context where it attain purpose and meaning from an
environment. This context may again be part of an even wider context, such as an enter-
prise, where the system and its environment together serve some higher purposes.

The domain is a generalisation of this wider (enterprise) context. In contrast to the
domain, the system context is a part of the world being served by a system. The domain
is a more general and often wider area of concern.

In the reference model for application systems we consider the system and its environ-
ment, see Figure 6-21 (p.6-81). Both the system and the environment are decomposed
into Domain given (p.6-82), System given (p.6-83) and Interface given (p.6-83) parts:

Figure 6-21: Application system reference model

Open figure

• Domain given (p.6-82) parts provide functionality which is common to most systems
in a domain.

• System given (p.6-83) parts provide functionality which is specific to a particular
system or system family.

• Interface given (p.6-83) parts take care of the communication between the service
needing parts of the environment and the service providing parts of the system, see
Figure 6-21 (p.6-81).

These parts may have quite different characteristics and contribute to the overall func-
tionality in different ways. Note that the services are related to the domain given and the
system given parts, while the interface given parts only serve as communication media.
Interfaces have been separated from services in order to achieve protocol transparency

Users

Interface
given

Domain
given

Subject
entities

Other
systems

Conrolled
processes

System
given

Interface
given

Domain
given

System
given

SystemEnvironment

Service needing Service providing
Activities and Descriptions in TIMe 6 - 81 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application reference model
System context

TIMe6

and modularity. It is generally desirable that services can work over a range of commu-
nication facilities and that interfaces and services can evolve as independently as
possible.

The Environment (p.6-84) is further decomposed into:

• Subject entities (p.6-84): entities known by the system, but not directly interacting
with it. The Access Zones handled by the Access Control system is one example. The
materials and products handled by a MPS system is another.

• Other systems (p.6-85): other systems communicating with the system. In the case of
an ATM machine, this would be the central bank computers.

• Controlled processes (p.6-85): equipment being directly controlled by the system.
The Doors controlled by the Access Control system is a simple example. More com-
plex examples are the mechanical parts of a paper mill or a robot.

• Users (p.6-85): human beings communicating with the system. In this category we
have end-users as well as operation and maintenance staff.

Since the system shall serve the environment, we will find corresponding entities within
the system. In fact, TIMe recommends to “mirror” the environment by objects inside the
system. Some of these will be active object and some will be passive objects, see Object
Models. The active objects provide services, while the passive represent entities and
relationships the system needs to know.

The application system reference model has been inspired by the OOA&D method
(Mathiassen et al. 1993), but adopted and detailed to suit reactive real-time systems.
Methods like UML do not have this kind of system reference model.

We believe the reference model will help to structure system models and to give more
precise method guideance.

System context

What A system context is a part of the world containing the system itself and its Environment
(p.6-84). Thus, Figure 6-21 (p.6-81) illustrates a system context.

Symmetry Note that:

• there is symmetry between the environment and the system: objects in the environ-
ment are served-by and represented-by objects in the system;

• there is symmetry of interfaces around communication links served by protocol
stacks. Sometimes the system boundary coincides with such links and sometimes not.

Domain given

What Parts that are modelled in the domain and therefore common to most systems in a
domain are classified as domain given parts. The domain given parts of the environment
contain domain entities that are served by the system, typically actors and processes, and
subject entities known by the system. The domain given parts of the system itself con-
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 82

Application reference model
System given 6TIMe
tain domain entities that are realised by the system, typically some domain Helpers.
They also contain passive objects representing domain given entities of the
environment.

Example The users and the Access Zones of the Access Control system are examples.

Explana-
tion

Domain services will be quite general and common to most systems in a given domain.
Every PBX, for instance, is able to provide normal two-party telephone calls. Any
access control system will know about users and access rights. Such parts are likely to
be stable and may potentially be reused in many systems and system families. This is
one reason to separate these parts from the more system specific parts.

In methods like UML and OOA&D the emphasis is on passive objects representing
knowledge about phenomena in the problem domain. In our method, we also include
active objects that perform services.

System given

What The system given parts are specific to a particular system or system family. They will
act together with domain given parts to provide the services.

Example In the Access Control system the operators and the objects serving the operators is an
example. Another example is the error handling and initialisation functionality needed
in most systems.

Explana-
tion

These parts provide the services that makes this particular system, or system family, dif-
ferent from other systems in the problem domain. The System given (p.6-83) parts can
collaborate with the Domain given (p.6-82) parts of the system to accomplish the ser-
vices. They are separated from the Domain given (p.6-82) parts because they are less
stable, general and reusable. The purpose of these parts may be to:

• Perform solution dependent services, i.e. services that depend on the actual system
design. Error handling and maintenance services are typical examples.

• Attend to special needs, not solved by other systems in the domain, i.e. to provide
some positioning properties.

Interface given

What The interface given parts take care of the communication between the service needing
parts in the environment and the service providing parts in the system.

Explana-
tion

Communication require interfaces. In some cases the interface is simple: just hit a but-
ton. In other cases it involves complex behaviour, such as protocols and graphic user
interfaces. In most cases there is independence between the interfaces and the service
provided through the interfaces. It is therefore recommended to isolate what is specific
to an interface from the services provided over it. This is particularly true where there is
a complex behaviour associated with the interface.
Activities and Descriptions in TIMe 6 - 83 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application reference model
Environment

TIMe6

Such separation allows interfaces and services to evolve independently and help to pro-
tect investment in either area from changes in the other.

Parts The interface specific parts are subdivided into:

• User Interfaces. Parts taking care of Human Machine Interaction (HMI). These parts
are often critical for the user satisfaction, and hence the success of a product. User
Interface design is an area that require careful attention and specialist knowledge. It
will sometimes involve prototype building and experiments. It will therefore often be
a separate development task involving other people than the other parts of the system.

• Process Interfaces. These take care of the interfaces to controlled processes. They
will involve sensors and actuators as well as interface electronics and software driv-
ers. This part will often require understanding of the technological principle of the
controlled processes, actuators and sensors. It is therefore a multidisciplinary area,
involving several technologies. It is an area where real-time constraints are important
and need careful consideration.

• Other System Interfaces. These take care of communication with other systems. They
involve the necessary hardware, the software drivers, and the protocol stacks. Some-
times they will involve standard networking technology. In other cases special
solutions are needed.

Layering Common to all these parts is the Layering Principle. All interfaces will be layer struc-
tured, starting with the physical medium moving upwards to the services in the System
given (p.6-83) and Interface given (p.6-83) parts of the system.

Example In the AC system we have a user interface with a physical layer: the Panel, and a proto-
col layer: PanelControl.

Environment

The environment consists of the parts of the surrounding world which are either known
to the system or communicate with it.

Subject entities

What Most systems will contain data representing entities, relationships and measures exter-
nal to themselves. The actual entities, relationships and measures represented by such
data are denoted collectively as known entities. The known entities can be seen as the
meaning (semantics) of the data. Subject entities are known entities that a system does
not interact with directly.

Example A salary system, for instance, needs to know about employees, but will normally not
interact with them, hence the employees are subject entities.

Subject entities will often be domain given.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 84

Application reference model
Environment 6TIMe
Other systems

What Other systems are external technical systems with which the system in question is com-
municating to accomplish its purpose.

Example A PBX for instance, will communicate with nodes in the public telephone network. An
ATM machine will communicate with the central bank computers.

Explana-
tion

Many systems will communicate with external systems. In some cases the relationship
will be asymmetric, as in a client server architecture. In other cases it will be symmetric
as between the switching nodes in a communication network. Anyhow, the relationship
with other systems may be central to the purpose of the system in question. Sometimes
the system even receives its prime purpose from external systems.

Other systems are sometimes domain given and sometimes System given.

Controlled processes

What The controlled processes are equipment in a surrounding technical system being directly
controlled by the system in question.

Example In the Access Control system, the Doors are controlled processes. In an ATM machine,
the money-bin is a controlled process. In a lift control system, the physical hoist unit and
the lift chair are controlled processes.

Explana-
tion

Controlled processes will only be present in embedded systems, where the application
system is controlling a larger technical system, e.g. a paper mill, a telephone exchange
or a robot. Normally this larger technical system will rely on the application system to
behave as required. This is typically the case in so-called mechatronic systems, where
software, hardware and mechanical solutions are integrated. A mechatronic system will
comprise active parts which exercise control and passive parts being controlled.

System
boundary

It is a matter of definition where to put the system boundary, and hence what to consider
as part of the system in question and what to consider as controlled by the system. If we
consider a complete lift system, the physical hoist unit containing motors, brakes, wires,
etc. will be considered as part of the system. If we consider only the lift control system,
then these parts are considered as controlled by the system.

The controlled processes will often be domain given.

Users

What Users is the term collectively used for human beings interacting with the system in ques-
tion. They may play a variety of roles such as operators, service personnel or clients.
domain actors supported by the system will be domain given, while others will be sys-
tem given.
Activities and Descriptions in TIMe 6 - 85 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Application model overview

TIMe6
Application models

Application model overview

Objectives First of all, application models serve three basic purposes:

• To describe behaviour at an abstraction level where it can be understood and analyzed
independently of a particular implementation.

• To be a firm foundation for designing an optimal implementation.

• To be source for automatic generation of implementation code.

The purpose of the application models in general is to answer what systems in the family
shall do.

They should support unambiguous communication among project members and in-
depth understanding by the individual. An application model is made primarily for
human communication and analysis, not for machines. But it should also be processed
by machines.

It should be readable for the human being without being vague or ambiguous and it
should express the behaviour without unwanted bias towards the physical implementa-
tion in order to allow freedom in selecting the implementation.

At the same time it should be implementable so it can be trusted as documentation. In
fact, we will generate code automatically from application models.

Once application models serve these purposes and we are able to actually engineer sys-
tems on the application level, some secondary purposes emerge. We want to further
reduce lead times and to introduce new services more quickly than before. Therefore we
want application models to be:

• modular with respect to service description;

• flexible with respect to service introduction.

To achieve all these objectives, application models should be structured with the follow-
ing criteria in mind:

- Clarity and simplicity of behavior interpretation by the human.

- Modularity supporting incremental service evolution and isolation/encapsulation
of change.

- Coverage of the necessary variability.

- Possibility for analysis by the machine.

- Possibility for automatic code generation.

What As illustrated in Figure 6-22 (p.6-87), the complete application system may be defined
as a type. This will be a natural thing to do during the first time development. However,
once a framework has been defined, the complete application system may become less
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 86

Application models
Application model content 6TIMe
important, because it is the component types and not the complete application system,
that will be used in frameworks. Therefore the component types used to construct the
application system may be more important than the system itself.

This observation is strengthened by the fact that it may be difficult to express all the vari-
ability needed formally in one type model. It may prove more practical to develop
several component types that are easy to compose into alternative system types. Thus,
the most important part of application models is a library of (component) types that can
be used to define application systems using either composition or inheritance.

Application model content

Application specification and design parts

As all other family models, application models have two main parts: the specification
part (see Application specification (p.6-93)) and the design part (see Application design
(p.6-96)). Each part consists of object models and property models as illustrated in Fig-
ure 6-22 (p.6-87):

Figure 6-22: Application specification and design

Open figure

System Service-A

MSC
role
structure

Text

Service-a1

System Service-A1

MSC
role
structure

Text

Service-a1

Class-bBLOCK type
Component-a

Attributes

Operations

Context/Specification

Content/ Design

UML

UML

UMLSDL

Component types

Synthesise

Instance of

Refine

Object models Property models

Instance of
Activities and Descriptions in TIMe 6 - 87 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Application model content

TIMe6

1. The specification focuses on the environment and how it relates to the entity being

defined. In the object model, the entity itself is represented as a black box while the
environment is detailed. Associated property models will focus on interactions
between the entity and the environment. Every service it provides shall be described
by means of roles, text and MSC.

2. The design focuses on the content. In the design object models we will see how the
application system is composed from parts and also how these parts behave. In the
property models we will see how design objects interact. It is of course, essential that
the properties actually provided by the design objects correspond to those required in
the specification. (A combination of property conserving synthesis and verification
techniques is used to ensure that.) The object model design consists of two parts:

- structure design which define the structure of objects and component aggregates;

- behaviour design that define the behaviour of objects.

Application system boundary

What should be inside and what should be outside the system is a question that often
causes high tempered and endless discussions. We contend that the decision is not very
crucial, as the method we propose will allow the boundary to be adjusted later on with
little effort.

The important thing is to include either in the environment or in the system itself every-
thing the system ultimately will serve or know. In particular it is important to represent
all the various stake-holders needing to be served or represented by the system. These
should be placed in the environment. Other objects we are sure never will be produced
or delivered as part of a system instance, e.g. people, should be put in the environment.
This does not exclude the possibility of including some of these in the system at a later
stage, for instance as part of a simulator.

Application services and objects

The services of a system are defined in application property models. As in the domain,
the application service models contain a textual explanation, a role structure and an
MSC document.

In general, an object is assigned properties in the following three ways, see Figure 6-23
(p.6-89):
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 88

Application models
Application model content 6TIMe
Figure 6-23: Ways that services are related to objects

Open figure

1. By explicit assignment of service roles using the Plays service role relation. This is
because the object is part of an object type to which we explicitly assign property
models.

2. By implicit assignment of service roles from the object type it is an instance of . This
is because objects are instances of types that may have explicitly assigned roles.

3. By implicit assignment of interface roles required by objects in its environment. This
is because the object appears in an environment where surrounding objects will
expect the object to behave according to some interface.

Of course, all the roles that an object receives must somehow be consistent with each
other and with the properties that the object actually provides.

Therefore, care must be taken to maintain consistency between the properties specified
explicitly for the system as a whole and those received implicitly from its components
and the environment.

Role sets • The set of roles explicitly assigned to an object should be a subset of those that follow
implicitly from its type and its environment.

The application reference model parts

Domain given

Application models are closely related to the domain and the needs of domain stake
holders. We are likely to find some of the domain actors in the system environment
(those that the system will support), and some domain helpers inside the system (in the
domain given part).

Service-B

MSC
role
structure

Text

Service-a1

System S

Service-A

MSC
role
structure

Text

Service-a1

BLOCK type B

Instance of

X Y:B

Plays service role

Plays service role

Plays interface role
Activities and Descriptions in TIMe 6 - 89 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Application model content

TIMe6

System given

A system family may have many features that were not covered in the domain models,
e.g.:

• positioning properties that help this family to be a winner in a competitive
marketplace;

• properties related to issues outside the domain such as operation and maintenance
functions for the system as such.

We recommend to model the System given parts in the same general way as the domain
given, except that the System given parts originate outside the domain and have no rela-
tions to domain models (except in cases where they lead to new understanding of the
domain).

Interface given

It is recommended to distinguish between the service behaviour and the interface behav-
iour by using layering as illustrated in Figure 6-24 (p.6-90).

Figure 6-24: A service layer and an interface layer

Open figure

Further we recommend to first define the
service behaviour separately without any
reference to interface given parts. This
means to consider only the two service
roles xr1 and xr2 and their dashed inter-
connection in Figure 6-24 (p.6-90). When
interfaces are introduced, the services shall

ideally behave in the same way even though the interconnections go via the interfaces
and the dashed interconnection in Figure 6-24 (p.6-90) disappears.

(It may happen that interfaces interact with the services in ways that were not anticipated
in the service models, for instance that messages may be lost. In such cases the service
behaviour must be modified to take the interaction into account.)

Figure 6-25 (p.6-91) illustrates how services and service objects may relate to the inter-
face given parts. Where to place interfaces in relation to the system boundary, and how
to model them is often a difficult choice.

Service xr2

Interface1

Service xr1

Interface2

S1, S2, ...

S1, S2, ... S1, S2, ..

I1, I2, ..
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 90

Application models
Application languages and notations 6TIMe
Figure 6-25: Two cases of interface given parts

Open figure

In the User terminal case, we have placed the Terminal in the environment and a Termi-
nal server inside the system. Note that the User will play both a service role and an
interface role in this case. Since these roles are internal to the User object, the service
interactions S1, S2,. are not visible outside the User. Inside the system however, the
roles are played by two different objects, and therefore the service interactions are visi-
ble there. In the Ext system case, the interface given parts are Protocols belonging to the
two systems.

Application languages and notations

As illustrated in Figure 6-22 (p.6-87), the main languages to use are MSC for property
models and UML combined with SDL for object models.

SDL is the main language for control behaviour, while UML will be used for other
aspects (such as user interfaces and data-bases). Typically UML will be used in the spec-
ification part, and possibly for top level design structuring. SDL will take over where
the main thing is to model reactive behaviour.

In some cases it will be possible to express the application object models completely in
SDL.

For description of interaction properties, we stick to MSC even if UML is used for the
Object Model.

User

Servicex r1

Terminal Terminal
server

Servicex r2

User
server

System

S1, S2, ...

I1, I2, .. I1, I2, .. S1, S2, ...

Ext system

Servicex r1 Servicex r2

system
server

System

S1, S2, ...

I1, I2, ..
S1, S2, ...

Protocols Protocols

Interface

a) User terminal case

b) External system case
Activities and Descriptions in TIMe 6 - 91 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Application languages and notations

TIMe6

Application specification languages and notations

Normally UML will be used for the specification object models:

Applica-
tion
specifica-
tion
notation

• In general use UML for the specification object model:

- Context: model the application system as a Class. Represent the environment as
object sets with specified variability. Describe associations and communication
links in the environment and with the system.

- Content: model the content (if any) as object sets inside the class.

- Component types: define a class for each component in the system environment
and content. For each component class, model the context using separate
diagrams.

For property models, text, role structures expressed in UML and MSC will be used.

• There shall be a separate property model for each service and interface containing:

- a role structure expressed in UML;

- explaining text;

- a MSCs for every initiative and its most important responses.

Using SDL
in applica-
tion
specifica-
tions

If SDL is used, we recommend to model the application system as an SDL Block type
rather than as a System type. There are two main reasons for this:

1. It is possible to formally describe the environment of Block types but not of System
types.

2. Block types can be used as components while System types cannot.

• Where reactive behaviour is important and general relations (associations in UML)
are unimportant, SDL should be used in the specification:

- Context: model the application system as a Block Type in SDL. Represent the envi-
ronment as gate constraints.

- Content: model the content (if any) as Block sets.

- Components: define a Block or process type for each component in the system or
the environment. For each type, define the type context.

• Associate the roles of property models with the objects and types/classes of object
models.

Application design languages and notations

For reactive, state transition behaviour it is recommended to use SDL. This means that
active objects in general should be described with SDL. One exception is graphical user
interfaces. For passive objects, and especially objects going into a database, UML may
be preferred.

This means that the application design may use a combination of SDL and UML.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 92

Application models
Application specification 6TIMe
Applica-
tion design
notation

• If the specification uses SDL, then continue with pure SDL in design.

• If the specification uses UML, then continue with UML for the structure until SDL
components are reached.

• Use SDL for components and subsystems having reactive, state transition behaviour.

Of course this division may cause interworking problems between the SDL and UML
parts.

• For property descriptions, we use role structures in UML, text and MSC.

Application specification

Objectives An application specification serves to answer fundamental questions like:

1. What services are provided?

2. What is the environment i terms of active and passive objects?

3. What is variable in the environment and the services?

It specify the external interfaces and behaviour properties (services) of an application.

What The application specification models are illustrated in Figure 6-26 (p.6-93)

Figure 6-26: Application system specifications

Open figure

System Service-a

MSC
role
structure

Text

Service-a1

System Service-a1

MSC
role
structure

Text

Service-a1

content

OMT/
UML

OMT/
UML

Refined toConsists of

context

Domain

Domain models

Application specification
Activities and Descriptions in TIMe 6 - 93 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Application specification

TIMe6

Specifications are developed first for the application system as a whole and later for each
(component) type. We distinguish between domain given, System given and Interface
given parts. It is natural to use this division as a guideline in the specification:

• Domain given parts and services. These originate in the domain models and may be
used more or less directly in the specification. The specification shall describe which
parts of the domain that are supported by the system. Some of these will be in the
environment, and some inside the system, see Figure 6-26 (p.6-93). Domain given
objects inside the system might as well be shown in the specification. For domain ser-
vices, it may be possible to use the corresponding domain property model directly,
but it is likely that some modifications will be needed. In any case the relationship to
domain models shall be maintained, see Application model relationships (p.6-97).

• System given parts and services. These may be special for the system family or they
may be shared with other families. We recommend to focus on the environment, and
avoid specifying content. The specification shall describe system given objects in the
environment, and the system given services. We do not include System given objects
inside the system in the specifications unless there are good reasons for it. But the
services may well specify service roles that will be played by (as yet unknown) actors
in the system.

• Interface given parts and interface properties. These are introduced to provide reli-
able communication across the system boundary for domain given and system given
parts. As the interface given parts often coincide with the external system interfaces
they are an important part of specifications. Therefore specifications may include
interface objects both in the environment and the system. Layering should be applied
to isolate the interfaces from the other parts.

Domain given types will be quite stable, and may be reused between many systems and
system families. System given types are less stable as they provide the functionality that
is particular for a system or system family. Among the interface given types, user inter-
faces can be the least stable. Protocols, on the other hand, may be quite stable.

Application specification content

Domain given specification

One key issue in any system development is to decide on what parts of a domain to sup-
port. (This is true even if there are no explicit domain models.) Basically this means to
decide on which domain actors and which domain services to support. These shall be
represented in the specification as follows:

Domain
given
specifica-
tion

• Every domain actor and helper needing to be served by the system shall be repre-
sented (as active objects) in the environment.

• Every stake holder, subject entity and helper the system needs to know shall be rep-
resented (as passive objects) in the environment.

• Every domain helper the system shall implement shall be represented in the (domain
given) content.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 94

Application models
Application specification 6TIMe
• Every domain relation(association) the system needs to know shall be represented in
the environment.

• Every domain communication link the system needs to handle shall be represented.

As a result we have a subset of the specification object model representing the domain
given parts. Inside the system (in the content) we only find domain objects (Helpers) that
are going to be realized by the system. In the environment we find the domain objects
that are going to be supported (if they are active) or represented (if they are passive) by
the system.

• Every domain given object shall have a type (class) which is related to the corre-
sponding domain type (class).

• Each domain given service shall be described independently of interfaces using ser-
vice roles.

• Each domain given type shall have relations to the domain given service roles it par-
ticipate in.

In this way there will be a separate service description (using role structures, text and
MSC diagrams) for each domain given service. Interaction with System given service
roles should be shown but interface given roles should be avoided.

System given specification

We do not include System given objects inside the system in the specifications unless
there are good reasons for it. We recommend to focus on the environment, and avoid
specifying content.

Again we recommend to separate services from interfaces.

In an enterprise view, consider stake holders and other entities that need to interact with
or be represented by the system.

System
given
specifica-
tions

• Every entity that needs to interact with the system shall be represented in the system
environment with a communication link to the system.

• Every entity and relation the system needs to know shall be represented in the
environment.

• Each service shall be described independently of interfaces using service roles.

• Each system given object in the environment shall have a type definition with rela-
tions to the system given service it takes part in.

As a result, we have a detailed description of the environment and the communication
links with the system. Each service has a separate description, and we know which ser-
vice roles that are going to be played by the system itself and by the objects in its
environment.

Interface given specification

Specifications will often be quite detailed about interface given parts. Interface given
parts will be localised somewhere on the communication links between the system and
the environment where their role is to convey the service interactions.
Activities and Descriptions in TIMe 6 - 95 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Application design

TIMe6

Interfaces will often have a layered structure with one or more protocol layers on top of
a physical layer.

Interface
given
specifica-
tions

• For every communication link with the environment the interface given parts shall be
specified.

• For each type of interface, there shall be a property model containing:

- interface roles using UML;

- a textual explanation;

- the role behaviour expressed using MSC. There should be one MSC for each inde-
pendent initiative and each main course of behaviour that may follow.

Application design

Objective To describe the design part of an application that:

• satisfies the specification;

• has clearly defined behaviour;

• has a modular structure suitable for future evolution;

• fits into the framework when defined.

What The context part of an application is fully covered in the specification. The design part
adds the content which is not covered in the specification. It defines the content struc-
ture in terms of objects, and the behaviour of each object type.

The first purpose of an application design model is to describe the system behaviour at
an abstraction level, where it can be understood and analyzed independently of a partic-
ular implementation. This is done in terms of both an object and a property model.

The second purpose is to be a firm foundation for designing an optimum implementation
satisfying both the functional and non-functional requirements.

Object behaviours are central to the application, and the design should primarily be
structured to give clear and concise behaviour models. We contend that behaviour
should be described state oriented, see General application guidelines (p.6-102). To
achieve that, the structure should contain one object for each independent (concurrent)
thread of behaviour in the system. These objects may be then aggregated in various ways
to suit additional purposes.

It is recommended to make a library of component types that can be used in a range of
application systems to cover the full variability needed. Some of these will be real aggre-
gates containing a structure of components, and others will be object types with
behaviour. The component types designed with SDL will be organised in Packages.
(Packages are used only for types that are general enough to qualify for being part of a
package. It is, however, possible to start with collecting the types being used in a specific
system in a set of packages.)
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 96

Application models
Application model relationships 6TIMe
Application design content

Application design models consists of:

1. The application modeled as a structure type. It is a type definition with context and
content that define the overall structure of the application system and may use several
levels of real aggregation. It will be constructed using a collection of component
types and refer to the definition of these component types for further detail. The con-
tent structuring is primarily concerned with active objects and interconnections.
However, the active objects will contain passive objects and conceptual relations.

2. The component types which are either:

- structure types that consist of object aggregates, defining the content as a structure
of components, or

- behaviour types, i.e. object types having a behaviour of their own, e.g. SDL pro-
cesses. There will be both active objects and passive objects as well as association
between active objects and passive objects, i.e. which active objects that access
and may change the passive objects representing known entities in the context.
(For SDL, the passive objects will be variables contained in processes)

3. Property models for the overall content. The application content shall satisfy the
specified context properties.

Each type is defined with a context and a content with associated properties. An object
type definition consists of:

• the context in terms of active objects and passive objects in the environment;

• the interfaces in terms of gates (or equivalent in UML);

• behaviour properties in terms of service roles, interface roles and MSC;

• attributes;

• the behaviour definition in terms of SDL process graphs or UML operations.

Application model relationships

How the application is related to the domain and the Framework is illustrated in Figure
6-27 (p.6-98).
Activities and Descriptions in TIMe 6 - 97 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Application model relationships

TIMe6

Figure 6-27: External Application relationships

Open figure

Relationships application - domain

We recommend that each domain given object has a type, with a context description.
(Each of these types will correspond to one of the component types that we recom-
mended to make in the Domain object models (p.-65)) In this way the relations to the
domain go via the types.

The nature of these relationship may vary from plain equality (when domain objects can
be used as-is) through inheritance (when the application objects are extensions of the
domain objects) to informal similarity (when the domain objects are just used as inspi-
rations for the application objects).

Domain relationships can thus be either Identity, Inheritance or Inspires where Identity
and Inheritance can be expressed in the object modelling languages, while Inspires must
be added as annotations. In Figure 6-27 (p.6-98) we have only indicated the weakest
relationship “inspires”.

Ideally the domain given types should be identical to the domain types. Any difference
shall be due to system given or interface given aspects. As far as possible we seek to
isolate these aspects, but it cannot be avoided that the domain given objects are
influenced:

• Domain given objects will most likely interact with System given and Interface given
objects. As this was not accounted for in the domain models, it is likely that the
domain given objects will have additional features.

Domain types

Domain models

Application models

Domain Properties

Application compo-
nent types

Application
Properties

 Framework com-
ponent types

Framework models

Inspires Inspires

defines

satisfy

satisfy

Application system
types

 Framework sys-
tem types
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 98

Application models
Application model relationships 6TIMe
• System given services will most likely interact with domain given services. These
interactions must be resolved. This means that the domain given service behaviour
must be refined to take these interactions into account, see The dialectics of
refinement.

Consequently, the domain given behaviour properties will be a refinement of the corre-
sponding domain properties.

Applica-
tion domain
relationship

• Every domain given type in the application models shall be related to the correspond-
ing domain type by either:

- identity;

- inheritance;

- or an annotation telling that it is inspired-by.

• If it turns out that system given properties must be handled by domain given objects,
then try to make -within the domain given objects - a separation between domain and
system given aspects.

Domain
communi-
cation

• If there are communication connections between objects in the domain object model,
then there will be a corresponding communication between the design objects, pos-
sibly via some interface given object(s).

Harmonising application - domain

Only the domain given parts need to be considered. When these parts differ from the cor-
responding domain models, the difference should be caused by System or Interface
given aspects. If they are not, it is likely that the difference is accidental and should be
removed, either by changing the domain model or the application model. (It is not
uncommon that working with the application helps to improve the understanding of the
domain.)

Applica-
tion domain
harmonisa-
tion

• Critically review the application looking for general aspects that are not system or
interface specific. Update the domain models to capture these aspects.

Relationships application - framework

Frameworks are composed from an infrastructure part, that come from the implementa-
tion architecture, and a redefinable application part, that come from the application.
Objects in the application part (of the framework) are formally related to Objects in the
application by using the same types. However, the application part of the framework
may be structured somewhat differently from the application. This means that the appli-
cation types need to be designed so they can be distributed in the framework and
communicate transparently with each other and the environment. It also means that they
must be adapted to the operation and maintenance services provided in the framework,
e.g. the methods for dynamic system configuration.
Activities and Descriptions in TIMe 6 - 99 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Application model relationships

TIMe6

Applica-
tion
framework
relationship

• Every type used in the application part of frameworks shall be defined in the appli-
cation models.

• Every application type shall be applicable in the framework.

Harmonising application - framework

Application types are developed and maintained as part of the application, and used in
frameworks to produce executable systems. It is not necessary to develop a complete
application system each time a new executable system is to be produced. It is sufficient
that the necessary (component) types are available for use in the framework. However,
to fit into the framework, application types must comply with the framework infrastruc-
ture and interfaces.

Applica-
tion
framework
harmonisa-
tion

• When the framework is defined, adjust all application types to comply with the frame-
work infrastructure and interfaces.

• Maintain the relationship between framework and application by using identical
types.

Relationships application specification - design

We recommend that the properties of a design always shall satisfy the properties of a
specification.

This can be verified to some extent using state-of-the-art tools, e.g. verifying that a MSC
specification may be executed by a SDL design.

If possible, the rules for mapping service specifications to design objects shall be
described, both for the purpose of traceability and for incremental service creation. Ide-
ally, if the rules are well defined, we may perform service evolution mainly by evolving
the service specifications. Although this cannot fully be achieved presently, being clear
about the rules is a step in that direction.

The internal relationship of application models are illustrated in Figure 6-28 (p.6-101).
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 100

Application models
Application model relationships 6TIMe
Figure 6-28: Internal application model relationships

Open figure

In general, the content properties shall be a refinement of the context properties such that
the application content model satisfies the context properties.

The application content receives properties from the component types that are used.
These component properties shall be consistent with other properties that are specified
for the content as a whole and with each other.

Harmonisation application specification - design

Top-down we seek to synthesize the content such that the context properties remain sat-
isfied. Bottom-up we compose the content using existing types such that each interface
is consistent, and that the context properties are satisfied. As far as possible we use con-
structive rules.

Applica-
tion
internal
harmonisa-
tion

• Ensure that the design properties satisfy the specification properties, either by using
property conserving synthesis or by verification.

Application system
types

Context

Content

Context Properties

Structure Structure roperties

Component types

Consists of refinement of

satisfy

satisfy

component
context propertiessatisfy

structureBehaviour

consists of

Environment

Environment

relates to

relates to
Activities and Descriptions in TIMe 6 - 101 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
General application guidelines

TIMe6

General application guidelines

Goals While we structure domain models mainly to show the concepts and the relationships of
the domain, we strive to achieve clarity in the behaviour description when we make
application models.

Golden rule • The golden rule is to partition along the lines of independence and not across
dependencies.

The main goal is to find an object structure that will enable us to describe behaviour as
clearly and concisely as possible in state oriented fashion.

State
orientation

State orientation is a general principle for behaviour description that helps to make
behaviour descriptions easier to understand and analyse. The basic idea is to unfold the
state transition behaviour as explicitly as possible in the description. In that way the
description is similar to the real behaviour and therefore easier to follow than an action
oriented behaviour.

• Represent what the environment may distinguish as control states of the objects (Pro-
cesses in SDL) as states in the behaviour descriptions (process graphs in SDL).

• Critically review all decisions in SDL to ensure that they are not symptoms of unde-
sirable state hiding.

• Represent what the environment may distinguish as different control signals by dif-
ferent signal types.

• Branch on input signals rather than on decisions.

Data • Use data

- when the process graph structure is not dependent on the data values (non-deci-
sive data);

- to keep information about the situation and structure of the environment (context
knowledge);

- to control loops that are not terminated by specific signals (loop control data).

• Introduce special processes to encapsulate shared data. Encapsulate data needing
independent access in separate processes.

Resource
allocation

• Introduce a special resource allocator process to control the access to each pool of
functionally equivalent resources.

Concur-
rency

In order to describe behaviour state oriented and clearly, it is necessary to find objects
that behave as independently as possible.

• Model independent and parallel behaviours as separate concurrent objects (pro-
cesses in SDL).

• Do not hide similar behaviours in data. Decompose such that similar independent
behaviours are described explicitly as separate instances of a process type.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 102

Application models
General application guidelines 6TIMe
Service
concur-
rency

For the domain and System given parts that perform the service behaviour, this rule
leads to:

• The service needing parts of the environment (i.e. the domain and System given parts
except subject entities) should be decomposed into objects such that every object has
an independent thread of behaviour and takes initiatives independently of other
objects.

This helps to find the objects that behave independently in the environment and there-
fore need to be served independently by the system.

• The service providing parts of the system should be decomposed into objects such
that there is at least one active object to serve each service needing object in the
environment.

• In other words: the service needing environment should be mirrored by correspond-
ing service providing objects in the system.

• Use one process to play each independent behaviour role required by the
environment.

Communi-
cation

• Use one channel and/or signal route to carry each independent and concurrent inter-
action dialogue.

• Protocols should be decomposed by layering, such that each layer hides the details
of the protocols used on that layer from higher layers. Lower layers should provide
application independent transfer services for the upper layers.

Aggrega-
tion
purposes

• Where appropriate, objects should be collected in aggregated to provide one or more
of the following aggregation purposes:

- gradual approach to detail;

- separation of concerns;

- definition of a type (class) suitable for use in many places (e.g. AccessPoint);

- layering;

- encapsulation;

- similarity with the concrete system. NB this consideration should not be taken
before the framework is defined.

Aggregates Aggregates are like systems, they have a context and a content. Their environment con-
sists of the entities they know and communicate with, and their content consists of the
aggregated parts.

• Every aggregate shall fulfil one or more of the aggregate purposes.

• Let each aggregate have at least:

- one active object for each active object in the aggregate environment it communi-
cates with;

- one active object for each pool of shared resources to be dynamically allocated;

- one active object for each block of shared data accessed and controlled
independently;
Activities and Descriptions in TIMe 6 - 103 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
General application guidelines

TIMe6

- one active object for each independent routing function needed.

• For each aggregate where there is a choice between local and remote; communica-
tion, use a two-level addressing scheme and hide the routing knowledge in a routing
process.

• The structure imposed by the application system should be expressed as explicitly as
possible:

- either each aggregate (SDL Blocks) shall be classified as domain, system or inter-
face given;

- or each aggregate is subdivided into parts that can be classified as domain, system
or interface given.

Similarity
and types

In many cases it is best to define aggregates as types. We call such types structure types,
as opposed to object types that define single objects with behaviour. Look for similari-
ties, which will make type concepts. Re-examine components that are partially similar,
but partially dissimilar.

• Aggregates should be defined as types, except when they are singular and only serve
the purpose of gradual approach to detail.

Using
library

• Analyse the system such that it may be possible to recognise similarities with existing
components. This should include both conceptual, structural and behavioural
descriptions. Return to analysis if library search fails to produce the desired building
blocks.

Designing
with SDL

• When designing with SDL-92 bear in mind there is no problem in the first round just
to identify one process type for each role that not obviously is associated with a
domain Specific object. If it turns out that this role is more or less independent of
other roles, then it may either stay as a process type or it may be turned into a service
type in order to be combined with other service type. If it turns out that this role is
highly dependent on other roles, then a merge/synthesis of process properties is
needed (++ref 1112-5/6 - role modelling)

Variability The variability is an important part to consider.

• Each object set in the environment and the content of a structure type shall have a
cardinality range, and a member type with sufficient variability to cover the range of
environments where it may be instantiated.

It may sometimes be difficult to capture all variability required in one formal model of
the application, because the languages we use have limitations. The way out of this prob-
lem is to model several application systems with different ranges of variability. This
may sound like a very expensive approach, but it need not be. Provided that we have
defined the various component types we need, to define another application system is a
simple matter of defining a new top level structure. For the specification this means to
define a new context model using existing component types.

• Ensure that the variability expressed is sufficient for the range of system instances
demanded from the market.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 104

Application models
General application guidelines 6TIMe
• If the full variability cannot be modelled in one system model, make several system
models, and focus on the range of components needed.

Evolution • Ensure that the modularity is sufficient that changes in services or interfaces can be
confined in few modules.

• Ensure that services can be added or changed with minimal impact on (interaction
with) other services.

Framework The focus on components will be even more important when a framework has been
defined.

• If the framework has been defined, make application types such that they can be used
in the framework.

Object
modelling
in general

The general guidelines for Object Modelling apply with the following additions:

• Object classes with attributes, relations and connections:

- Define attributes by attribute types that are either predefined or locally defined.

- Associate signal lists with communication links.

- Turn communication links into signal routes or channels when designing in SDL.

• Relations

- Stick to constructive relations.

• Aggregation

- Always use real aggregation for active objects.

- Use aggregation relations only for passive objects.
Activities and Descriptions in TIMe 6 - 105 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Developing applications

TIMe6

Developing applications

What

Figure 6-29: Developing Application

Open figure

Inputs The main sources of input information are:

• Descriptions:

- The system family statement will express overall goals for the application system.

- The system studies will provide some sketches of the application system and also
express initial requirements.

- The domain descriptions will describe objects and properties that will go into the
domain given parts of the application (more or less directly).

- The framework (when it has been developed), will provide structure and interfaces
that the application must abide.

- Other families will provide components and possibly ideas for structuring.

- Project documents and other documents within the company will provide addi-
tional information such as business plans and product strategies.

• People:

Specifying
application

Designing
application

Application
design

Application
specification

Family
statement

System
studies

Family
dictionary

Other Families

Framework
models

Business plan,
product strategy

Developing
application

 users,
product

manage-
ment

Domain
descriptions
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 106

Application models
Developing applications 6TIMe
- Users and other domain stake holders can help to clarify what is unclear in existing
descriptions and can help to make decisions (in particular regarding specifications
and behaviour details). They will also come up with new requirements as their
understanding and experience develops.

- Project and product management may give additional requirements and guide-
lines from the project and company point of view.

The quality of the various sources may vary a lot from project to project. It is of course
recommended to put as much as possible on paper, but descriptions cannot entirely
replace interaction with other people. Two things are certain:

• additional information will be needed from people;

• needs and requirements will not be stable, but evolve during the development.

What to do Application types are developed in two main steps: 1. the specification step and 2. the
design step. As indicated in Figure 6-29 (p.6-106), this holds both for making the first
model and for later evolution.

The specification step develops the application context and the required properties,
while the design step synthesizes an application content that provides the properties. The
content will be a structure of objects with behaviour. Therefore the design step will have
two interrelated activities: structural design and behaviour design.

Both the specification step and the synthesis step are split into sub-activities that develop
the three main parts of an application system: the domain given, the System given and
the Interface given parts. Here the general approach is to work from the domain given
towards the Interface given parts as illustrated in Figure 6-30 (p.6-107).

Figure 6-30: Developing the various parts of an application

Open figure

There are good reasons for this general approach:

• The needs originate in the domain, and domain given parts can be understood and
modelled independently of the rest of the system, at least initially.

Developing
Domain given

Developing
System given

Developing In-
terface given

Domain givenInterface given System given
Activities and Descriptions in TIMe 6 - 107 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Developing applications

TIMe6

• The system given parts provide services on top of the domain given parts. Therefore

the domain given parts is a precondition for the system given parts.

• The interface given parts are there to support communication with the environment
for the domain and System given parts. The communication needs should be known
before the Interface given parts are developed.

In terms of services, a good approach is to start with the high level services (required by
the domain and the system) and work towards the low level interface protocols. This
approach is consistent with the idea of layering and separation of concerns. It will pro-
mote a structure where changes in one part may be hidden from other parts.

Of course, it may so happen that some parts are more or less given by the initial require-
ments. For instance that an existing protocol stack or user interface shall be used. This
does not alter the general approach to be taken, but reduces the amount of work required
for that part.

Making application models

The following general approach to making application models is recommended:

The approach is further detailed in Specifying applications (p.6-109) and Designing
applications (p.6-113).

Evolving application models

The reason for evolution is that some new requirements shall be satisfied.

Make Application

1. Making application specifications (p.6-110). This
activity results in a context model (i.e. an object dia-
gram, where the system environment is detailed while
the system itself is depicted as a single entity, accom-
panied by property models specifying services and
roles) and a partial content showing the domain given
parts.

2. Making application structure (p.6-114). This activity
develops the content structure (i.e. object diagrams
that detail the structure of the content, supported by
property models.) The leaf components in the struc-
ture are objects that will have a behaviour. For each
object type continue by:

3. Making application behaviour (p.6-115) to define
object behaviours that will satisfy the behaviour prop-
erties specified for each object type.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 108

Application models
Specifying applications 6TIMe
The same overall approach is recommended for making (the first) and evolving (the
existing) application. The difference is that evolution is incremental and based on exist-
ing models. Our ideal goal is to be able to specify services independently and to add new
services to the system with minimal impact on existing services and objects. We will
strive to achieve solutions that are as flexible as possible, but realise that the ideal goal
is not fully achievable today. Some redesign of existing parts will often be required.
Normally new services, or service features, will interact with existing services. Feature
interaction analysis will be needed to ensure that the new properties combine with the
existing properties without any undesirable effects.

This activity is both simpler and more difficult than making (the initial) application
model. It is simpler because so much is already in place and we only need to do an incre-
mental addition or change. It is more difficult because even small changes or additions
may have profound impact on the existing parts, if not prepared for.

Specifying applications

Inputs Inputs to this activity are the same as for Developing application models as a whole, see
Figure 6-29 (p.6-106). Be aware that system studies normally are performed before we
start specifying the application. During System Studies, the main decision about system
boundary, services and environment is made. As a result we have partial answers to
questions like:

• what parts of the domain that shall be supported by the system;

• what shall be the system environment and interfaces;

• what shall be the main services;

• what are the requirements to evolution and instantiation?

If these questions have not been answered before, perform that part of System Studies
first.

What to do The objectives of application specifications are:

Evolve application

Evolution is performed by:

1. Evolving application specifications (p.6-113) in
order to update the specification and to analyse the
impact on the design.

2. Performing an incremental synthesis of the appli-
cation so that the new services are satisfied without
undesirable interference with existing services: do
this by:

- Evolving application structure (p.6-115)

- Evolving application behaviour (p.6-116)
Activities and Descriptions in TIMe 6 - 109 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Specifying applications

TIMe6

• to specify the external behaviour at an abstraction level where it can be understood

and analyzed independently of a particular design;

• to specify the environment and the interfaces sufficiently to make the applicability
(of instances) clear.

Therefore, a central issue is to identify objects in the environment that demand services
independently of each other, and to describe these services.

The overall approach is as follows:

• Decide on what parts of the domain that shall be inside the system and what parts
shall be in the environment, and what shall not be considered at all.

• Represent the system type as one entity, and show its interconnections to entity sets
in the environment. Specify constraints and variability of the entity sets.

• Make a (passive) object model representing the entities in the environment that the
system family shall know of.

• Describe the domain specific services in terms of text, role diagrams and Use Cases
(in MSC).

• For each of the active object types in the environment, make a context diagram and
describe its active environment in terms of roles. Specify the corresponding service
behaviour using roles and MSC.

• Add system specific entities to the active and the passive environment

• Only show parts of the environment that are related to the system.

• Identify the content parts that are subject to requirements.

• Sketch or outline the system structure using UML.

• Use real aggregation to illustrate how entities in the environment relates and are con-
nected with parts of the system.

• If possible or relevant, define the interface behaviour of each role in the system and
in the environment.

Making application specifications

As a first step consider what language to use, see Language choice (p.6-116).

Then start to make a type model for the entire application system by representing the
system type as one entity type (Class in UML).

Specifying the domain given objects

1. Represent all the domain Actors and Helpers needing to be served by the system as
(active) objects in the environment.

2. Represent domain Helpers to be implemented by the system as active objects inside
the system.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 110

Application models
Specifying applications 6TIMe
3. Represent stake holders, subject entities and helpers the system need to know as (pas-
sive) objects in the environment.

4. Start to define object types for all the objects identified so far. For each type, make a
context diagram showing the type environment.

5. Relate domain given types to the corresponding domain types.

As a result we have identified the domain given parts of the environment and the system,
and we have started to define object types.

Specifying the system given objects

Consider the system from an enterprise viewpoint. Think of the system in the wider con-
text of an enterprise where it operates and provide services together with users and other
systems. What are the combined services and what additional requirements to the sys-
tem family can be identified in this perspective?

1. Add (active) objects representing system given actors and helpers needing to be
served by the system; place them in the environment and connect them to the system
by communication links.

2. Add (passive) objects representing system given objects and relationships the system
need to know; place them in the environment.

3. Add the context part of type models for the system given types.

As a result we have made a context object model for the system as a whole where the
complete system environment is represented, and context models of the component
types used in the system context.

We always consult the library of existing component types and pick existing types
whenever possible.

Make Application specification

1. Make a context diagram where the system is repre-
sented as one unit. The environment and the
content are then detailed by:

2. Specifying the domain given objects (p.6-110).
This means to specify domain given objects in the
environment and in the content.

3. Specifying the system given objects (p.6-111).
This means to analyse the need for system given
services on top of the domain given services. Spec-
ify additional system given objects needed in the
environment.

4. Specifying the services (p.6-112). Specify domain
given and system given services using service
property models.

5. Specifying the interface given objects (p.6-112).
Activities and Descriptions in TIMe 6 - 111 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Specifying applications

TIMe6

Specifying the services

From the domain models we already have domain services. But the domain services will
now interact with the System given services. Our first step is to consider each domain
service in the light of System given objects and services.

1. Refine each domain service so it takes into account interaction with System given
objects (or roles) and services.

2. Define each System given service.

3. Make new component type models more complete by specifying relations to service
roles they play.

This activity shall take existing service models into account. For instance, if an existing
component type is used, the services it provides may be taken for granted, and the new
services may build on it. It may also happen that a new version of existing services are
needed. It is only in rare cases one is free to specify all services from the bottom.

Once the services are specified, we have a (complete) context model for the system
given and domain given parts of the application system. We also have context models
for each of the object types used in the environment, and we have service models. We
may now analyse the model for completeness and consistency, and we should involve
users and other stake holders in a validation.

Specifying the interface given objects

The Interface given parts should be kept separately from the rest by layering. Consider
the physical interfaces and add interface specific parts to the environment, or to the sys-
tem as appropriate.

1. Make a type definition for each kind of interface object.

2. Specify the interface behaviour for each layer of interface protocols:

- define the interface roles using UML;

- make a textual explanation;

- define the role behaviour using MSC. Make one MSC for each independent initia-
tive and describe the main course of behaviour that may follow.

It is recommended to describe the behaviour of each interface using an interface role dia-
gram and at least a number of MSCs. Wherever practical, develop a more complete
interface behaviour using SDL.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 112

Application models
Designing applications 6TIMe
Evolving application specifications

Evolution may take place in all parts: domain given, system given and interface given.
The big difference from making a specification is that we now shall add something new
or change something existing. We must therefore consider the impact on the existing.

Note that application specifications are made for the first time before any framework is
defined (normally). However, when they are subject to evolution, it is more likely that
a framework is in place. In that case we may have abandoned the complete view on
application systems in favour of a more component oriented view. This means that our
task is to find what component types are affected, and to modify each of them separately.

Designing applications

This activity takes the application specification and synthesizes a design that will pro-
vide the required properties. It consists of two parts: Designing application structure
(p.6-113) and Designing application behaviour (p.6-115).

Designing application structure

What In SDL terms this activity is concerned with the identification of blocks and block types
in order to divide the system into convenient “components”. Blocks may be used to
make a layered system. One may chose the extreme that the interface-, system- and
domain given parts are represented by one block each, but this may be too inflexible.
Blocks are aggregates and should be selected to fulfil the aggregation purposes, see Gen-
eral application guidelines (p.6-102).

Some of the object types and properties developed in this activity may turn out to be
quite general and common to many system families in the domain. In such cases the
domain object models and domain property models should be harmonised, i.e. updated,
to include these object types and properties.

Property descriptions will in this activity be associated with the identified objects of the
system, while property descriptions in the domain analysis and requirement specifica-
tion activities more often are property descriptions of the whole system.

Evolve Application specification

1. Specify the new services using property models.

2. Analyse the impact on existing services and object
models.

3. Specify new objects required in (the various parts
of) the environment (if any).

4. Change existing services and object models as
Activities and Descriptions in TIMe 6 - 113 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Designing application structure

TIMe6

“Finding” the content objects may in some cases appear as “magic” and may require
some experience from good design for similar systems. However, once the context is
specified with service roles and the interface roles, the task is simpler: just “find” actors
for all the roles. With a slight adaptation of an old saying we may say: Tell us who is in
your environment and we will tell you who you are (what your content is).

What to do Making application structure

The following strategy assumes that we know the active environment and the roles that
it requires from the system.

1. Mirror the active, service needing environment. Identify the objects and interfaces in
the service needing part of the environment that behave independently and need to be
served concurrently by the application. Mirror each object by a serving agent inside
the application.

2. Find actors for all service roles. First analyse the service roles defined in the prop-
erty models and find actor objects for those that shall be played by the application.
If possible, assign the roles to objects already defined, otherwise introduce new
objects.

3. Introduce actor allocators when roles are dynamically assigned and there may be
contention for the actors. Services invoked by different, concurrent users, may con-
tend for access to the same actor and will need to be coordinated. Each set of
equivalent actors should have an actor allocator object.

4. Find types. Look for existing types that can play the roles. Use existing types if pos-
sible, otherwise identify new types to be defined in application type design.

5. Consider the interface given part of the environment and introduce correspondingly
layered interface objects inside the application.

6. Mirror the passive environment. The passive objects in the context represent context
knowledge the system need to have. This knowledge must be mirrored by data or
active objects inside the system. Therefore, allocate the passive objects in the context
to active objects in the body. This may result in some new objects being defined. The
same principle applies recursively for every object inside the system too. If necessary
introduce new active objects to hold the data.

7. Analyse the behaviour. Make MSCs detailing the internal interactions and check that
the structure will give effective behaviour definitions.

8. Analyse the block structure. Find a suitable block structure that will satisfy the block
purposes.

9. Analyse variability and adaptations required.

10.Verify and validate. Validate the functionality against requirements using simulation
and MSC verification. Validate external and internal interfaces. Ensure that every
role is properly played in the system using the role analysis principles of the method.
(During type design apply the rules constructively during behaviour composition.)

11.Iterate and adjust the structure until the general rules and guidelines for application
models are satisfied (see General application guidelines (p.6-102)).
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 114

Application models
Designing application behaviour 6TIMe
For each aggregate (SDL block); the same rules apply as if it was a system. The decom-
position process continues recursively until objects with behaviour (SDL processes) are
reached. The structuring of blocks results in a tree of blocks. The leaves of this tree will
contain the real actors of our system, the processes.

The principles behind this process are elaborated in synthesis.

Evolving application structure

t.b.d.

Designing application behaviour

What The task at hand is to define object types where the content is a behaviour definition and
possibly some attributes. The goal is to describe the behaviour clearly and concisely in
state oriented form.

Object design tries to synthesize object behaviours that will satisfy the desired behav-
iour properties (services). It will, however, often be so that several objects must be
involved in satisfying a single property (service) of the system.

What to do Making application behaviour

The central issue is to synthesize the behaviour. This can be done in three ways:

• Synthesizing behaviour from properties (p.6-115);

• Synthesizing behaviour from environment behaviours (p.6-115);

• Synthesizing behaviour from informal requirements (p.6-115)

Synthesizing behaviour from properties

The behaviour properties express fragments of behaviour that somehow shall be part of
the final object behaviour. Behaviour design will compose these behaviour fragments
into complete behaviours. This may be done in two steps, see MSC to object behaviour:

1. composition of behaviour fragments from MSCs to more complete role behaviours;

2. composition (with a certain amount of adaptation) of object type behaviour from role
behaviours.

Synthesizing behaviour from environment behaviours

In some cases the behaviours of objects in the environment are defined, and the task is
to design a behaviour that will serve these. The resulting behaviour shall be a kind of
“mirror” image of the environment behaviours.

Synthesizing behaviour from informal requirements

Sometimes no behaviour properties are formally expressed, only some informal descrip-
tion of functionality exists. In this case, the preferred approach is to first formalise the
requirements in MSCs and then synthesize the behaviour as described above. Alterna-
tively, produce state transition diagrams (SDL process graphs) directly:
Activities and Descriptions in TIMe 6 - 115 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Summary of static application rules

TIMe6

1. Identify the main control states that can be distinguished form outside. At least iden-

tify an initial state.

2. Link the main states together by transitions.

3. Consider each service that shall be performed and define its external state transition
behaviour. Add states if necessary.

4. When all the services are defined, go through the diagram state by state and check
that all possible inputs are properly treated. Apply the rules for input consistent
behaviour, see ++

5. Add the necessary data declarations and parameter handling.

Evolving application behaviour

t.b.d.

Summary of static application rules

Language choice

• In general use UML for the context object model:

- Model the application system as a Class. Represent the environment as object sets
with specified variability. Describe associations and communication links in the
environment and with the system.

- Model the content (if any) as object sets.

- Model the Class context for objects in the system environment and content using
separate diagrams.

• Where reactive behaviour is important and general relations (associations in UML)
are unimportant, SDL should be used:

- Model the application system as a Block Type in SDL if SDL is used for the com-
plete application system. Represent the environment as gate constraints.

- Model the content (if any) as Block sets.

- Model the types context for Block types in the environment ant the content.

• There shall be a separate property model for each service and interface containing:

- a role structure expressed in UML;

- explaining text;

- a MSCs for every initiative and its most important responses.

• Associate the roles of property models with the objects and types/classes of object
models.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 116

Application models
Summary of static application rules 6TIMe
Domain given parts

• Every domain Actor and Helper needing to be served by the system shall be repre-
sented as an (active) object in the environment.

• Every stake holder, subject entity and helper the system need to know shall be repre-
sented (as a passive object) in the environment.

• Every domain helper the system shall implement shall be represented in the (domain
given) content.

• Every domain relation(association) the system need to know shall be represented in
the environment.

• Every domain communication link the system need to handle shall be represented.

• Every domain given object shall have a type (class) which is related to the corre-
sponding domain type (class).

• Each domain given service shall be described independently of interfaces using ser-
vice roles.

• Each domain given type shall have relations to the domain given service roles it par-
ticipate in.

System given parts

• Every entity that need to interact with the system shall be represented in the system
environment with a communication link to the system.

• Every entity and relation the system need to know shall be represented in the
environment.

• Each service shall be described independently of interfaces using service roles.

• Each system given objects in the environment shall have a type definition with rela-
tions to each system given service role it participate in.

Interface given parts

• For every communication link with the environment the interface given parts shall be
specified.

• For each type of interface, there shall be a property model containing:

- interface roles using UML;

- a textual explanation;

- the role behaviour expressed using MSC. There should be one MSC for each inde-
pendent initiative and each main course of behaviour that may follow.

General considerations

• Every object in the environment shall have an independent threads of behaviour and
take initiatives independently of other objects.

• Every aggregate in the environment shall fulfil some of the desired aggregate
purposes.
Activities and Descriptions in TIMe 6 - 117 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Application models
Summary of dynamic application rules

TIMe6

• Each object set in the environment shall have a specified cardinality range, and mem-

ber types with sufficient variability to cover the range of environments to be
supported by members of the family.

• If the full variability cannot be modelled in one system model, make several system
models, and focus on the range of components needed.

System Content

• Avoid to reveal more content in a specification than necessary for the external use.

• If more content need to be specified, then split the specification into an external part
and an internal part. The external shall be sufficient for assessment and use.

• If the system body shall be described in some detail, then use the guidelines for
Object Modelling. Use the same notation for content structure as for context struc-
ture (most likely UML) in specifications.

Summary of dynamic application rules

Domain mapping

• Relate domain given types to the corresponding domain types.

Domain relationships can be either Inheritance or Inspired-by. Inheritance can be
expressed in the object modelling languages, while Inspired-by must be added outside
the languages as annotations.

Domain stake holders

• Consider all domain stake holders:

- Represent all the domain Actors and Helpers needing to be served by the system
as active objects in the environment.

- Represent domain Helpers to be implemented by the system as active objects
inside the system.

- Represent stake holders, subject entities and helpers the system need to know as
passive objects in the environment.

Interface layering

• Use a layered approach to behaviour properties. Separate the interface given parts
from the domain and System given.

- make property models that abstract from the interface given parts and focus on the
domain and system given parts;

- make additional property models where the interface given parts are included.

Environment

• Decompose the environment into objects that have independent threads of behaviour
and take initiative independently of each other.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 118

Application models
Summary of dynamic application rules 6TIMe
• Organise the environment in aggregates that fulfils the desired aggregate purposes.

SDL system and environment

For the elements at the periphery of your concern, place them inside the system if you
wish to describe their behaviour in detail. If you are merely interested in their signal
interface, place them in the environment which means they will not be identified explic-
itly in SDL.
Activities and Descriptions in TIMe 6 - 119 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Framework
Content and scope

TIMe6
Framework

Content and scope

A framework is an abstract system or a collection of (large) system component with two
parts:

• a redefinable application;

• a configurable infrastructure that takes distribution into account, and contains all
additional behaviour and supporting functionality needed to support the application
in the concrete system.

The application part is normally rudimentary in the framework. To make a complete
abstract system from a framework the application is redefined and the infrastructure is
configurated.

In this chapter we shall describe:

• What is a framework (p.6-121): an introduction to the notion of a framework.

• Framework reference model (p.6-122): the system model assumed in frameworks.

• Framework models (p.6-126): how to describe frameworks.

• Developing framework (p.6-143): how to develop framework models.

Framework models are important because:

• they model implementation dependent behaviour and distribution common to many
applications (the infrastructure);

• they support reuse of high level designs and not only single classes;

• they contain the common infrastructure in a way that can be easily reused with a
range of applications;

• they allow application development to be separated from infrastructure development
(a kind of layering);

• they are instantiated into complete abstract systems that:

- document the complete system behaviour as it will be (or has been) implemented;

- are complete sources for automatic code generation.

Once a framework is defined, application development may proceed as an independent
activity concentrating on application issues.

Says the people at Sesam Sesam: “We have
seen frameworks work for window systems and
implemented in object oriented programming

languages, but we guess frameworks are not for
us, now that we have chosen SDL ...
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 120

Framework
What is a framework 6TIMe
What is a framework

The Free On-line Dictionary of Computing defines a “framework” as:

“In object-oriented systems, a set of classes that embodies an abstract design for solu-
tions to a number of related problems.”

A tutorial on designing frameworks says:

“Frameworks are reusable designs for an application or a subsystem expressed as a set
of classes and the way that instances of these classes collaborate.

A framework describes not only how to partition the responsibilities of a system among
its components, but also how to think about a problem. It is therefore not only a way to
reuse code, but a way to reuse design and analysis information, as well.

Frameworks are difficult to design because they are abstract. Framework designers
must look at many concrete applications to ensure that the abstractions that they are
designing make sense. Frameworks are difficult to learn because the user of a frame-
work must adopt the collaborative model of the framework. It is usually not possible to
learn a framework one class at a time, but instead several classes have to be learned
together.

Nevertheless, there is a great advantage to learning a well-designed framework, and
mature frameworks (like some of the user interface frameworks) can provide order of
magnitude increases in programmer productivity.“

The main property that distinguishes a library from a framework is that a framework
embodies a design of a type of systems, while a library just is a collection of related
classes. An elaboration of this distinction is given in Table 6-1 (p.6-121).

Examples on these differences will be given below.

Table 6-1: Differences between libraries and frameworks

Library Framework

The application uses
library classes, but the
library knows noth-
ing about the
application

The framework knows
about the application
and uses application
classes.

No predefined system
structure. The system
is entirely defined in
the application.

Provides structure. The
system is (partially)
defined in the
framework

No predefined
interaction

Defines object
interaction

No default behaviour Provides default
behaviour
Activities and Descriptions in TIMe 6 - 121 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Framework
Framework reference model

TIMe6

Classical examples of frameworks like window systems are defined as a set of related
classes, and are normally implemented in C++. The structure of these frameworks
results from dynamically created objects that are kept together by object references. The
event loop that dispatches mouse and keyboard events to window objects will use a list
of currently active window objects. This list will typically contain different window
objects, with the common property that they react on these events. By calling virtual pro-
cedures, it is then up to the user of the framework to redefine these procedures to what
is special for the application.

The notion of framework is not special for TIMe. What is special for TIMe, however, is
that this idea is adapted to SDL. TIMe advocates the structuring of systems into frame-
works and gives guidelines for how frameworks can be defined in SDL. TIMe puts a
little more into frameworks than the definition above, and one reason is that SDL can
specify the static structure of systems and not just a set of types.

In TIMe a framework is a system type/class or a collection of (large) component types/
classes, with predefined structure so that a specific system only has to provide the spe-
cific “contents” of part of this structure. Frameworks often come about because an
abstract (application specific) system has to be supplemented by a large infrastructure
part in order to be executable on a given platform. Instead of making the infrastructure
part again and again for each new system with the same infrastructure on the same plat-
form, a framework that embodies both the application- and the infrastructure part is
defined. In a framework the infrastructure is stable, while the application part may vary
from system to system.

The structuring of a framework may have one or more of the following goals:

• simply to give the system a generic structure, allowing all parts of the structure to
have specific contents provided in a specific system;

• to structure the system so that the application specific and the implementation spe-
cific parts are separated allowing special applications to be “plugged” into the
framework by providing the contents of the application parts.

TIMe emphasises the second goal. How this may be done for designs made in SDL, is
explained in How to define a framework using SDL (p.6-132).

One reason for designing frameworks is that this has turned out to be the most effective
way of reuse. Another is that the framework helps to simplify application evolution and
system instantiation.

Framework reference model

Applica-
tion and
infrastruc-
ture

In the Application reference model (p.-99) the “pure” application is in focus without
considering how it will be implemented. When the system is implemented, the applica-
tion system may be distributed over several physical nodes and needs to be supported
by an infrastructure with functionality for:

• distribution;

• communication;

• error handling;
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 122

Framework
Framework reference model 6TIMe
• etc.

Complete
abstract
system

This additional functionality may be modelled in a complete abstract system which can
be seen as having two layers: an infrastructure layer and an application layer. In the com-
plete abstract system the application has been distributed in the same way as in the
concrete system. In the Infrastructure part we find objects that support distribution, sys-
tem administration and other facilities not directly related to services provided by the
application. The infrastructure part contains additional behaviour needed to fully under-
stand, simulate and analyse what the system does (the complete system behaviour).

Model A reference model that takes these aspects into consideration is shown in

Figure 6-31 (p.6-123).

Figure 6-31: Application framework reference model

Open figure

Here the Application reference model (p.-99), described in Figure 21 (p.-99) [openfig] is
distributed on top of an infrastructure.

It is normally the case that different systems within a family will have the same Infra-
structure but slightly different application parts, and when making systems with
different applications it is desirable not to change or even consider the Infrastructure part
(besides what it offers). Adding or changing services should mainly be performed in the
application, leaving other parts unchanged.

On the other hand it is sometimes desirable to change the implementation platform with-
out needing to modify the application. It is desirable that an application may survive
several platform generations and thereby provide better return of investment.

Application

Application

InfrastructureInfrastructure

InfrastructureInfrastructure

Infra-
structure

redefinable

configurable

physical node
Activities and Descriptions in TIMe 6 - 123 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Framework
Framework reference model

TIMe6

A framework defines the composition of the Infrastructure parts and application parts in
such a way that they can be changed independently.

Framework infrastructure

The Infrastructure is structured similarly to the concrete system. If the concrete system
is distributed, the infrastructure will be distributed too. If the concrete system is centra-
lised, then the Infrastructure will be centralised too. (Therefore, the Infrastructure
cannot be designed before the Architecture (of the concrete system) has been designed.)
There are several reasons for this similarity:

• The underlying architecture has a strong impact on the infrastructure functionality
and must therefore be reflected in its description.

• By identifying physical nodes, it will be easier to see how the application is distrib-
uted, and to generate complete code for the framework (infrastructure and
application) running on each physical node.

• The underlying architecture will have some impact on the application too. Physical
nodes may for instance, fail independently. They are linked by unreliable channels,
and the message routing in the system must take distribution into account.

In general an Infrastructure will contain abstractions of:

• The structure of physical nodes.

• Networks for communication between physical nodes.

• Protocols for communication between physical nodes.

• Routing facilities that enable application objects to communicate transparently
across the physical nodes.

• Facilities for initial configuration and later reconfiguration of the system.

• Error handling facilities.

In an initial development the infrastructure aspect may not be obvious. Frameworks will
often come as a result of a (successful) initial development, which is to be used as a basis
for a new system.

For the Access Control system the fact that validation shall be performed by a central
computer is an infrastructure issue, like the need to support remote communication, with
additional protocols.

Framework application

The framework will contain redefinable application objects. In a framework instance
these are redefined using application types that shall be defined in the Application mod-
els (p.-106).

When the application is developed for the first time, the Infrastructure is normally not
known, and therefore not taken into account. As soon as the infrastructure is known,
application development shall take the infrastructure into account. This means that:
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 124

Framework
Framework reference model 6TIMe
• signal sending must use the addressing scheme and routing facilities of the infrastruc-
ture. To achieve distribution transparency the application objects must communicate
via the infrastructure and not directly with each other, even when they are localised
on the same physical node;

• the error possibilities of the infrastructure is taken into account;

• error handling uses the facilities of the infrastructure, if they exists;

• That configuration is solved using infrastructure facilities, if they exists.

• That the application types have a size and content suitable for instantiation within
physical nodes in the framework. They should not be too large for that.
Activities and Descriptions in TIMe 6 - 125 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Framework models
Framework reference model

TIMe6
Framework models

Objectives The purposes of framework models are to:

• describe the architectural context for applications:

- how the application is distributed;

- what the communication interfaces are;

- how routing and addressing of application messages (SDL signals) are done;

- additional facilities available to the application, e.g. error handling, dynamic
configuration;

- how application behaviour must be adapted;

• describe the infrastructure:

- show the overall communication links and routing;

- describe protocols;

- describe additional facilities like error handling, configuration support, etc.

• simplify application evolution;

• simplify definition of complete abstract systems with the same infrastructure, but dif-
ferent applications.

Framework instances serve to:

• be a source for complete code generation (of the application and the infrastructure);

• be a documentation of the complete behaviour and to enable analysis and simulation
of the complete behaviour.

Framework models serve to define complete behaviour when taking implementation
specific features into account. Framework models are made once for a family, and
applied many times (one for each different application).

Frame-
work rule

• Whenever an abstract system can be split into an application layer and an infrastruc-
ture layer, a framework model should be developed that serves to simplify the
definition of new systems.

What Framework models contain different kinds of object type models:

• Framework types:

- System types. These are structure types defining the overall framework structure.
They are formalised whenever it is possible and practical to do so and will contain
both infrastructure and application parts.

- Component types. These are structure types for components that are used within
framework systems. They may contain both infrastructure and application parts.

• Infrastructure types. These are structure and behaviour types for “pure” infrastructure
components, i.e. components without application parts.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 126

Framework models
Framework model content 6TIMe
The application part of the framework types will be virtual application components. All
the application types are defined in the Application models (p.-106).

Framework models, as other models, have a specification part and a design part, see Fig-
ure 6-32 (p.6-127).

Figure 6-32: Framework models

Open figure

It may sometimes be difficult to express all the variability needed formally in one type
model. It may also happen that some components are defined using SDL and other com-
ponents are defined using UML. In such cases it may prove more practical to emphasise
component types that are easy to compose rather than complete framework system
types.

When necessary, rules for mapping applications to the framework shall also be defined.

Framework model content

Framework specification

The specification part shall concentrate on the context of the framework and the external
framework properties, see Framework specification (p.6-128).

FW System
FW Service-A

MSC
role
structure

Text

Service-a1

FW System
FW Service-A1

MSC
role
structure

Text

Service-a1

FW
component type

Context

Content

UML

SDL or
UML

Component types

Synthesise

UseUse

Refine

physical nodes

physical nodes

Infrastructure
component type

SDL or
UML

SDL or
UML

Applicatione
component type

Use

Object models Property models
Activities and Descriptions in TIMe 6 - 127 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Framework models
Framework languages and notations

TIMe6

Framework design

The design part shall concentrate on the content of the framework, see Framework
design (p.6-129).

Framework languages and notations

As illustrated in Figure 6-32 (p.6-127), the main languages to use are MSC for property
models and UML combined with SDL for object models.

SDL is the main language for control behaviour, while UML will be used for other
aspects (such as user interfaces and data-bases). Typically UML will be used in the spec-
ification part, and possibly for top level design structuring. SDL will take over where
the main thing is to model reactive behaviour.

In some cases it will be possible to express the framework object models completely in
SDL.

For description of interaction properties, we stick to MSC even if UML is used for the
Object Model.

Framework property models will focus on the infrastructure properties. In addition to
specifying the infrastructure services and interfaces using text, role diagrams and MSC,
they will specify requirements to physical distribution, routing, configuration and simi-
lar issues that are better expressed in text and illustrative figures than in MSC and role
diagrams.

Framework specification

Objectives A framework Specification serves to answer questions like:

1. What infrastructure services are provided?

2. How is the environment physically distributed?

3. How is the content physically distributed?

4. What is variable?

5. How are instances defined.

What Specifications are developed first for the framework system as a whole and later for each
framework- and infrastructure component type.

For the framework as a whole the following issues shall be considered:

• the physical distribution of the environment, if any;

• requirements to physical distribution of the application system;

• requirements to the infrastructure part:

- network requirements;

- protocol requirements;
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 128

Framework models
Framework design 6TIMe
- communication and routing requirements;

- configuration requirements;

- error handling requirements;

• the variability in the system family, and how system instances are to be configurated
and built. This includes variability in the application as well as in the infrastructure;

• requirements to dynamic change.

Framework specification content

Framework object model

The object model will describe:

1. the system context detailing the environment and the interfaces using physical group-
ing and distribution as main structuring criteria.

2. the parts of the content that are externally visible and relevant to the specification,
also structured according to the physical world.

3. component type specifications for component types that are identified.

Framework property model

The framework property models will contain:

1. service models for infrastructure services;

2. interface models for infrastructure interfaces;

3. textual specification of other properties:

- network requirements;

- protocol requirements;

- communication and routing requirements;

- configuration requirements;

- error handling requirements;

- the variability in the system family, and how system instances are to be configu-
rated and built.

Framework design

Objectives To describe the design part of framework models that:

• satisfies the specification;

• has structural similarity with the architecture;

• supports a (layered) separation between infrastructure and application;

• can be easily instantiated to perform different applications.
Activities and Descriptions in TIMe 6 - 129 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Framework models
Framework relationships

TIMe6

What The context part is fully covered in the specification. The design part define the content

structure and the types of framework component and infrastructure components that are
specific to the framework.

Framework relationships

How the application is related to the domain and the framework is illustrated in Figure
6-33 (p.6-130).

Figure 6-33: External Framework relationships

Open figure

Relationships framework - application

The application part of the framework should use types that are defined in the Applica-
tion models (p.-106).

Framework models

Application models

Architecture models is implemented onis implemented on

Application
component types

 Framework
component types

defines

Application
system types

 Framework
system types

Architecture
component types

Architecture
system types

Software nodePhysical node
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 130

Framework models
General framework guidelines 6TIMe
Frame-
work
application
relationship

• Use only types defined in application models in the application part of a framework.

Harmonising framework - application

The application will not be visible as a system in the framework, but its component types
will be used. However, if the application types shall be applicable in the framework they
must obey the rules of the infrastructure. This may require some adjustment compared
to the types initially developed (before the infrastructure was known).

Frame-
work
application
harmonisa-
tion

• Make sure all application parts of the framework are defined using “pure” applica-
tion types.

• Make sure the infrastructure is transparent to the application parts.

• Make sure every application type:

- complies to the infrastructure requirements;

- is a suitable distribution unit in the infrastructure.

Relationships framework - architecture

Frame-
work
architec-
ture
relationship

• There shall be a one to one relationship between physical nodes in the Architecture
and corresponding components in the framework.

Harmonising framework - architecture

Frame-
work
architec-
ture
harmonisa-
tion

• Whenever there is any change in the Architecture (due to platform changes or struc-
tural changes) update the framework structure accordingly.

Relationships framework specification - design

The considerations here are the same as for Relationships application specification -
design (p.-124).

Harmonising framework specification - design

The considerations here are the same as for Harmonisation application specification -
design (p.-126).

General framework guidelines

While the application models are structured primarily to achieve readability for the
human, framework models are structured primarily to:

• reflect the Architecture;

• describe the complete behaviour;

• simplify evolution and production after the initial development.
Activities and Descriptions in TIMe 6 - 131 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Framework models
How to define a framework using SDL

TIMe6

The General application guidelines (p.-126) hold also for framework models. But there
are additional rules.

Frame-
work
system type

• It will often be difficult to define a complete framework for the entire system family
which will be easy to configurate in SDL. In those cases, do not consider the entire
system except for simulation or analysis. In stead define a block type for each kind of
configuration unit (e.g. a physical node) and configure these separately. Perform
configuration and building of complete systems at the implementation (design) level.

• Use SDL system types only when

- context parameters are sufficient for instantiation;

- the block structure is static;

- and the need for dynamic configuration and change can be fully handled by pro-
cess behaviours.

• Otherwise focus on Block types, and use these either to compose a set of different sys-
tem types using SDL or to compose systems outside SDL (using either UML, a
configuration language, or implementation level mechanisms like UNIX make.)

Dynamic
change

• Dynamic changes are not supported by SDL (apart from dynamic creation of pre-
defined process types within predefined process sets). Therefore, dynamic changes
must be handled outside SDL, in the implementation. For systems where dynamic
changes are important, the framework will consist mainly of a library of types on a
granularity suitable as change units.

• Every substructure that may be changed or moved dynamically should be defined as
a structure type and be addressable as a unit.

Dynamic
configura-
tion

• If members of a component set (block set or process set in SDL) need to be configu-
rated differently, then either split the set into subsets with identical members or use
dynamic configuration.

Distribu-
tion
transpar-
ency

• Introduce routing objects and addressing that hide the physical location from appli-
cation objects.

• Ensure that application objects communicate using this scheme.

How to define a framework using SDL

The distinction between a library and a framework is in SDL directly reflected by the
concepts of package and system type. In SDL terms a library can be expressed by a Pack-
age, while a framework must be defined by a System type. The essential difference is
that a library only defines types and not instances (and this holds for a Package in SDL),
while a System type can have both.

A System type defining a framework will typically have instances that cover parts of the
structure, and it will assume that the actual application of the framework will provide
application specific instances. A framework can be based upon libraries, and the system
type will be part of a Package.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 132

Framework models
How to define a framework using SDL 6TIMe
System types and Block types have so much in common that if the desired approach is
to develop Block types and use these for composing systems, then many of the frame-
work techniques explained below also apply to Block types.

A framework system type is defined by a system type or block type in SDL, see Figure
6-34 (p.6-133). This type will have virtual types for the application components, and
these will be redefined when defining a complete abstract system.

Figure 6-34: Framework definition and use

Open figure

Normally the framework system type will have framework components that are blocks
with some framework specific structure. The block type BT1 may e.g. consist of an
infrastructure part and a virtual type that represent the application specific part of BT1.

How then are application specific parts included in the framework? In general this is
done by redefining virtual types, e.g. virtual block types, virtual process type and virtual
procedures. There are two different ways to treat application specific instances:

• Application specific instances are specified as part of the framework (p.6-133), as
fixed instances/instance sets of the virtuals;

• Application specific instances not specified as part of the framework (p.6-136), but
their generation is anticipated.

Application specific instances are specified as part of the framework

In this case it is only necessary to redefine the virtual application types - the instances/
set of instances and their position in the system structure is already part of the frame-
work definition.

The framework system type in this case has the form illustrated in Figure 6-35 (p.6-134),

system type FrameWork

virtual BT1 virtual BT2

FrameWorksSpecific

system type Application
inherits FrameWork

redefined BT1 redefined BT2

system MyAppl:Application

Framework definition

Syste type using
framework

System instance
Activities and Descriptions in TIMe 6 - 133 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Framework models
How to define a framework using SDL

TIMe6

Figure 6-35: Framework definition with predefined instances

Open figure

and it is repeated for the block type BT1 (Figure 6-36 (p.6-134)) in order to show pre-
defined process (sets).

Figure 6-36: Virtual block type as part of framework, with application specific instance
specificed

Open figure

In this case the frameworks defines the structure of instances and instance sets with their
connections in terms of channels and signal routes. In a complete application system the
properties of the instances are provided by redefining the virtual types (using application
types).

In order to define the structure of instances and their connections in the framework,
some minimal interface definition for the instances must exist that cannot be redefined
when redefining the virtual types. The rule of SDL is that redefinitions of the virtual
types (here BT1, BT2 and PT1) must be subtypes of the constraints of the virtual types.
The default is that the constraints of the virtual types are the type definitions themselves.
This is, however, not enough to assure that the interfaces are the same, as it would then
be possible to add new gates and new signals to the signal list of existing gates. Addi-

system type FrameWork

virtual BT1 virtual BT2

FrameWorkSpecific

B1:BT1 B2:BT2

virtual block type BT1

virtual PT1

fw1
aPT1:
PT1
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 134

Framework models
How to define a framework using SDL 6TIMe
tional rules state that a redefinition of a virtual type must have exactly the same interface
as the constraint of the virtual type. Before using this approach you should be sure that
one can live with this rule.

A typical example on this kind of framework is the handling of protocols. The fw1 pro-
cess will be the interface to the protocol, and it will present itself to the application
specific PT1 process independently of the protocol. This scheme may be generalised: if
e.g. both block type BT1 and BT2 will have the same protocol handling part, then this
may be expressed in a common super block type of BT1 and BT2.

If the structure is so that the same virtual process type is used to make process sets in
many parts of the system structure, then the virtual process type should be moved to the
system type, see Figure 6-37 (p.6-135). In this way it can be redefined at one place as
part of the system subtype and have implication on many parts of the system.

Figure 6-37: Application specific virtual type at system type level

Open figure

An alternative structuring of the system is provided in Figure 6-37 (p.6-135).

A framework example for the Access Control system is given in Figure 6-50 (p.6-150)
and Figure 6-51 (p.6-151).

We know that AccessPoint is used both in LocalUnit and ClusterUnit (see Figure 6-51
(p.6-151)). By defining it at system type level, a redefinition in a system subtype will
imply that (as desired) AccessPoint in both LocalUnit and ClusterUnit will get the same
redefinition. With the AccessPoint as a virtual type at system level and Cluster as a non-
virtual type we express that the AccessPoint of Cluster objects can be redefined, but not
other parts of Cluster.

system type FrameWork

block type BT

FrameWorkSpecific

B1:BT B2:BT

virtual PT1

fw1 aPT1:
Activities and Descriptions in TIMe 6 - 135 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Framework models
How to define a framework using SDL

TIMe6

Application specific instances not specified as part of the framework

In this case the framework only consists of general types that may be used for the con-
struction of the application part. The framework specific parts may either be instances
or also just represented by types. Framework components will then need to create
objects (in this case processes) according to application specific classes.

SDL is special in the sense that processes are part of process sets and that creation of
processes is done by referring to the name of the set and not to the name of the process
type. It is therefore not enough that the framework specific process types are defined in
the same scope (e.g. a package or a system) as the application specific types for them to
create instances application specific instances - they must have means for referring to
the process sets to come.

This may be done in two different ways: by using context parameters or by using virtual
procedures.

Context parameters

The general types of the framework that have to create process instances according to
application specific types do this through process context parameters. This works in
SDL because an actual process context parameter is a process set and not a process type.

The scheme is illustrated in Figure 6-38 (p.6-136), Figure 6-39 (p.6-137) and Figure 6-
40 (p.6-137).

Figure 6-38: Framework with no instances

Open figure

Within the block types, there will be general process types (framePT and applicationPT)
that are used as supertypes in specific systems inheriting from FrameWork2. In addition
the block types may specify instances of other process types, and these are the only pre-
defined instances of this kind of framework.

system type FrameWork2

virtual BT1 virtual BT2

system type Application2
inherits FrameWork2

redefined BT1 redefined BT2

system SpecAppl:Application2
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 136

Framework models
How to define a framework using SDL 6TIMe
Figure 6-39: Virtual block type

Open figure

The framePT process type will have a process context parameter that is constrained by
applicationPT, see Figure 6-40 (p.6-137). The idea is that a particular system will pro-
vide its specialisation of applicationPT and its process set, and by the context parameter
the framePT processes will create instances of the specialisation of applicationPT.

Figure 6-40: Creation of application specific processes

Open figure

The final system type will introduce the redefined block types with appropriate process
sets, see Figure 6-41 (p.6-138) (both for framePT and applicationPT processes) and pro-
vide these as the actual context parameters.

virtual block type BT1

 framePT applicationPT

process type framePT
<process cp atleast applicationPT>

. ...create cp(. . .)
Activities and Descriptions in TIMe 6 - 137 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Framework models
How to define a framework using SDL

TIMe6

Figure 6-41: Redefined block type with process set and actual context parameter

Open figure

The difference from the case with application specific instances as part of the frame-
work is not so big: the process set must be foreseen (the context parameter must be
defined - and that corresponds to a process set), but the name of it and its position in the
application part is not determined. Its position will, however, be constrained by the fact
that it shall be visible from the place where the actual context parameter is provided.
This means that everything will take place with the virtual block types immediately
enclosed by the system type.

Another constraint with this approach is that it is not possible to specify instance sets of
the framePT. The reason is that this process type has context parameters. In total this
means that the approach with context parameters works only partially: you cannot spec-
ify the actual instance sets before the last system subtype.

Process
type as con-
text
parameter

This approach should only be used in cases where it is important that the framework
specific and application specific process types can be defined within the same enclosing
block type and where the framework specific types must specify the creation of applica-
tion specific processes.

A final constraint with this approach is that it is not supported by tools (yet).

Virtual creation procedures

This approach is even more general in the sense that it does not have to be decided if
there is one or several process sets in the final system type. In the general types where
there is a need to create application specific processes, this is represented by correspond-
ing virtual procedures. In the final system type these are redefined to create processes in
the right process sets.

This approach is also constrained by the fact that all processes must be within the same
block, so the framework will be defined by a system type with one or more block sets of
virtual block types, the extreme case being just one block of one virtual block type.

This approach also has the property that instance sets of the application specific types
are first introduced in the final system subtype.

redefined block type BT1

process type specialapplicationPT
inherits applicationPT

process type specialframePT
inherits framePT<actualPT>

actualPT:
applicationPT
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 138

Framework models
How to define a framework using SDL 6TIMe
In order to provide an example on this way of making frameworks, we have to change
the structure of the Access Control System somewhat.

As the structure of the system is specified above, the number of clusters and thereby of
access points is fixed at the time of specification. With clusters defined as above, each
cluster will have AccessPoints with the same properties (of the same type).

Suppose that it is a requirement that the system shall start by creating processes for each
of the actual access points and that changes to the number of access points shall be
reflected while the system is running. Still we would like to define the system as a
framework in the sense that it will consist of a central unit and a number of clusters. We
assume that the division of responsibility between the two are determined, the commu-
nication is fixed and that the functionality of both clusters and central unit is specified -
the only thing that is not specified is the types and numbers of clusters. The configura-
tion of the system is initiated by a new signal (setUp, with appropriate parameters)
coming to the central unit.

For the purpose of this example we assume that it is possible to define both the Central-
Unit and Cluster as processes.

The framework system type then is defined as in Figure 6-42 (p.6-139).

Figure 6-42: Framework with virtual creation procedures

Open figure

The setUp signal is supposed to come to the CentralUnit and imply the creation of Clus-
ter processes in the right process sets. Depending on the desired number and types of
Cluster processes, the signal will carry enough parameters for the CentralUnit to create
the right instances.

The Cluster and CentralUnit types can now be defined as before, the only difference
being that CentralUnit will be virtual, that it will have a virtual procedure setUp and that
it will communicate with possible Cluster processes via a gate that is constrained by
Cluster - that is only process sets of Cluster or subtypes of Cluster can be connected to
the gate, see Figure 6-43 (p.6-140).

SYSTEM TYPE AccessControl

virtual

OP

CentralUnit

VIRTUAL BLOCK TYPE AccessControl

 Cluster

CU:CentralUnit

ACB: AccessControl OP

OP
Activities and Descriptions in TIMe 6 - 139 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Framework models
How to define a framework using SDL

TIMe6

Figure 6-43: Setup as a virtual procedure of CentralUnit

Open figure

In addition to the normal behaviour and the creation of Cluster processes, the Central-
Unit may have behaviour that contributes to the definition of the framework. As an
example there may be a limit on the total number of Cluster processes, independent of
type of Cluster. The behaviour that ensures this will either be part of the CentralUnit,
e.g. some action executed each time setUp is executed, or it may be a constraint on setUp
which all redefinitions will inherit.

An actual system consisting of two types of Cluster processes is specified as a subtype
of the system type AccessControl, redefining the setUp procedure to cater for this and
introduce the two process sets, see Figure 6-44 (p.6-141).

VIRTUAL PROCESS TYPE CentralUnit

VIRTUAL PROCEDURE setUp

/* This is redefined to
reflect the set up of the

/* In addition to the normal behaviour of the
Central Unit, the procedure setUp is called
upon the reception of the signal setUp from

OP

C
ATLEAST

Cluster
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 140

Framework models
How to define a framework using SDL 6TIMe
Figure 6-44: Actual Access Control System

Open figure

The names of the process sets are used in the redefined setUp procedure for the specifi-
cation of the creation of process instances. A fragment of the redefinition is illustrated
in Figure 6-45 "Fragment of redefined setUp" (p.6-141).

Figure 6-45: Fragment of redefined setUp

Open figure

SYSTEM TYPE actualAccessControl INHERITS AccessControl

REDEFINED PROCESS TYPE CentralUnit

REDEFINED BLOCK TYPE AccessControl

CU:CentralUnit

REDEFINED PROCEDURE setUp

PROCESS TYPE AccessCluster INHERITS Cluster

PROCESS TYPE DoubleCluster INHERITS Cluster

C

ac(0,):AccessCluster dc(0,):DoubleCluster

REDEFINED PROCEDURE setUp

ac

dc

 Access ?

yes no

 Double?

yes no
Activities and Descriptions in TIMe 6 - 141 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Framework models
How to define a framework using SDL

TIMe6
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 142

Developing framework
How to define a framework using SDL 6TIMe
Developing framework

What This activity develops the Framework models (p.6-126) which consists of object models
and property models organised as a Framework specification (p.6-128) and a Frame-
work design (p.6-129).

Figure 6-46: Developing Framework

Open figure

Inputs The main sources of input information are:

• Descriptions:

- Application models describe the application system that the framework shall
support.

- Architecture models describe the underlying platform, which gives structure to the
complete abstract system and requirements to the infrastructure.

- Business plans and product strategy will give high level goals concerning produc-
tion volumes, service flexibility, evolution and anticipated lifetimes.

- Other families and especially their frameworks may provide valuable input. It may
even happen that the infrastructure and the overall framework structure may be
reused from another family even if the application is different.

- System Studies may provide additional information about possible solutions,
future evolution, etc.

Specifying
framework

Designing
framework

Framework
design

Framework
specification

Family
statement
System
studies

Application
models

Other Families

Architecture
models

Business plan,
product strategy

Production
people,

architectur-
al design-

ers

Developing Framework

Completing
abstract system

complete abstract
system model
Activities and Descriptions in TIMe 6 - 143 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Developing framework
How to define a framework using SDL

TIMe6

- The family statement should be consulted, although we should expect that the

other sources mentioned above contain the same information (but more precise
and detailed).

• People:

- Product management can give additional requirements and guide-lines concerning
the needs for variability and flexibility in production and evolution.

Who to
involve

This is primarily a task for abstract system designers, but they need to work closely with
architectural designers and production people. Frameworks are developed primarily for
the purpose of simplifying evolution and production after the initial development. It is
therefore essential that people with such responsibility are engaged so that their require-
ments become clear. It is particularly important to clarify if dynamic changes to a
running system shall be supported or not.

It is not always obvious what implementation dependent functionality to include in the
framework and what to “hide” in the implementation. This must be agreed with the
Architectural designers. It may also happen that framework considerations have an
impact on the architecture.

When to do
it

Framework design depends on the underlying architecture (implementation) design and
is therefore made after the architecture.

This activity is only performed when the framework is undefined or needs to be
changed. This occurs during the initial development of a system family and during main-
tenance when changes in the framework are needed e.g. because of changes to the
infrastructure.

During normal application evolution the framework will stay the same. The idea is that
new services of an existing system can be designed in terms of the application without
considering details of the framework.

Interfaces are sometimes elaborated in this activity. The reason being that the interfaces
depend on the architectural design decisions:

• User interfaces depends on the basic technology (e.g. visual interface or mechanical)
as well as the support software (e.g. Mac OS or DOS).

• Internal interfaces and external interfaces depend on the interconnecting network and
the protocols.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 144

Developing framework
How to define a framework using SDL 6TIMe
What to do Making frameworks

The following strategy may be used when making the first framework model for a new
system family:

Completing the abstract system model

This activity assumes that the architecture has been defined. The goal is to restructure
the application and to add the necessary infrastructure functionality. This is a typical
intermediate step on the way towards a framework. Once the framework has been
designed, this model is replaced by a framework instance. However, if it is decided not
to develop a framework the complete abstract system must be maintained.

 As an example the complete abstract system model for the Access Control system is
presented in Figure 6-47 (p.6-146), Figure 6-48 (p.6-146) and Figure 6-48 (p.6-146).

Strategy:

1. Consider the structure of computational nodes in the architecture, and make a corre-
sponding abstract system structure.

2. Localise all the application components (instances of structure types and behaviour
types (objects)) in this structure.

3. Add infrastructure components needed to support communication within the
application.

Make Framework

1. Start by Making framework specification (p.6-148).
(This may be done before the architecture is designed,
during requirements analysis).

2. When the architecture is designed, then the physical
structure implied by the implementation platform and
additional functionality needed to support the appli-
cation is considered when Completing the abstract
system model (p.6-145).

3. Then analyse the complete abstract system model,
trying to isolate the infrastructure. Transform the
complete abstract system model into a framework and
a framework instantiation. Do this by Making frame-
work design (p.6-149).

4. Harmonising application - framework (p.-124) is then
performed (described under Developing Application
Models).

5. An so is Harmonising framework specification -
design (p.6-131) to make a complete and precise
Framework specification for the purpose of later
Activities and Descriptions in TIMe 6 - 145 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Developing framework
How to define a framework using SDL

TIMe6
Figure 6-47: Redesigned Access Control
system

Open figure

SYSTEM AccessControl

CentralUnit

clusters(100):
ClusterCE

OP

C

GE

GC

Cluster

CD

GD

In the access control sys-
tem the channels between
the AccessPoints and the
CentralUnit are candidates
for distribution. We there-
fore decide to let these
channels be the ones that
cover distances.

There will be at least one
of central computer and
from zero up to 100 local
computers. In this archi-
tecture we shall implement
the AccessPoint and Cen-
tralUnit processes in soft-
ware running on the
computers. We structure
the system accordingly: a
block set Cluster for the
part of the application run-
ning on the local comput-
ers and the CentralUnit for
the part running on the
central computer.

Note that this distributed architecture is different in structure from the application
design, and that some communication protocols will be needed to support the
communication between the local and central hardware.

Figure 6-48: Cluster with LocalUnits and
ClusterUnits

pen figure

BLOCK TYPE Cluster

Protocol

LocalUnit ClusterUnit

localunits
(10):LocalUnit

clustercontrol:
ClusterUnit

PR

PR

GC

GE

e

e
CE

AccessPoint

GD

d

d

In this solution the vali-
dation database will be
distributed. There will
be a copy of the central
Validation process (and
its database) in each
cluster. This means that
the CentralUnit must
handle updates in a dis-
tributed database. This
introduces a new prob-
lem to solve in the func-
tional design, but the
Access Points and the
Validation processes in
each cluster may (hope-
fully) work just as be-
fore.

applica-
tion spe-
cific parts

infrastruc-
ture spe-
cific parts

 access
point

validation

protocol

cluster unit

local unit
Activities and Descriptions in TIM6 - 146
 e TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Developing framework
How to define a framework using SDL 6TIMe
4. Add additional infrastructure components needed to support services stated in the
framework specification (Use the same approach as for application design synthesis
here):

- support for distribution transparency, object relocation , dynamic configuration
and change;

- support for error handling.

5. Check that the complete application functionality can be provided in the new
structure.

6. Define the infrastructure component types that have been identified.

Define the method for instantiating frameworks with an application.

This is a textual description telling how to instantiate the framework both statically and
dynamically.

Figure 6-49: AccessPoint used in both
LocalUnit and ClusterUnit

Open figure

L1:
AccessPoint

L2:
AccessPoint

P1:Protocol

P2:Protocol

Validation

BLOCKTYPE LocalUnit

BLOCKTYPE ClusterUnit

PR
PR

e

e

P3:Protocol

CE

d

d

We see that AccessPoint
will be used both in the
LocalUnits as well as in
the ClusterUnits. Those in
the ClusterUnits will have
direct, local access to the
Validation process,
whereas those in the
LocalUnits must commu-
nicate via physical links
and protocols (represented
by the block P1 of type
Protocol), but the signals
to and from the Access-
Point blocks will be the
same. In order to achieve
distribution transparency
the way of access to Vali-
dation should be hidden
from the AccessPoints.
Therefore a routing func-
tion must be added to the
structure.

applica-
tion specif-

ic parts

infrastruc-
ture specif-

ic parts

 access
point

protocol
Activities and Descriptions in TIMe 6 - 147 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Developing framework
Specifying frameworks

TIMe6

Evolving frameworks

Use the following strategy when evolving a framework:

Specifying frameworks

Inputs Inputs to this activity are the same as for Developing framework models as a whole, see
Figure 6-32 (p.6-127). However, the initial specification is made before there any
architecture.

Making framework specification

The initial framework specification is normally developed before the architecture during
requirements specification. What can be said at that stage is often limited, and therefore
the initial framework specification is usually quite open. Typical items are:

• Requirements to distribution imposed by the physical environment, e.g. that services
must be provided at different locations. In the Access Control example, services must
be provided in the vicinity of doors which are physically scattered around in
buildings.

• Requirements to distribution and communication infrastructure. It may for instance
be a requirement that distribution shall be supported using CORBA and that TCP/IP
shall be the protocols.

• Requirements to error handling services. Should there be alarm and diagnostic func-
tions? Should it be possible to block units for repair?

• Requirements to dynamic configuration services and dynamic change. Should it be
possible to change or relocate application objects? Should it be possible to extend the
system during operation?

Guidelines:

Specify
framework
context

• Consider the physical distribution of the environment. If the distribution is known,
make a context model where the environment is structured to show physical distribu-
tion of the environment and the interfaces.

Evolve Framework

1. First add new properties and change existing proper-
ties as required by Evolving framework specification
(p.6-149).

2. Then analyse the impact on the framework design and
perform the necessary changes.

3. If the changes have any consequences on the existing
applications then ensure that these applications are
updated by Harmonising framework - application
(p.6-131).
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 148

Developing framework
Designing framework structure 6TIMe
• Consider framework specific services. Specify each service using text, role structures
and MSC.

Specify
framework
content

• Consider the physical distribution of the content. If it is known, make a correspond-
ing content structure.

• Consider requirements to the infrastructure and add corresponding objects to the
framework object model.

• Specify the behaviour of infrastructure services and interfaces.

• describe in text requirements to configuration, evolution and dynamic changes.

Evolving framework specification

Framework evolution is not due to application services, but to changes in the architec-
ture or the infrastructure services. It may also be due to a better understanding of how
the framework should be. Finally the specification is influenced by the framework
design since it should always be harmonised with that.

Infrastructure services are evolved in the same general way as application services:

1. Specify the new services using property models.

2. Analyse the impact on existing services and object models.

3. Specify new objects required in (the various parts of) the environment (if any).

4. Change existing services and object models as required.

Changes in the architecture are more likely structural changes that will affect the object
model.

Designing framework structure

Making framework design

It is an advantage to make a complete abstract system model before starting to make a
framework, because then we have something tangible to start from. Our goal is to trans-
form the complete model into:

1. a framework design that is easy to use with different applications;

2. an instantiation of the framework that replaces the original complete abstract system
model.

As an example we consider the Access Control system again. The system description of
Figure 6-47 (p.6-146) is turned into a framework simply by defining it as a system type
and defining the application specific types as virtual types (in this case AccessPoint), see
Figure 6-50 (p.6-150).
Activities and Descriptions in TIMe 6 - 149 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Developing framework
Designing framework structure

TIMe6
Figure 6-50: Access Control System type as a
framework

Open figure

SYSTEM TYPE AccessControl

CentralUnit

clusters(100):
ClusterCE

OP

C

��
��

ClusterVIRTUAL
Access-

CD
GD
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 150

Developing framework
Designing framework structure 6TIMe
The Cluster block is almost as before: it uses the virtual block type Access Point (but it
does not contain its definition), and it embodies the infrastructure parts needed for dis-
tribution (ClusterUnit, LocalUnit and Protocol), see Figure 6-50 (p.6-150).

An actual system based upon a framework definition is described by defining a subtype
of the framework system type and redefining the virtual, application specific types, see
Figure 6-52 (p.6-151). The rules for redefinitions of virtual types in SDL ensures that
the redefined AccessPoint will have the same interface as specified in the virtual defini-
tion (as a constraint) and thereby assumed by the rest of the system type.

Figure 6-51: Block type Cluster as part of framework for Access Control
Systems

Open figure

BLOCK TYPE Cluster

Protocol

LocalUnit ClusterUnit

localunits
(10):LocalUnit

clustercontrol:
ClusterUnit

PR

PR

GC

GE

e

e
CE

GD

d

d

L1:
AccessPoint

L2:
AccessPoint

P1:Protocol

P2:Protocol

Validation

BLOCK TYPE LocalUnit

BLOCK TYPE ClusterUnit

PR
PR

e

e

P3:Protocol

CE

d

d

Figure 6-52: An actual system based upon a
framework

Open figure

REDEFINED BLOCK TYPE AccessPoint

SYSTEM TYPE actualAccessCon-
trol INHERITS AccessControl
Activities and Descriptions in TIMe 6 - 151 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Developing framework
Designing framework structure

TIMe6

In the complete abstract system we need not worry too much about variability. The goal
is to understand the overall structure and to identify the infrastructure components. In
the Framework design, however, we must seriously consider the requirements to
dynamic configuration and change. Is each system Instance to be statically configured
for its lifetime, or shall it be possible to make dynamic changes? If the answer is yes,
then we must design the framework so it contains suitable dynamic change units.

Is the configuration support we get by using system types with context parameters in
SDL sufficient or do we need more flexibility? If the answer to the latter is yes, then we
must turn to what can be supported by SDL behaviour, i.e. dynamic process creation and
value assignments. If we need even more flexibility, for instance to create blocks
dynamically, then this must be handled outside SDL. In such cases, it will not be very
useful to cover the entire system formally as a single SDL system type - or block type
(except for simulation purposes). In stead we should develop framework components
that can be used to compose and configurate systems more freely, possibly using means
that we provide outside SDL. In the Access Control example, it will be difficult to
achieve full flexibility using the system type defined in Figure 6-50 (p.6-150) as each
LocalUnit and ClusterUnit may need to be configurated differently. What is possible,
however, is to use these components to compose many different SDL systems. There-
fore framework components will sometimes be more useful than complete framework
systems.

There are some trends in system development that should be considered:

• Service flexibility. The ability to provide new services fast and safely, even in exist-
ing systems, is increasingly important.

• Distribution flexibility and transparency. It is increasingly common to allow objects
to be distributed freely and even to be relocated in the system.

• Standard platforms. There is a strong drive towards using standard computation plat-
forms and communication infrastructure. New standards for distribution support,
such as CORBA are emerging.

These trends point towards:

1. that much infrastructure functionality will be standardised;

2. that the system structures will change dynamically so that components are more sta-
ble than systems.

Guidelines:

• Consider the components of the application part alone. Make a “pure” application
type for each kind of application components.

• Consider the infrastructure part alone. Make a “pure” infrastructure type for each
kind of infrastructure component.

• Consider the overall structure of “mixed” application and infrastructure compo-
nents. Find framework components where the application part will vary while the
infrastructure part is stable. Define corresponding types where the application is
redefinable (using virtuals) and the infrastructure (sufficiently) configurable.

• Note that the component types found above should not be too large, they should be:
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 152

Developing framework
Designing framework behaviour 6TIMe
- running entirely within one computation node;

- be a configuration unit;

- be a change unit;

• If feasible and useful, define the entire system framework as a structure type (a block
type or system type in SDL).

Designing framework behaviour

This is carried out in the same general way as Designing application behaviour (p.-142).
Activities and Descriptions in TIMe 6 - 153 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture
Content and scope

TIMe6
 Architecture

Content and scope

An architecture is an abstraction of a concrete system representing:

• the overall structure of hardware identifying at least all physical nodes and intercon-
nections needed to implement an abstract system;

• the overall structure of software identifying at least all software nodes, software com-
munications and relations needed to implement an abstract system (in terms of
processes, procedures and data).

In this chapter we shall describe:

• Architecture reference model (p.6-154): the system model assumed in the
architecture.

• Architecture models (p.6-164): how to describe architectures.

• Developing architecture (p.6-173): how to develop architecture models.

Architecture models are important because:

• they help to design the physical implementation in the first place;

• they serve to document how the system is implemented.

Documen-
tation

Together the application, the framework and the architecture complement each other to
form a complete documentation.

Architecture reference model

In the system reference models we distinguish between abstract systems and concrete
systems as illustrated in Figure 6-53 (p.6-155).
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 154

Architecture
Architecture reference model 6TIMe
Figure 6-53: Reference models for abstract and concrete system

Open figure

Concrete system

The architecture is a simplified model of the concrete system. Concrete systems are
composed from real hardware and executable software that provide services to real
users.

While abstract systems, described in application and framework models, are composed
from abstract components, concrete systems are composed from physical components
and software. It is the concrete system that really matters to the users, but it is the
abstract systems that enable us to understand what it does and to ensure that its function-
ality has the desired quality.

As illustrated in Figure 6-53 (p.6-155), concrete systems consist of:

• Framework implementations. Here we find implementations of the abstract systems
in hardware and software:

- the application implementations.

- the infrastructure implementation.

• The Platform, which consists of:

Domain
given

System
given

Interface
given

Infrastructure

Support software

Hardware

Platform

Domain
given

System
given

Interface
given

Infrastructure implementation

Application-implementation

Framework-implementation

concrete system

abstract system

Application

Framework
Activities and Descriptions in TIMe 6 - 155 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture
Architecture reference model

TIMe6

- the support software, which normally is a layered structure containing operating

systems, middelware for distribution support, runtime systems for the languages
used (SDL), DBMS and interface support;

- the platform hardware, which typically is an network of computers.

For every new system development, the platform is an important design issue, as it
determines important properties such as cost, reliability and flexibility. It also influences
the way that applications and frameworks are implemented.

What is an architecture?

What The architecture is an abstraction of the concrete system that emphasises high level
hardware structure and software structure. It will not go into the implementation details
but focus on the implementation principles and how functional and non-functional prop-
erties are satisfied. It will often be distributed and have additional support for internal
communication, as illustrated in Figure 6-54 (p.6-156).

Figure 6-54: Architecture reference model

Open figure

Support SW

HW

Application SW

Infrastructure SWInfrastructure SW

physical node

Support SW

HW

Support SW

HW

Application SW

Infrastructure SWInfrastructure SW

physical node

Support SW

HW

Infra
structure

SW

HW Sup-
port
SW

Network

Platform
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 156

Architecture
Architecture reference model 6TIMe
Objectives

By identifying key architectural elements, the reference model helps to structure archi-
tecture models and to guide their development. Although the model in Figure 6-54 (p.6-
156) is quite coarsely grained, it identifies elements that come from different domains
where the driving forces behind change and evolution are quite different. Application
evolution, for instance, may be due to new service requirements (market pull), while the
reason for platform changes may be performance and price (technology push). Keeping
such parts separate and as independent as possible, we believe, is a key to flexibility and
profitability.

The architecture reference model contains the following main parts:

1. Hardware. It contains the underlying structure of physical nodes and interconnec-
tions that may be classifies as:

- General platform hardware. This is hardware that is not application framework
specific. It will typically consist of general purpose computers in a network.

- Application framework specific hardware. This is hardware needed for the partic-
ular application or infrastructure that the system implements. Here we find
peripheral equipment, such as the panels in the AccessControl system, and other
special purpose hardware.

2. Support software, which contains such elements as:

- the operating system;

- middleware (e.g. CORBA) that supports distribution;

- support for application framework programming, for instance: user interface tools
(GUI), database management tools (DBMS), language runtime support (for SDL);

- support for application framework input/output (I/O) (that is for interaction with
hardware).

3. Infrastructure software, which implements the necessary interface between the appli-
cation and the support software.

4. Application framework software. This is the software part of the framework imple-
mentation. It contains implementations of the:

- Framework application (p.-154).

- Framework infrastructure (p.-153).

The application framework software can be further classified as:

- automatically generated code;

- manually generated code (handmade code).

5. Foreign code, code that is imported from other sources, legacy code, etc.

In real-time systems a central software design issue is how to handle concurrency, tim-
ing and communication. To this end it is important that the architecture manages to
model the organisation of concurrent software processes (also called tasks in some oper-
ating systems), how they communicate and how they are scheduled.

Other important issues are:
Activities and Descriptions in TIMe 6 - 157 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture
Differences between abstract and concrete system

TIMe6

• the practical organisation in software modules that can be developed by separate

teams;

• how to generate framework implementations;

• how to configurate and build concrete (executable) systems.

Generality In the family area, architectures are supposed to be quite general and contain the vari-
ability needed in different system instances. As a minimum they must support the
variability needed in applications.

It is generally a good idea to use the same basic principle we used to make frameworks
from applications: to define a layered framework structure.

Applied to the hardware part, the architecture may be seen as a hardware framework
made up by some (stable) general hardware and some (redefinable) application frame-
work hardware.

In the software part, we find the basic operating system at the bottom, with the other
parts as successive applications on top of that. We may organise this as several software
frameworks on top of each other. Ideally the result is a high level software framework
where all we need to do to generate a particular application is to supply the application
specific code.

Differences between abstract and concrete system

A good designer must be well aware of the differences between the concrete and the
abstract world. There are two main categories of such differences:

1. Fundamental differences (p.6-158) in the nature of components. Physical compo-
nents are rather imperfect compared to the more ideal components of abstract
systems. They develop errors over time, they are subject to noise, and they need time
to perform their processing tasks.

2. Accidental differences (p.6-160) in the functioning of components. In both worlds
there are concepts for concurrency, communication, sequential behaviour and data,
but they are not necessarily the same.

Fundamental differences

The fundamental differences are related to: Processing time (p.6-158), Errors and noise
(p.6-159), Physical distribution (p.6-160) and Finite resources (p.6-160).

Processing time

An abstract system is not limited by processing resources. Consequently the balance
between the traffic load offered to the system and its processing capacity need not be
considered. One simply assumes that the system is fast enough to process the load it is
offered.

The real world is vastly different on this point. Each signal transfer, and each transition
of a process, will take some time and require some processing resources. Due to these
differences, the focal point of implementation design is quite different from that of the
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 158

Architecture
Differences between abstract and concrete system 6TIMe
functional specification. The challenge is to find implementations for the abstract (SDL)
concepts that are sufficiently fast to meet the traffic load and response time requirements
without destroying the validity of the abstract system models.

One major issue is to balance the processing capacity of the implementation against the
offered traffic load.

In the Access Control system, for instance, the average peak load is 600 validations a
minute. This means that a central computer must process each validation in less than one
tenth of a second. How much less will depend on the other tasks the computer has to do
and the margin one wants against overloading the system.

A related issue is to balance the processing capacity against the requirements to response
times. Again the abstract (SDL) system has no problems, but the implementation may
be highly pressed to meet response time requirements. One must be able to perform time
critical processing, e.g. fetching input samples, process the sampled information, and
respond in a feedback loop, all within a maximum time frame. Such requirements may
increase the demands on processing speed beyond the speed required to handle the traf-
fic load.

The hardware software interfaces need special consideration. It is not unusual that the
larger part of a computers capacity is spent doing input-output. Much can therefore be
achieved by carefully designing the input-output interface.

A special class of time constraints originates from channels assuming time dependent
synchronization. This means that the receiver has to be fast enough to catch all relevant
signal information at the speed it is passed over the channel.

Since SDL descriptions clearly specify the external and internal interactions needed to
perform given functions, they provide an excellent basis for estimating the processing
capacity needed to meet load and timing requirements.

Errors and noise

Abstract systems may suffer from specification errors, but the abstract world does not
suffer from physical errors. It is simply assumed that processes and channels always
operate according to their specification. It is not assumed that processes will stop from
time to time, or that channels will distort the content of signals. But in the real world
such things happen. From time to time errors will manifest themselves as faults in the
operation of channels and processes.

In addition to the logical errors introduced in the implementation, we will have to cope
with physical errors. Hardware errors, physical damage, and noise are caused by physi-
cal phenomena entirely outside the realm of abstract systems.

The effect of errors and noise will often need to be handled explicitly in the abstract sys-
tem models, however. One must consider what may happen, how it can be detected and
how the damages may be limited. If one active object fails, for instance, how should the
environment react? One must consider what an object should do if it never gets a
response to a request, or if it gets an erroneous response. What should be the reaction to
a channel going down? What if an object starts to produce crazy signals? What if a signal
is sent to a non-existing receiver?
Activities and Descriptions in TIMe 6 - 159 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture
Differences between abstract and concrete system

TIMe6

To some extent the answers depend on the physical distribution of abstract objects in the
concrete system, and the physical distances that abstract channels must cover.

Physical distribution

Physically separate processes and channels may fail independently of each other. Chan-
nels covering long physical distances are subject to more noise and errors than channels
implemented in software within one computer.

An SDL description does not tell anything about the physical distance covered by a
channel. In reality, however, there may (or may not) be large physical distances. This
means that transmission equipment and protocols are needed to implement the channel
reliably. Thus physical distance may introduce new functions needed to support the
implementation of channels.

In the AccessControl system we can expect AccessPoints to be distributed physically
and to be far away from the central unit. Thus there will be a need for communication
protocols on the channels between them.

A positive effect of physical separation is that errors are isolated. Errors in one unit need
not affect the other units in the system, provided that erroneous information is not prop-
agated into them. Thus, physical separation may improve the error handling. But there
is no free lunch. Errors need to be detected and isolated to allow the operational parts to
continue operation with the error present. Proper handling of this aspect can be quite
complex, and will normally require additional functionality in the abstract models. This
is one of the issues that we seek to isolate in the infrastructure.

Finite resources

All resources in a real system are finite. There may be a maximum number of processes
the operating system can handle, or a maximum number of buffers for sending mes-
sages. The word length is restricted, and the memory space too. Even primitive data like
integers are finite.

SDL, on the other hand, has an unbounded queue in the input port of each process, and
allows infinite data to be specified. Hence the designer must find ways to implement
potentially infinite SDL systems using finite resources. One way is to restrict the use of
SDL such that all values are certain to be bounded. Another is to deal with resource lim-
itations in the implementation, preferably in a manner transparent to the SDL level. In
cases where transparency cannot be achieved, one must either accept deviation from the
SDL semantics, or explicitly handle the limitations in the SDL system.

Accidental differences

The accidental differences has to do with: Concurrency (p.6-160), Communication (p.6-
161), Synchronization (p.6-162) and Data (p.6-163).

Concurrency

The model of concurrency used in SDL assumes that processes behave independently
and asynchronously. There is no relative ordering of operations in different processes
except the ordering implied by the sending and reception of signals.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 160

Architecture
Differences between abstract and concrete system 6TIMe
This permits SDL processes to be implemented either truly in parallel on separate hard-
ware units, or in quasi-parallel on shared hardware.

Physical objects in the real world behave truly in parallel. This means that operations
within different objects proceed in parallel to each other at the speed of the performing
hardware.

A “natural” implementation is therefore to map each SDL process to a separate physical
object. This is not always cost-effective. An alternative approach is to implement many
processes in software sharing the same computer hardware. The implications of this are
twofold:

1. The processes and channels will not operate truly in parallel, but in quasi-parallel,
meaning that they will operate one at the time, according to some scheduling strategy.

2. Additional support will be needed to perform scheduling and multiplexing on top of
the sequential machine.

Normally, scheduling and multiplexing are handled by an operating system. The oper-
ating system can be seen as a layer that implements a quasi-parallel virtual machine on
top of the physical machine.

Communication

Very basically there are two different classes of information one needs to communicate:

1. sequences of symbols, or values, in a given order;

2. symbols, or values, continuously for the time they are valid.

In the first case, the sequential ordering is important. In the second case, the sequence
does not matter, only the current value at each instant in time.

The two communication forms are dual in the sense that one form may be used to imple-
ment the other. Consider the need to communicate a continuous value: the most direct
implementation is to use a communication medium that will transmit the value contin-
uously, such as a shared variable in software, or an electrical connection in hardware.
But one may alternatively use a sequential medium, such as a message queue, to transmit
a sequence of symbols representing the sequence of changes (events) in the continuous
value. This will introduce overhead to reconstruct the continuous value.

Both forms may be used in abstract as well as in concrete systems, but it is not always
the case that the same form is used. Therefore it may be necessary to make the necessary
adaptations in the implementation.

Input from a keypad may serve as an example. The output signal from each button is
basically a continuous “1” when pushed, and a continuous “0” when not pushed. But the
system needs to know the sequence of key strokes, and not the instant values. Thus the
value changes (events) need to be detected and converted to symbols representing com-
plete key strokes. Event detection like this is often needed at the interfaces of a real-time
system. It may either be performed in software or in hardware.

Visual signals on a display screen are another example. The user wants information pre-
sented as continuous values, and not as messages flickering across the screen. Hence the
event oriented SDL signal has to be converted to a continuous value on the screen.
Activities and Descriptions in TIMe 6 - 161 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture
Differences between abstract and concrete system

TIMe6

Channels crossing the hardware-software boundary need special attention. An atomic
channel, represented by a line in SDL/GR, may turn out to be a mixture of physical lines,
electronic equipment and software in the real system. The communication and synchro-
nization primitives used in hardware will often differ from those used in software.

To sum up: we cannot expect to find SDL-type signals at all interfaces, and must there-
fore be prepared to adapt and convert. Conversion from one form to another will be
necessary. This is often a time critical task needing careful optimization.

Synchronization

The act of aligning the operations of different concurrent processes in relation to each
other is generally called synchronization. Synchronization is necessary not only to
achieve correctness in communication, but also to control the access to shared resources
in the physical system.

In SDL, synchronization is achieved by means of the signal queues of processes and
channels.

Consider two SDL processes that communicate. The sending process may send a signal
at any time because it will be buffered in the input port of the receiving process. The
receiving process may then consume the signal at a later time.

This is a buffered communication scheme in which the sender may produce infinitely
many signals without waiting for the receiver to consume them. It is often referred to as
asynchronous communication.

Asynchronous communication may be contrasted with so-called synchronous commu-
nication, in which the sending operation and the consuming operation occur at the same
time. In this case there is no buffer between the processes.

Synchronisation may be further classified into time dependent synchronization, in which
the operations are not explicitly synchronized, and time independent synchronization,
which depends on an explicit synchronization of operations (some kind of semaphore).
In time dependent synchronisation the correctness of an interaction depends on the rel-
ative timing of operations. This is a frequent source of so-called hard real-time
requirements. It is quite common in communication channels (e.g. Asynchronous Trans-
fer Mode, ATM).

One will often find mechanisms that differ from the SDL mechanisms at the physical
interfaces to the system. It is quite typical to find time dependent synchronization on
physical channels. This implies that time critical event monitoring and event generation
will be necessary.

A designer will be faced on one hand by the synchronization primitives available in the
real system, and on the other hand by the synchronization implied by the SDL specifi-
cation. Additional functionality will often be needed to glue the various forms together.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 162

Architecture
Differences between abstract and concrete system 6TIMe
Data

SDL data is based on the notion of abstract data types where operations may be defined
by means of axioms. An implementation will normally need concrete data types where
the operations are defined operationally. Therefore, the designer may need to transform
the abstract data types of SDL into more concrete data types suitable for
implementation.
Activities and Descriptions in TIMe 6 - 163 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture models
Differences between abstract and concrete system

TIMe6
Architecture models

Objectives Architecture models are intended to answer how a system is (going to be/has been) real-
ised. Their focus is on the concrete system construction in terms of hardware and
software components, and how it implements the abstract systems defined in the appli-
cation framework. While the application framework has focus on functional properties
and behaviour, the architecture has focus on non-functional properties and physical
structures. The purposes of architecture models are:

• to support the high level implementation design activity through models that facili-
tate communication and analysis;

• to serve as precise high level documentation of the implementation (using a unified
notation);

• to document how the application framework is implemented;

• to specify the implementation (non-functional) properties;

• to facilitate the generation of implementations and the production of system
instances;

• to serve as an entry to complete system documentation. This is possible since all
aspects of a concrete system come together in the Architecture.

The concrete system modelled by the architecture shall behave as defined in the frame-
work and application models and satisfy the non-functional properties.

What Architecture models describe the:

• overall architecture of physical nodes and software nodes that actually perform sys-
tem behaviour and satisfies user needs;

• relationships to the application framework components (and thus application compo-
nents) that each software node and physical node implements, see Figure 6-33 (p.6-
130);

• non-functional properties.

In the architecture object models, the hardware and software architectures will be
defined to a level of detail from which implementation is well defined. They should be
organised into a generic platform specific part and a framework specific part which is
adaptable to different applications.

The architecture contains variability that needs to be bound in system instances. In fact,
configuration of system instances may take place at the architecture level, if suitable tool
support is available.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 164

Architecture models
Differences between abstract and concrete system 6TIMe
Figure 6-55: Architecture models

Open figure

In the architecture property models, the non-functional properties are expressed.

The architecture models are organised into a specification part, and a design part, as
illustrated in Figure 6-32 (p.6-127).

Qualities The following qualities are sought:

• Functional equivalence between the abstract and concrete system.

• A mapping that is simple and easy to understand.

• Satisfaction of non-functional requirements.

• Automation of the realization process.

Documen-
tation

Together the application, the framework and the architecture complement each other to
form a complete documentation. As long as the framework and the architecture is stable,
only the application need to be supplied for each new system.

Note that the architecture serves as our (only) entry point to a complete description of a
given concrete system. By following the relationships “upwards” to the framework we
find models of the abstract functionality it provides, and by following the relations
“down” towards the Implementation we find all the implementation detail.

Arch System

Node propertiesArch system

SW system type

Context

Content

OMT/
UML

OMT/
UML

Component types

Synthesise

executeUse

Hw component
type

OMT/
UML

OMT/
UML

SW component
type

Use

Availability:
Capacity:

Response times: ...
Hardware: ...
Software: ...

System properties
Availability:
Capacity:

Response times: ...
Hardware: ...
Software: ...

OMT/
UML

Object models Property models

software
nodes

physical
nodes
Activities and Descriptions in TIMe 6 - 165 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture models
Architecture model content

TIMe6

Derivation
of concrete
systems

It is recommended to define a Method for framework code generation (p.-96) (automatic
and manual), and a Method for system instantiation (p.-97) which define the procedures
and tools for configuration and building of system instances. (The configuration and
building of system instances shall be as easy as possible.)

Architecture model content

The architecture property models describe non-functional properties and the architec-
ture object models describe hardware structure, software structure and relationships.

Architecture property models (non-functional properties)

Non-functional properties are more physical in nature than the functional properties.
They express features of a concrete system that are not modelled by a corresponding
abstract system, typically features related to performance, error handling, power con-
sumption and physical construction. See Architecture non-functional properties (p.6-
168) for details.

Architecture object models

Object models should be layered according to the Architecture reference model (p.6-
154), see Figure 6-54 (p.6-156) and consist of Hardware models (p.6-166), Software
models (p.6-166) and Implementation relations (p.6-167).

Hardware models

Hardware models describe the hardware on a high level. Here we find a description of
the overall hardware structure as well as the types of hardware components used to com-
pose the structure. Hardware models shall identify at least all physical nodes needed to
implement the abstract system. Whenever possible and practical one should make a
hardware framework that separates between:

- general platform hardware;

- application framework specific hardware.

Software models

These are models of the software. Here we describe the overall structure in terms of pro-
cesses, procedures and data as well as the component types used in the structure.
Whenever possible and practical one should make software frameworks that separates
between:

1. Support software:

- the operating system;

- middleware (e.g. CORBA) that supports distribution;

- support for application framework programming, for instance: user interface tools
(GUI), database management tools (DBMS) , language runtime support (for
SDL);
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 166

Architecture models
Architecture model languages and notations 6TIMe
- support for application framework input/output (I/O) (that is for interaction with
hardware).

2. Application framework software. It contains the application and the infrastructure
(software) implementations, and may be classified as: automatic and hand written.

3. Foreign code, code that is imported from other sources, legacy code, etc.

Software models will often be organised with one (framework) type model for each type
of computer (address space).

Implementation relations

Implementation relations are used to describe which parts of the application frameworks
that are implemented-by the various physical nodes and software nodes, and where
detailed hardware descriptions and source code can be found.

Architecture model languages and notations

Object models will be used to express the hardware and the software models. In the old
SISU methodology two special diagram types were used for this. As it seems, the forth-
coming UML will contain notations intended for similar purposes. If they prove
adequate, they will be adopted by TIMe.

For property models a combination of text, mathematics and figures will be used.

Architecture specification

Objectives While the application specifications describe abstract system properties related to the
system behaviour (functional properties) the architecture specification describe concrete
system properties (non-functional properties) related to the physical construction.
Application specifications serve several purposes:

1. Before the architecture is designed it serves to specify required properties that the
concrete system shall satisfy. Such requirements are sometimes called design con-
straints, because they constrain the possible design space.

2. After the architecture has been designed, to document its provided properties in a
way suitable for assessment, retrieval and (re)use.

What Specifications apply to the physical architecture as a whole as well as to each type of
component in it. Hardware components and software components are normally charac-
terised by different properties. (Power consumption, for instance, is a hardware
property, while code size is a software property.) As for other specifications, the main
thing is to describe properties that are important for the external use of the system. Con-
sequently the context model is most important, but internal aspects may also be relevant.
Activities and Descriptions in TIMe 6 - 167 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture models
Architecture specification

TIMe6

Architecture specification object model

Specification object models will not always be needed, and may be omitted when they
follow from the non-functional requirements in an obvious way. However, object mod-
els are good at describing objects and relationships, and should be included whenever
that kind of information is important.

1. Hardware specification. This may possibly be split into a specification of the general
hardware and specification of the application framework hardware:

• Context models that describe the physical structure of the environment:

- (distributed) hardware units;

- connections and interfaces in hardware.

• Content models that describe:

- (distributed) hardware units directly linked to the environment, and therefore vis-
ible by the environment;

- other hardware units that needs to be mentioned in the specification;

- connections and interfaces in hardware (note that the physical distribution of a
system may be important, and the interfaces between these distributed units may
be of interest).

2. Software specifications; that may possibly be split into a layered structure according
to the Architecture reference model (p.6-154).

• Context models that describe:

- software in the environment and external software interfaces.

• Content models that describe :

- software units directly linked to the environment, and therefore visible to the
environment,

- other software units that need to be mentioned in the specification. This may typ-
ically be support software of various kinds and existing application software that
shall be used.

- internal software interfaces if appropriate.

For hardware as well as software there may be general policies and engineering prac-
tices. These must be mentioned in the property models.

Note that variability is important. Try to express variability both in the number of com-
ponents and in their types. One should for instance specify what range of platforms that
shall be supported, and the maximum number of computers the system may contain.

Architecture non-functional properties

User and customer related properties (p.6-169) are important for the user (or the cus-
tomer/owner) while Company internal properties (p.6-170) are more important for the
company itself (see also Dimensions of the property concept):
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 168

Architecture models
Architecture specification 6TIMe
Some properties applies generally to the architecture while other properties can be
linked with specific parts of the object models.

User and customer related properties

These are:

1. General properties.

2. Properties related to the hardware context:

• The physical environment:

- temperature;

- humidity;

- vibration;

- physical distribution and distances, etc.;

• interfaces;

• performance:

- response times;

- load capacity;

- overload handling;

• reliability and error handling;

Having specified the services of the Access Control system, the Sesam-
Sesam people began wondering if that was all a customer would be
interested in? Wouldn’t the number of users that could be handled at the
same time matter? What about the response times? And not the least -
what if anything go amiss? They also started to consider their own prob-
lems. How to produce the system? What about maintenance and service?
Did they have any components ready made? After some thinking they
came up with an initial list of non-functional requirements:

1. Physical distribution. The system shall be able to serve a building com-
plex where the distance between doors is up to 1km measured as the
cables lie.

2. Processing capacity. The system shall be able to serve 6 users a minute
at each Access Point, and up to a total continuous peak load of 600
users a minute for the total system. Higher input rates shall not lead to
loss or corruption of data, only to longer delays.

3. Error handling. A single error shall not affect the (normal) operation
of more than 10 Access Points.

4. Security. The authentication and authorization information shall be
secured against unintended access.

5. Hardware. Standard plastic cards shall be the means for identification.
Standard card readers shall be used.
Activities and Descriptions in TIMe 6 - 169 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture models
Architecture design

TIMe6

• security.

3. Properties related to the hardware content:

• use of platform hardware;

• use of ready-made components, etc.

4. Properties related to the software context:

• software environment;

• software interfaces.

5. Properties related to the software content:

• support software;

• application framework software.

Company internal properties

These are such as:

• production aspects;

• service and maintenance aspects;

• hardware requirements;

• software requirements.

Non-functional properties are expressed in a mixture of text, figures and mathematics.
The precise form varies between different kinds of properties. Non-functional properties
are to be associated with the object models.

Architecture design

Objectives To describe the design parts of architecture models that:

• satisfy the specification;

• show every physical node and software node where application and framework
objects are implemented;

• define hardware and software architectures to a level of detail from which implemen-
tation is well defined and sufficient as high level documentation.

What Architecture design determines critical architectural issues such as physical distribution,
communication schemes, support software and physical interfaces. Some of these may
subsequently be reflected in the Framework model in order to describe the complete sys-
tem behaviour.

The design will cover the overall structure as well as each type of component in it.

Architecture relationships

The external relationships are presented in Figure 6-33 (p.6-130).
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 170

Architecture models
Architecture relationships 6TIMe
Figure 6-56: Architecture relationships

Open figure

Relationship architecture - framework

Nodes in the architecture will implement components of the framework. It is recom-
mended that the framework structure is similar to the structure of the architecture so that
there is a one-to-one correspondence between the two structures (at a suitable aggrega-
tion level).

Harmonising architecture - framework

Normally the framework is harmonised to reflect the architecture, while the architecture
need not take the framework into account, see Relationships framework - architecture
(p.-162).

Framework system
types

Framework com-
ponent types

Architecture models

HWsystem types

hardware descrip-
tion

source code

HW component
types

Framework models

SWsystem types SW component
types

executing onis implemented by

is implemented by

Implementations
represents represents
Activities and Descriptions in TIMe 6 - 171 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture models
Summary of static architecture rules

TIMe6

Relationships architecture - implementation

The architecture is an abstraction of the concrete system intended to give overview and
promote understanding of its construction. It should cover all parts of the implementa-
tion so it can be trusted as a faithful representation of it. At the same time it should not
go into details that are better described using hardware description languages and pro-
gramming languages. Such detail shall be found in implementation descriptions that are
referenced from the architecture.

Architecture models give added value to the low level implementation descriptions
through overview and by providing a single entry point to the entire documentation.

Harmonising architecture - implementation

Architec-
ture
implemen-
tation

• Ensure that the architecture covers the implementation down to a level of detail
where the remaining detail is well taken care of by reference to implementation
descriptions.

• Ensure that names and references are updated when changes are made.

Harmonising architecture specification - design

When the architecture has been designed, the architecture specification shall be harmo-
nised. It shall be correct with respect to the actually provided properties, and it shall
cover every property of importance for external assessment and use. Properties not
needed for that purpose should be removed even if they were included in the initial
specification.

Architec-
ture
specifica-
tion

• The architecture specification surviving after the architecture design is made should
provide exactly the properties needed for external assessment and use.

Summary of static architecture rules

The architecture models serve several purposes, see Architecture models (p.6-164), and
should be structured to fulfil as many of those as possible. In addition the Architecture
reference model (p.6-154) should be used to make a layered structure that facilitates
evolution.

Documen-
tation

• From the architecture entities there shall be a clear relationship to detailed imple-
mentation descriptions either through naming conventions or explicit references.

• All detailed implementation descriptions shall be covered by the architecture.

Hardware
models

• Hardware models shall identify at least all physical nodes needed to implement the
abstract system.

• Whenever possible and practical one should make a hardware framework that sepa-
rates between:
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 172

Architecture models
Developing architecture 6TIMe
- General platform hardware. This is hardware that is not application framework
specific. It will typically consist of general purpose computers in a network.

- Application framework specific hardware.

• Hardware models should define all hardware interfaces used to compose hardware
systems, and in particular those used by application frameworks and software.

• Hardware models shall be sufficiently detailed and complete to provide the high level
hardware documentation needed in addition to other hardware descriptions.

Software
models

• Software models shall identify at least all software nodes needed to implement the
abstract system.

Software
framework

• Whenever possible and practical one should make software frameworks that sepa-
rate between:

- Support software, possibly with sub-layers: operating system, middleware; appli-
cation programming support, application I/O support.

- Application framework software. It contains the application and the infrastructure
(software) implementations, and may be classified as automatically generated and
hand written code.

- Foreign code, code that is imported from other sources, legacy code, etc.

• Software models should identify at least every concurrent thread of behaviour, called
a software process, and its communication links.

• Software models should define all software interfaces used by each layer of software.

• Software models shall be sufficiently detailed and complete to provide the high level
software documentation needed in addition to source code.

Developing architecture

What This activity develops implementation Architecture models (p.6-164) which consists of
object- and property models organised as an Architecture specification (p.6-167) and an
Designing architecture (p.6-177).

It also develops a Method for framework code generation (p.-96), and a Method for sys-
tem instantiation (p.-97), see Figure 6-29 (p.6-106).
Activities and Descriptions in TIMe 6 - 173 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture models
Developing architecture

TIMe6

Figure 6-57: Developing Architecture

Open figure

Inputs The main sources of input information are:

• Descriptions:

- Application models describe the application systems that the architecture shall
implement.

- Business plans and product strategy will give high level goals for the concrete
system.

- Other families and especially their architectures may provide valuable input. It
may even happen that an architecture can be (re)used even if the applications are
different.

- The family statement should be consulted.

• People:

- Product management can give additional requirements and guide-lines concerning
the concrete system.

Outputs Architecture development results in an implementation architecture that will behave as
defined in the Application models (p.-106) and satisfy the non-functional properties. It
will also define a method for (automatic) generation of application implementation code
and for configuration and building of system instances.

Specifying
architecture

Designing
Architecture

Architecture
design

Architecture
specification

System family
statement

Application
models

Framework
models

Other Families

Implemen-
tations

Business plan,
product strategy

product
manage-

ment,
production,

SW/HW
designers

Developing Architecture

Defining
methods

Family
auxiliary
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 174

Architecture models
Developing architecture 6TIMe
Who to
involve

Concrete system design involves specialists in electronics, mechanics and software
design. Such specialists tend to have a limited ability to perform high level system
design. As this is very important in architectural design, an interdisciplinary team is
required unless people with sufficiently broad system design experience are available.
The team should not be biased towards a particular technology, but be able to perform
trade offs wherever the solution is open. Such openness in design solutions is often
essential in order to achieve innovation.

Users are normally not much concerned about architecture. But for the customer and the
manufacturer it matters quite a deal. Not the least because it determines lifetime cost,
the ability to evolve and the ability to interoperate with other systems.

Architectural designers need to work closely with production people, and specialists in
software, electronics and mechanics.

When to do
it

This activity is only performed when the implementation mapping is undefined or needs
to be changed. This occurs during the initial development of a system family and during
maintenance, when changes in the Platform are needed e.g. because of changes in the
support software.

In an initial development, architecture design will come before framework/infrastruc-
ture design. During normal application evolution, the generic architecture will stay the
same, and system evolution can take place mainly at the application level.

What to do Making architectures

The following strategy may be used when making the first architecture model for a new
system family:

Make Architecture

1. First the initial specification is created by Making
architecture specifications (p.6-176). This will nor-
mally take place during requirements analysis.

2. When the application is designed, time is ready for
Making architecture design (p.6-177). Use the appli-
cation design and the architecture specification as
input, and design the hardware and the software parts
of the architecture.

3. Perform Harmonising architecture specification -
design (p.6-172) to make a complete and precise
architecture specification for the purpose of later
(re)use.

4. Define a Method for framework code generation (p.-
96) in order to simplify and streamline the generation
of application system implementations.
Activities and Descriptions in TIMe 6 - 175 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture models
Specifying architectures

TIMe6

Evolving architectures

The following strategy may be used when evolving an architecture:

Specifying architectures

Inputs Inputs to this activity are the same as for Developing architecture models as a whole, see
Figure 6-29 (p.6-106). There are two main sources of inputs: the market (represented by
users and other domain stake holders) and the company itself (represented by product
owners, production departments and service responsibles). Technology (that is what
technology and solutions are feasible today) may be considered a third source.

Making architecture specifications

The initial architecture specification is normally made at an early stage before there are
any application designs or frameworks. It shall express the initial requirements on the
concrete system.

A possible approach is the following:

Architec-
ture
specifica-
tion
approach

1. Consult the market and write down the general non-functional properties that it
requires, see User and customer related properties (p.6-169).

2. Consult the various company departments and write down the company internal
requirements, see Company internal properties (p.6-170).

3. Make the hardware specification object model.

4. Make the software specification object model.

5. Specify the non-functional properties that shall apply to each object and interface in
the object models.

Evolving architecture specifications

The reason for evolving an architecture specification is that some properties are to be
added or changed.

Evolve Architecture

1. Add new properties or change existing properties in
the architecture specification as required by Evolving
architecture specifications (p.6-176).

2. Analyse the impact that the new or changed proper-
ties have on the design and perform the necessary
changes by Evolving architecture design (p.6-177).

3. Evolve the Method for framework code generation
(p.-96) if affected.

4. Evolve the Method for system instantiation (p.-97) if
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 176

Architecture models
Designing architecture 6TIMe
1. Specify the new or changed properties.

2. Analyse its impact on the architecture design and the specification object model.

3. (If the impact is acceptable then) make the changes to the specification object model.

Designing architecture

Making architecture design

The main inputs are: (1) the Application models (p.-106) (in SDL or UML) and (2) the
Architecture specification (p.6-167). When the architecture is made for the first time,
there is normally not any framework.

The following step-wise procedure takes both hardware and software into account:

Evolving architecture design

This activity makes an incremental evolution of the architecture so that it satisfies a new
specification increment. It involves the same basic activities as making architectures for
the first time, only that the existing architecture is taken into account. At this stage of
development an application framework may exist.

Trade-off between hardware and software

Guidelines:

Physical
distribution

• Analyse requirements to physical distribution of interfaces and services.

Mean peak
load

• Calculate the mean peak load for each SDL process, channel and signal route. Allo-
cate SDL processes to computers such that the sum peak load for each computer is
less than a given load limit (typically 0.2–0.3).

Make Architecture design

1. Perform Trade-off between hardware and software
(p.6-177)

2. Make Hardware design (p.6-178)

3. Make Software design (p.6-178)

Evolve Architecture design

1. Analyse the impact of the specification increment
on the Architecture design. Identify which parts
that are affected and change them accordingly:

2. Evolve the Hardware design (p.6-178) if affected.

3. Evolve the Software design (p.6-178) if affected.
Activities and Descriptions in TIMe 6 - 177 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture models
Software design

TIMe6

Real time
response

• Calculate the response times for time-critical functions and check that requirements
will be satisfied. Use priority to ensure fast response. Isolate time-critical parts as
much as possible.

Reliability • Consider the need for redundancy. Add redundant units and restructure the system
until requirements can be met.

Hardware design

The task here is to define the overall (architectural) hardware design. It is based on the
division into hardware and software where the main hardware units were identified.

A possible strategy:

1. Describe the overall structure of general hardware, i.e. computers, networks.

2. Describe the application framework specific hardware.

3. Describe the physical interconnections between the hardware units.

4. Describe the signal synchronisation schemes and protocols to be used on the physical
interconnections, to the extent they are not already covered in the specification.

Some guide-lines:

Physical
distribution

• Distribute processes in a way where the bandwidth needed over physical channels is
minimised.

Hardware
similarity

• Look for similarities between hardware modules. Increase cost–benefit by using sim-
ilarity to minimise the number of different component types needed and maximise the
reuse of each.

Software design

See Software design (p.6-178) for further details.

Implementation relations

Guidelines:

Implemen-
tation
mappings

• Define the implemented-by relations from software nodes to the application frame-
work objects they implement.

• Define the implemented-by relations from physical nodes to the application frame-
work objects they implement.

• Define the executes-on relationship between software units and computers.

Software design

Guidelines:

Implemen-
tation
mapping

• Map the SDL description as directly as possible into the software implementation.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 178

Architecture models
Software design 6TIMe
I/O
software

• Look at the physical interfaces and design software modules that can take care of the
physical layer, i.e. synchronisation, event detection, timing and format conversion.

• Try to hide the physical details of input–output in separate software modules that
handle the physical layer and provide an SDL-like signal transfer service to the
application software.

• When input–output modules are time-critical or need to perform event detection or
need to wait, they should be implemented in software processes that may be sched-
uled independently from the application software.

• Always specify a max waiting time when waiting on external events in order to avoid
infinite waiting in error situations. This applies to the input–output modules as well
as SDL processes.

Software
communi-
cation

• Look at the internal interfaces and choose a suitable communication mechanism for
each, i.e. procedure calls, message buffers and continuous values.

• Prefer to use the most general and flexible communication scheme for SDL signals,
i.e. buffered communication, except when performance is critical and direct proce-
dure calls/method invocations are obviously sufficient.

Support
software

• Use a general operating system that supports concurrent processes and buffered
communication except when a simple sequential program structure is obviously
sufficient.

• Select the implementation method for each SDL process. Use general support sys-
tems, RTS, whenever possible, to ease the implementation of application functions
and to increase reliability.

External
signal
priority

Give time-critical external events priority over internal processing.

Internal
processing
priority

Give the processing of internal signals priority over the processing of external signals

Load
control

When overload occurs, give priority to service requests already in progress and delay
fresh requests.

Free-pools Limit the size (the number of free buffers) of free-pools where it helps to control the
internal load in a system, in particular at the input side.

Use a separate message buffer free-pool for each consumer of message buffers.

Generality • Preferably use the most general and flexible implementation techniques wherever
they satisfy the design constraints, i.e. implement :

- communication by messages;

- SDL processes by FSM-Support;

- basic support by a general operating system.
Activities and Descriptions in TIMe 6 - 179 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Architecture models
Software design

TIMe6

Optimisa-
tion

• Confine time-critical functions to modules that can be optimised separately. Do not
optimise more than necessary.

Summary of dynamic architecture rules

t.b.d.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 180

List of figures
Software design 6TIMe
List of figures

The main descriptions used in TIMe . 3

The facets of a type model . 5

Specification and design related . 6

The main development cycle . 8

Elements of the Domain. 10

Parts of the (application) domain will be realised in the domain given part of
systems. 13

The main activities in TIMe. 20

Analysing . 24

Domain - system iterations . 26

Analysing domain . 29

Analysing requirements . 32

Designing . 39

Software implementation . 42

Domain Models . 53

Domain model notations . 54

Domain Object Models . 55

The access control domain. 57

The class definition of Access Zone . 57

Developing domain models . 62

Software implementation . 76

Application system reference model . 81

Application specification and design . 87

Ways that services are related to objects . 89

A service layer and an interface layer . 90

Two cases of interface given parts . 91

Application system specifications . 93

External Application relationships. 98

Internal application model relationships . 101

Developing Application . 106

Developing the various parts of an application . 107

Application framework reference model . 123
Activities and Descriptions in TIMe 6 - 181 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of figures
Software design

TIMe6

Framework models. 127

External Framework relationships . 130

Framework definition and use . 133

Framework definition with predefined instances. 134

Virtual block type as part of framework, with application specific instance
specificed . 134

Application specific virtual type at system type level . 135

Framework with no instances . 136

Virtual block type. 137

Creation of application specific processes . 137

Redefined block type with process set and actual context parameter 138

Framework with virtual creation procedures . 139

Setup as a virtual procedure of CentralUnit. 140

Actual Access Control System. 141

Fragment of redefined setUp . 141

Developing Framework . 143

Redesigned Access Control system . 146

Cluster with LocalUnits and ClusterUnits . 146

AccessPoint used in both LocalUnit and ClusterUnit . 147

Access Control System type as a framework. 150

Block type Cluster as part of framework for Access Control Systems 151

An actual system based upon a framework . 151

Reference models for abstract and concrete system . 155

Architecture reference model. 156

Architecture models . 165

Architecture relationships . 171

Developing Architecture . 174
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 182

List of definitions
Software design 6TIMe
List of definitions

Actor . 183
Application. 183
Architecture . 183
Complete abstract system . 183
Domain Statement . 184
Framework . 184
Helpers . 184
Physical node . 184
Software node . 184
Stake holder . 184
Subject entities . 185
System family statement . 185
Transactions . 185

Actor

An actor is a stake holder that takes actively part in the services or work processes of a
Domain.

Application

An application is an abstract system that provide the main services of a system and is
therefore the most valuable part of a system from a user point of view.

Architecture

An architecture is an abstraction of a concrete system representing:

• the overall structure of hardware identifying at least all physical nodes and intercon-
nections needed to implement an abstract system;

• the overall structure of software identifying at least all software nodes, software com-
munications and relations needed to implement an abstract system (in terms of
processes, procedures and data).

Complete abstract system

A complete abstract system models as completely as practically possible the abstract
functionality implemented in a concrete system.

It covers the Application and the infrastructure functionality supporting the Application.
Its behaviour is a valid model of the real behaviour and its structure is similar to the
structure of physical nodes in the concrete system.
Activities and Descriptions in TIMe 6 - 183 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Software design

TIMe6

Domain Statement

A (problem) domain statement is a concise description of the problem domain with
focus on stakeholders and their needs, the essential concepts, functions and work pro-
cesses, rules and principles. It should also clearly state the nature of the problem, i.e.
what one wants to achieve.

Framework

A framework is an abstract system or a collection of (large) system component with two
parts:

• a redefinable application;

• a configurable infrastructure that takes distribution into account, and contains all
additional behaviour and supporting functionality needed to support the application
in the concrete system.

Helpers

These are general tools that are used by the actors to provide the services of a Domain.
Examples are communication systems, radar equipment and keys.

Physical node

A physical node is a distinct physical entity, such as a computer, that implements one or
more abstract system objects.

A physical node operates concurrently with other physical nodes.

Physical nodes may be aggregated and decomposed, but always in such a way that
abstract objects are contained within physical nodes.

Software node

A software node is a distinct software entity, such as a software process (a concurrent
thread), that implements one or more abstract system objects.

A software node will often operate concurrently with other software nodes, but not
always.

Software nodes may be aggregated and decomposed, but always so that abstract objects
are contained within software nodes.

Stake holder

A stake holder is someone or something holding an interest in something.

In TIMe, a stake holder is any person, institution or system with direct or indirect inter-
est in the Domain, a Family or a System instance.
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 184

List of definitions
Software design 6TIMe
Typical examples are companies, users, operators, owners, and systems in the
environment.

Subject entities

These are entities that are subject to manipulation, representation or control in the
Domain. They may be materials in the case of a material transformation domain, e.g.
moulding, or they may be entities represented in an information system, e.g. flights and
seats, or they may be controlled machinery, e.g. a paper mill.

System family statement

The system family statement is a concise description of the system family with emphasis
on specifications, i.e. the external properties.

Transactions

These are entities representing transactions or events in the dynamic behaviour of the
Domain, e.g. the purchase of a car, or a user passing a door.
Activities and Descriptions in TIMe 6 - 185 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Software design

TIMe6
Activities and Descriptions in TIMe TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-166 - 186

	Content and scope
	Description overview
	The main descriptions
	Figure 6-1: The main descriptions used in TIMe
	Model organisation
	Figure 6-2: The facets of a type model
	Specifications
	Figure 6-3: Specification and design related
	Some specification rules
	Development steps
	Figure 6-4: The main development cycle

	Domain descriptions
	What is a domain?
	Figure 6-5: Elements of the Domain
	Why make domain descriptions?
	Domain description content
	Domain relationships
	Figure 6-6: Parts of the (application) domain will be realised in the domain given part of systems
	Harmonising domain descriptions
	Within domain
	With family

	Family descriptions
	What is a family?
	Why make family descriptions?
	Content of family descriptions

	System studies
	Instances
	Relations and traceability

	Activity overview
	Figure 6-7: The main activities in TIMe
	Activity categories
	Making family
	Evolving family
	Harmonising family

	Analysing
	Figure 6-8: Analysing
	What to do
	Figure 6-9: Domain - system iterations
	Analysing from scratch
	Analysing from scratch (new domain)
	Analysing from existing domain
	Analysing from existing domain
	Analysing domain
	Figure 6-10: Analysing domain
	Making domain descriptions
	Make domain descriptions (new domain)
	Evolving domain descriptions
	Evolve domain descriptions (existing domain)
	Summary of dynamic domain rules

	Analysing Requirements
	Figure 6-11: Analysing requirements
	Making requirements
	Make requirements
	Evolving Requirements
	Evolve Requirements
	Summary of dynamic requirements rules

	Analysing solutions
	Specifying
	Making specifications
	Make specifications
	Evolving specifications
	Evolve specifications
	Summary of dynamic specification rules

	Designing
	Figure 6-12: Designing

	Implementing
	Figure 6-13: Software implementation

	Instantiating
	Instantiation

	Domain statement
	Domain statement outline
	Executive summary
	Area of concern/context
	Stake holders
	Subject entities
	Helpers
	Services
	Work processes and materials
	Rules and principles
	Trends
	Existing systems
	Problems - improvements needed

	Domain statement relationships
	Harmonising domain statement

	Developing domain statement
	Making domain statement

	Make Domain Statement
	Make executive summary
	Describe area of concern/context
	Describe stake holders
	Describe subject entities
	Describe helpers
	Describe services
	Describe work processes and materials
	Describe rules and principles
	Describe trends
	Describe existing systems
	Describe problems and improvements needed
	Evolving domain statement
	Summary of dynamic domain statement rules

	Domain dictionary
	Domain dictionary content
	Relationships
	Harmonising domain dictionary
	Summary of static domain dictionary rules
	Developing domain dictionary
	Making domain dictionary
	Evolving domain dictionary
	Summary of dynamic domain dictionary rules

	Domain models
	Figure 6-14: Domain Models
	Figure 6-15: Domain model notations
	Domain object models
	Figure 6-16: Domain Object Models
	Figure 6-17: �The access control domain
	Figure 6-18: The class definition of Access Zone
	Domain object model languages and notations
	Abstract domain object models
	Concrete domain object models
	Domain object model relationships
	Harmonising domain object models
	Summary of static domain object model rules

	Domain property models
	Abstract domain properties
	Concrete domain properties
	Domain property model relationships
	Harmonising domain property models
	Summary of static domain property model rules

	Developing domain models
	Figure 6-19: Developing domain models
	Summary of static domain model rules

	Developing domain object models
	What to do?
	Making domain object models
	Make Domain Object Model (new Domain)
	Evolving domain object models
	Evolve Domain Object Model (existing Domain)
	Summary of dynamic domain object model rules

	Developing domain property models
	Making domain property models

	Make Domain Property Models
	Evolving domain property models

	Evolve Domain Property Models
	Summary of dynamic domain property model rules

	System family statement
	What is a system family statement?
	System family statement outline
	Executive summary
	How it relates to the domain
	How it relates to the environment
	What services it provides
	Interfaces
	Other properties
	Variability and evolution
	Technology issues

	System family statement notations
	Family statement relationships
	Harmonising system family statement

	Summary of static family statement rules
	Developing system family statements
	Making system family statement

	Make system family statement
	Evolving system family statement

	System family dictionary
	What is a system family dictionary?
	System family dictionary content
	System family dictionary relationships
	Relationships system family dictionary - domain
	Harmonising system family dictionary - domain
	Relationships system family dictionary - rest of family
	Harmonising system family dictionary - rest of family

	Summary of static system family dictionary rules
	Developing system family dictionary
	Making system family dictionary
	Evolving system family dictionary
	Summary of dynamic system family dictionary rules

	Family implementations
	Implementations
	Figure 6-20: Software implementation

	Family auxiliary
	Why family auxiliaries?
	Method for evolution
	Method for framework code generation
	Method for system instantiation

	Application
	Content and scope

	Application reference model
	Figure 6-21: Application system reference model
	System context
	Domain given
	System given
	Interface given
	Environment
	Subject entities
	Other systems
	Controlled processes
	Users

	Application models
	Application model overview
	Application model content
	Application specification and design parts
	Figure 6-22: Application specification and design
	Application system boundary
	Application services and objects
	Figure 6-23: Ways that services are related to objects
	The application reference model parts
	Domain given
	System given
	Interface given
	Figure 6-24: A service layer and an interface layer
	Figure 6-25: Two cases of interface given parts

	Application languages and notations
	Application specification languages and notations
	Application design languages and notations

	Application specification
	Figure 6-26: Application system specifications
	Application specification content
	Domain given specification
	System given specification
	Interface given specification

	Application design
	Application design content

	Application model relationships
	Figure 6-27: External Application relationships
	Relationships application - domain
	Harmonising application - domain
	Relationships application - framework
	Harmonising application - framework
	Relationships application specification - design
	Figure 6-28: Internal application model relationships
	Harmonisation application specification - design

	General application guidelines
	Developing applications
	Figure 6-29: Developing Application
	Figure 6-30: Developing the various parts of an application
	Making application models
	Make Application
	Evolving application models
	Evolve application

	Specifying applications
	Making application specifications
	Make Application specification
	Specifying the domain given objects
	Specifying the system given objects
	Specifying the services
	Specifying the interface given objects
	Evolving application specifications
	Evolve Application specification

	Designing applications
	Designing application structure
	Making application structure
	Evolving application structure

	Designing application behaviour
	Making application behaviour
	Synthesizing behaviour from properties
	Synthesizing behaviour from environment behaviours
	Synthesizing behaviour from informal requirements
	Evolving application behaviour

	Summary of static application rules
	Language choice
	Domain given parts
	System given parts
	Interface given parts
	General considerations
	System Content

	Summary of dynamic application rules
	Domain mapping
	Domain stake holders
	Interface layering
	Environment
	SDL system and environment

	Framework
	Content and scope
	What is a framework
	Table 6-1: Differences between libraries and frameworks

	Framework reference model
	Figure 6-31: Application framework reference model
	Framework infrastructure
	Framework application

	Framework models
	Figure 6-32: Framework models
	Framework model content
	Framework specification
	Framework design

	Framework languages and notations
	Framework specification
	Framework specification content
	Framework object model
	Framework property model

	Framework design
	Framework relationships
	Figure 6-33: External Framework relationships
	Relationships framework - application
	Harmonising framework - application
	Relationships framework - architecture
	Harmonising framework - architecture
	Relationships framework specification - design
	Harmonising framework specification - design

	General framework guidelines
	How to define a framework using SDL
	Figure 6-34: Framework definition and use
	Application specific instances are specified as part of the framework
	Figure 6-35: Framework definition with predefined instances
	Figure 6-36: Virtual block type as part of framework, with application specific instance specificed
	Figure 6-37: Application specific virtual type at system type level
	Application specific instances not specified as part of the framework
	Context parameters
	Figure 6-38: Framework with no instances
	Figure 6-39: Virtual block type
	Figure 6-40: Creation of application specific processes
	Figure 6-41: Redefined block type with process set and actual context parameter
	Virtual creation procedures
	Figure 6-42: Framework with virtual creation procedures
	Figure 6-43: Setup as a virtual procedure of CentralUnit
	Figure 6-44: Actual Access Control System
	Figure 6-45: Fragment of redefined setUp

	Developing framework
	Figure 6-46: Developing Framework
	Making frameworks
	Make Framework
	Completing the abstract system model
	Figure 6-47: Redesigned Access Control system
	Figure 6-48: Cluster with LocalUnits and ClusterUnits
	Figure 6-49: AccessPoint used in both LocalUnit and ClusterUnit
	Define the method for instantiating frameworks with an application.
	Evolving frameworks
	Evolve Framework
	Specifying frameworks
	Making framework specification
	Evolving framework specification

	Designing framework structure
	Making framework design
	Figure 6-50: Access Control System type as a framework
	Figure 6-51: Block type Cluster as part of framework for Access Control Systems
	Figure 6-52: An actual system based upon a framework

	Designing framework behaviour

	Architecture
	Content and scope
	Architecture reference model
	Figure 6-53: Reference models for abstract and concrete system
	Concrete system
	What is an architecture?
	Figure 6-54: Architecture reference model

	Differences between abstract and concrete system
	Fundamental differences
	Processing time
	Errors and noise
	Physical distribution
	Finite resources
	Accidental differences
	Concurrency
	Communication
	Synchronization
	Data

	Architecture models
	Figure 6-55: Architecture models
	Architecture model content
	Architecture property models (non-functional properties)
	Architecture object models
	Hardware models
	Software models
	Implementation relations

	Architecture model languages and notations
	Architecture specification
	Architecture specification object model
	Architecture non-functional properties
	User and customer related properties
	Company internal properties

	Architecture design
	Architecture relationships
	Figure 6-56: Architecture relationships
	Relationship architecture - framework
	Harmonising architecture - framework
	Relationships architecture - implementation
	Harmonising architecture - implementation
	Harmonising architecture specification - design

	Summary of static architecture rules
	Developing architecture
	Figure 6-57: Developing Architecture
	Making architectures
	Make Architecture
	Evolving architectures
	Evolve Architecture

	Specifying architectures
	Making architecture specifications
	Evolving architecture specifications

	Designing architecture
	Making architecture design
	Make Architecture design
	Evolving architecture design
	Evolve Architecture design
	Trade-off between hardware and software
	Hardware design
	Software design
	Implementation relations

	Software design
	Summary of dynamic architecture rules

	List of figures
	List of definitions
	Actor
	Application
	Architecture
	Complete abstract system
	Domain Statement
	Framework
	Helpers
	Physical node
	Software node
	Stake holder
	Subject entities
	System family statement
	Transactions

