T | M @ TIMeElectronic Textbook

-Tutorial on SDL

INtroducCtion e 2
Overview of SDL e 3
SDL asan object oriented language.o 22
SDL by example. 36
LISt Of fIQUIES . . oo 67
Listof definitions. e e e 68

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Tutorial on SDL

13-1

- Introduction Tl Me

| ntroduction

13-2

This SDL tutorial provides a number of different approachesto learning SDL :

Overview of SDL (p.13-3)

- follow thisif you would like an overview of the language elements of SDL, with an
example asillustration; thisis organised according to what instances an SDL system
consists of, how they are defined, how SDL systems are structured, how processes
communicate, how subtypes can be defined and how data types may be defined.

SDL by example

- follow thisif you would rather see acomplete example right away and have the lan-
guage explained through this; thisis organised as atop-down introduction where you
start from a system diagram, through block diagrams, to process, service and proce-
dure diagrams.

SDL as an object oriented language

- follow thisif you would like to learn how SDL elements correspond to the various
elements of object orientation; this requires aminimal knowledge of object orienta-
tion, and you will learn what corresponds to objects, attributes, classes, subclasses,
etc.

Behind all these perspectives on SDL lies a number of definitions of the various lan-
guage concepts and most of the figures in the electronic form of this chapter will be
sensitive for mouse clicks and provide the definitions of the language element you click
at at in the diagrams.

In addition the Chapter providesyou with asubset of the more formal definition of SDL.
Whenever you in the electronic form encounter atext likethis“Z.100”, clicking on this
will bring you part of the Z.100 correspondence to the topic you are reading.

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Overview of SDL
Introduction

Overview of SDL

I ntroduction

SDL isused for specification of systems. Thisisdone by making SDL systemsthat are
models of existing or potential systems. SDL systems are specified by SDL system
specifications.

As part of the modeling process, components of systems are identified and modeled by
Instances as parts of the corresponding SDL system. Categories and subcategories of
components are in SDL represented by types and subtypes of instances.

An SDL system consists of a set of instances. Instances may be of different kinds:
 blocks containing other blocks (which in turn may contain other blocks) or processes;

» processes characterised by attributesin terms of variables and procedures and which
exhibit behaviour in terms of Extended Finite State Machines;

» services being parts of processes, with the same properties as processes, but being
executed as part of the containing process execution.

SDL system can be structured by various means. A system consists of a number of
blocks connected by channels, each block may contain a substructure of blocks (to any
depth) or it may contain process sets connected by signal routes.

Processes execute concurrently with other processes and communicate by exchanging
signals; or by remote procedure calls. Reception of signals and requests for remote pro-
cedures are the events that t rigger state transitions in the behaviour of processes.
Services as part of processes execute one at atime like co-routines.

Variables are defined by means of datatypes:
» abstract data types that may be both predefined and user defined
» ASN.1 data types (according to a separate standard Z.105).

SDL specifications can be modularised by means of packages. A packageisacollection
of type definitions. Packages can be used in the definition of new packages and the def-
inition of systems.

Processes and process types

The primary instances of an SDL system are processes. A process may have attributes
in terms of variables, it may have procedures, and it may have a certain behaviour.

A process type defines the properties of a category of processinstances.

The process type diagram in Figure 13-1 (p.13-4) isan example of adefinition of a pro-
cess type. Each Controller process will have:

» thevariablescur_panel, cid and PIN as declared in the text frame;
» aprocedure OpenDoor;

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Tutorial on SDL 13-3

13-4

Overview of SDL TI Me

Processes and process types

a behaviour defined by states and transitions.

The processtype is the central controlling part of an access control system, based on
card codes and PIN codes. The behaviour of the Controller takes care of the communi-
cation with the user (viaapanel), with the central unit (that does the actual validation),
and it eventually opens the door (by means of the OpenDoor procedure).

Specifying behaviour: states and transitions

The behaviour of aprocess is described as an Extended Finite State Machine: When
started, a process executes its start transition and enters the first state. The reception of
asigna triggers atransition from one state to a next state. In transitions, a process may
execute actions. Actions can assign values to variable attributes of the process, branch
onvalues of expressions, call procedures, create new processinstances and send signals
to other processes.

Communication by means of sending signalsis asynchronous: the sending process does
not wait until the signal is handled by the receiver, and the receiving process will keep
signalsin aqueue until it reaches a state in which it is prepared to handle it.

Figure 13-1 (p.13-4) is an example on behaviour specification.

In adtate (e.g. Idle) the process takes from the queue the first signal that is of one of the
typesindicated in the input symbols (here Code, containing information about the card
id and PIN from the Panel). The Idle state is followed by one input symbol which
describes the consumption of the signal Code. In the transition following the reception
of the Code signal, it will use the variable cur_panel to remember from which panel the
signal came from and then send the Codeto the central unit for validation. The next state
isValidation. In state Validation the Controller will only accept OK or NOK. If it gets
OK it will open the door by calling the procedure OpenDoor.

Figure 13-1: Behaviour Specification

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Overview of SDL
Processes and process types

process type diagram variables

y e

process type Controller 1(2)

Open figure

|
dcl cur_panel Pid ;ﬁurrent panel whose Code will be validated */
dcl cid, PIN integer ; /* temporary variables for the data attributes of ‘Code’ */

unlockDoor ’
’ state o
Idle Validation procedure
; reference
input | S
Code(cid,PIN) OK NOK
)/ /* from /* from
/* from Panel */ Central */ Central */

sk | |
NOK

cur_panel := TO cur_panel

SENDER

TO cur_panel

u

Code(cid,PIN

- procedure
__|To unlockDoor cal output
CentralUnit -

nextstate

Validation

i

[Code]

[(validity)]

P D

>

[opened,closed] U [(validity)]
[Code]

- —P

[open,close]

P, D and U on the frame are gates: they define possible connection points for signal
routes (see below) that connect specific process sets of thistype. The signals (e.g Code)
and signal lists (e.g. validity) define which signals may enter/exit through the connec-
tion point.

For more details on the constituents of a process type diagram see Virtual process type
Controller (p.-59).

Variables

Variablesare declared according to datatypes. Each variable hasaname and adatatype.
Controller processesasdefinedin Figure 13-1 (p.13-4) have avariable cur_panel of type
Pld and two Integer variables cid and PIN.

The data type defines possible values, behaviour and operators that can be applied to
values of thetype. It is possible to define data types.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Tutorial on SDL 13-5

Overview of SDL TI Me

Communication by means of signal exchange

Predefined types include Character, Boolean, Integer, Natural, Pld (Process Instance
Identifier), and Real. Templates for defining arrays, strings and powersets are al'so
provided.

Variables of type Pld denote process instances, so cur_panel isavariable that denotesa
process instance representing the panel that sent the Code signal.

Procedures

Procedures as part of processes define patterns of behaviour that the process may exe-
cute at several places or several timesduring itslife-time. The behaviour of aprocedure
isdefined in the same way as for processes (that is by means of states and transitions),
aprocess may have (local) variables, and in addition it may have IN, OUT, IN/OUT
parameters.

Procedures are defined by procedure diagrams. The unlockDoor in Figure 13-1 (p.13-4)
isthus only areference to a separate diagram defining the properties of unlockDoor.

For an example on a procedure diagram see Procedure diagram, GetPIN (p.-74).

Communication by means of signal exchange

Processes execute concurrently and communicate asynchronously by sending signals.
Each process has a queue of signals. The reception of asignal isthe event that may get
a processes to perform atransition from one state to another state.

In addition to signals, processes may al so communicate by means of remote procedures.
Onthe server sidethey aretreated like signals (e.g. only accepted in stateswith an input
of the procedure), while the client side will be blocked until the remote procedure has

been executed.

Grouping of process sets by means of blocks

13-6

Types and instances of types correspond to the notion of classes and objects of classin
object oriented languages. In addition SDL supports the what would correspond to the
grouping of objectsinto larger units.

A block is acontainer for either sets of processes connected by signal routes, or for a
substructure of blocks connected by channels. Each of these blocks may in turn consist
of either process sets or a substructure of blocks. This decomposition may be applied to
any depth.

Thereisno specific behaviour associated with ablock, and blocks cannot have attributes
in terms of variables or procedures. Therefore, the behaviour of ablock issimply the
combined behaviour of its processes.

A block type defines the common properties for a category of blocks. In Figure 13-2

(p-13-7) ablock type AccessPoint is defined by means of the process type Controller
(and two other processes. Panel and Door, taking care of the communication with the
actual physical panel and door).

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Overview of SDL
Grouping of process sets by means of blocks

Panel and DOOR are defined directly (there will be process diagrams for each of them
and the process symbols with Panel and DOOR in Figure 13-2 (p.13-7) arejust refer-
encestothese), whilelscisdefined by the processtype Controller. The symbol in Figure
13-2 (p.13-7) with the name Controller is areference to the corresponding processtype
diagram.

Processes are parts of process sets

Processinstances are part of process sets. The specification of aprocess set includesthe
name of the set, the number of instances (initial number and the maximum number of
Instances), and possibly the name of a processtype. If no processtype nameisused, then
the properties of the processesin the set are defined directly (in the corresponding pro-
cessdiagram). Omitting the number of instancesimpliesthat initially thereis 1 element,
and that the number of instances is unbounded. In Figure 13-2 (p.13-7) there are three
process sets of the specia kind that initially has just one member:

Panel and Door are defined directly (that isthe Panel and Door arereferencesto separate
process diagrams), while Isc isthe name of a process set according to the Controller pro-
cess type defined in Figure 13-1 (p.13-4).

Figure 13-2: Block type AccessPoint with processes

Open figure
block (type) heading

block type AccessPoint - 11 |
signd

signal opened,closed ; /* Door -> Controller */A>/ definitions

signal open, close ; /* Controller -> Door */

/ /* signal lists (inp), (out) and (validity) defined in
text enclosing block. This holds also for signal '‘Code’ */]

symbol
l Controller i |- Process

[unlock,

__process type

o linp]| ~ [(np)] 410cK]
- > .
[outp)] 4 |{coutp)] [1sOpen,
[(validity)] ISClosed]
[code] [opened, [open
apc: closed] close] [(validity)]
Controller Y i = >~
[(validity)] CU [Code] | C [Code]
gate signal list / _ \ signalroute
blocktype diagram

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Tutorial on SDL 13-7

Overview of SDL TIMe
Grouping of process sets by means of blocks

Process sets are connected by signal routes

In order for processesto interact by means of signals, their sets have to be connected by
signal routes. The signal routes and the associated signals (e.g. Code) and signal lists
(e.g. validity) only specify possible signal exchanges.

When signal routes connect process sets according to process types, they connect to the
gates defined in the types. In Figure 13-2 (p.13-7) the gates P,D,U are the gates defined
in Figure 13-1 (p.13-4).

The interaction between processes is specified on the signal routes connecting them,
whereas a process type defines gates as connection points for signal routes. The process
type Controller defines e.g. a gate P for the connection to Panels, with ingoing signal
Code and outgoing signals defined by the signal list validity (OK, NOK). The con-
straints on the gates (in terms of ingoing and outgoing signals) allows the specification
of the behaviour of processtypes without knowing in which context the instances of the
type will be and how they are connected. Gates can only be connected by signal routes
that carry the signals of the constraint, in the right directions.

The signdl lists are defined below, see Figure 13-4 (p.13-10).

Local definitionsin blocks

In addition to containing process sets or blocks, ablock may have data type definitions
and signal definitions. Signals being used in the interaction between processesin ablock
may therefore be defined locally to this block (providing alocal name space) - here
exemplified by opened, closed, open, close.

Blocks as part of blocks

Asdescribed in Figure 13-2 (p.13-7) an AccessPoint will have three concurrent pro-
cesses, each taking care of different rolesof the access point. If each of theseroleswould
require more than one process, then they would be represented by blocks which in turn
would contain the necessary processes. Thisisillustrated in Figure 13-3 (p.13-9), but is
not used in the following.

The symbols with the names Panel, Door and Controller are block symbols, specifying
that each AccessPoint block has three blocks as part of it, connected by channels.

Asfor signal routes, channels have associated signals (e.g. Code) and signal lists (e.g.
validity) in order to specify possible signal exchanges in the corresponding direction.

13-8 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Overview of SDL
Types, sets and instances

Types, sets and instances

Note the distinction between process types, process sets and process instances. Process
types only define the common properties of instances, while process sets have a number
of instances. Signal routes connect process sets and not process instances. Process
instances are denoted by values of type Pld. Process instances have variable attributes
and behaviour.

Figure 13-3: Block diagram of AccessPoint with block substructure

Open figure
block type dlagram\‘ block (type) heading
block type AccessPoint 1(1) _
[| | signal
text v signal opened,closed ; /* Door TO Controller */ 4—— | definitions
e signal open, close ; /* Controller TO Door */
symbol
e [(np)]| CE [(inp)] panel
- ane <>
[(outp)] |[(outp)] Door |__«»
4 [opened,
[(validity)] closed]
Controller | “qg—
P1 [code] D [open,
close]
C [Code]
UVl ————— >

[(validity)] K[Code] [(validity)]

i i block (single \
gate signd list (single) chann

Systems: set of blocks connected by channels

In order to provide a complete specification of agiven access control system with asin-
gle central unit and a number (100) of access points according to the block type
AccessPoint, a system diagram asin Figure 13-4 (p.13-10) is specified.

A system consists of aset of blocks connected with each other and with the environment
by channels. Note that channels connected to a block set according to a block type con-
nect to the gates (e and C) defined in the block type.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Tutorial on SDL 13-9

Overview of SDL TIMe
Systems: set of blocks connected by channels

The system specified in Figure 13-4 (p.13-10) hasinteraction with its environment. The
signals used for this purpose can be defined as part of the system (asin Figure 13-4
(p.13-10)) or as part of a package used in the system. The system assumes that the envi-
ronment has processes which may receive signals from the system and send signalsto
the system.

For more details on constituents of system diagrams see System diagram, Access Con-
trol System (p.-45).
Figure 13-4: System design in SDL

Open figure
a—— Systemdiagram
system AccessControl 1(2)

[* Signal definitions for AccessPoint communication */

SIGNAL

eject-card, lock, unlock * AccessPoint TO ENV */
input-card, isOpen, isClosed /* ENV TO AccessPoint*/
display, [* Display TO ENV */

keys; * ENV TO Keyboard */
SIGNAL Code(integer,integer); /* AccessPoint TO CentralUnit */
SIGNAL OK,NOK,ERR ; I* CentralUnit TO AccessPoint */

SIGNALLIST validity = OK, NOK, ERR ;
SIGNALLIST outp = EjectCard, display;
SIGNALLIST inp = InputCard, keys ;

block type

AccessPoint T (reference)

CE

[Code]

] [(validity)]
R : .
e AP(100) C CentralUnit

[(outp) [(NP)] y AccgssPoint -
[isOpen,isClose
CD
[lock,unlock]
.I 1 I I
signal block set accord- |
list ingtoablock type chamnel block (single)

Figure 13-5: Package diagram SignalLib

13- 10 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TlMe Overview of SDL
Packages: collections of related types and definitions

Open figure

package diagram

package SignalLib signal definitions

[* Signal definitions for AccessPoint-communication */

signal

eject-card, lock, unlock /* AccessPoint to ENV */
input-card, isOpen, isClosed /* ENV to AccessPoint*/
display, [* Display to ENV */

keys; [* ENV to Keyboard */
signal Code(integer,integer); /* AccessPoint to CentralUnit */
signal OK,NOK,ERR ; /* CentralUnit to AccessPoint */
signallist validity = OK, NOK, ERR ; ﬁgrr]]:l list defini-

signallist outp = EjectCard, display;
signallist inp = InputCard, keys ;

* Signal definitions for BlockingAccessPoint communication */&

signal
Disable, /* CentralUnit to BlockingAccessPoint */
Enable : /* CentralUnit to BlockingAccessPoint */

/* Signal definitions within Acces%t*/\ [~
signal opened,closed ; /* Door to Controller */ signal definitions

signal open, close ; /* C8ntroller to Door 7/

Packages:. collections of related types and definitions

Sets of related types may come as aresult of adomain analysis (the types representing
application specific concepts) or asaresult of a specific system specification where the
types are needed.

A packageisaset of types. Typesthat are only used in one system will normally be
defined as part of the system specification, but for convenience they may be collected
and defined in a package and then used by the system. If aset of related types are to be
used in many systems within a specific application domain, then a package is the right
place to define the types.

In Figure 13-5 (p.13-10) the signal types for the access control domain has been col-
lected in the package SignalLib. Signals can be defined with parameters, as e.g. Code
with two Integer parameters. This means that each Code signal carries two values of
type Integer. The package also defines the signal list validity, inp and outp.

In Figure 13-6 (p.13-12) the signal definition of SignalLib are made available by ause
clause as part of a system diagram.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-11

Overview of SDL TIMe
Subtypes

Inasimilar way, the block type AccessPoint in Figure 13-6 (p.13-12) may defined in a
package, possibly together with other types, instead of being defined in the system
diagram.

For more details on constituents of packages see Package diagram, SignalLib (p.-48).

Figure 13-6. System using a package of type definition

Open figure
package reference clause
& I
use SignalLib ‘
system AccessControl 1(1)
AccessPoint
CE
< [(validity)] [Code]
] € AP(100): C|—a———®—— CentralUnit
[(outp)] [(NP)] | AccessPoint C
d
[isOpen,isClosed]
[lock,unlock]
Subtypes

Ingeneral atypein SDL can be defined as a subtype of another type (the supertype) and
thereby inherit the properties specified for the supertype. This holds for system, block
process and service types, and for signals and procedures.

A general typeintended to act asasupertype will often have some propertiesthat should
be defined differently in different subtypes, while other properties should remain the
same for al subtypes. Thisis supported by virtual types and virtual transitions. these
types and transitions can be redefined in subtypes. The behaviour of an instance of a sub-
type will follow the pattern given by redefinitions.

A subtype

 inherits all definitions of the supertype and can add own definitions; these include
definitions of variables, procedures, signals and type definitions;

» redefine virtual types and procedures defined as virtual types and procedures in the
supertype;

* inherits states and transitions (for those types where this applies) and may redefine
virtual transitions;

13-12 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TlMe Overview of SDL

As an example on this, we define two new block types (BlockingA ccessPoint and Log-
gingA ccessPoint) as subtypes of the block type AccessPoint, asillustrated below.

AccessPoint

/\

BlockingAccessPoint LoggingAccessPoint

They will inherit all properties of AccessPoint, but it is essential that they can redefine
the Controller part:

» BlockingAccessPoint so that it can be blocked even for people with validated card
and PIN codes, and

» LoggingAccessPoint so that these access pointswill log what is going on at the point.

Therefore the Controller process type in AccessPoint is specified as a virtual (process)
typein Figure 13-7 (p.13-13) and defined in the process type diagram in Figure 13-22

(p.13-51). Some of the input transitions are also defined to be virtual so that they can be
redefined in redefinitions of the virtual process type.

Figure 13-7: Block type AccessPoint with virtual Controller processtype

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-13

13-14

Overview of SDL
Subtypes

Open figure

TIMe

block (type) heading

-
block type AccessPoint 1(1)
SIGNAL opened,closed ; /* Door -> Controller */ l signal
SIGNAL open, close ; /* Controller -> Door */ T definiti
/* signal lists (inp), (out) and (validity) defined in Initions
I enclosing block. This holds also for signal '‘Code’ */
text / virtual
virtual <«——— | blocktype
symbol l Controller P
, . [unloc [unloc
o L] | e [(inp)] ——— K, q Kk
- > » Panel -
[utP)l 4 | [(outp)] [isOpen, ([isOpen,
L isClosed |isClosed
p1 [(validity)]
[code] [opened, [open,
apc: closed] close] [(validity)]
' U — >t |
Controller [(Va“dlty)] CcuU [Code] C [COdE]
ignal li \ .
gae 9 al lis process SIgnal route

blocktype.diagram

Figure 13-8: Virtual processtype Controller

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TlMe Overview of SDL

Open figure))
process type diagram variables

/

virtual process type Controller

1(1)

|
dcl cur_panel PId ; /* current panel whose Code will be validated */
dcl cid, PIN integer ; /* temporary variables for the data attributes of 'Code’ */

art procedure
— reference
Idle

ate
unlockDoor
Validation
input

Code(cid,PIN) virtual OK virtual NOK
/* from /* from
/* from Panel * Central */ Central */

| task |
cur_panel := tOK |
sender 0 cur_pane

|
| procedure
Code(cid,PIND— — to unlockDoor call output
’ Central

nextstate

"

[Code] [opened,closed] [(validity)]
P o D U
[(validity)] [open,close] [Code]

N

to cur_panel

For more details on constituents of block types see Block type diagram, AccessPoint (p.-
51).

For BlockingAccessPoint the virtual processtypeisredefined asindicated in Figure 13-
9 (p.13-15) and for LoggingA ccessPoint asindicated in Figure 13-21 (p.13-49).

Figure 13-9: Block type BlockingAccessPoint as a subtype of AccessPoint

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-15

Overview of SDL TIMe
Subtypes

Open figure
block type BlockingA ccessPoint 1)
inherits AccessPoint
C
redefined - - t_”_ >
Controller |[3EiZZb|§i
redefined dashed gate

process type

Figure 13-10: L oggingAccessPoint as a subtype of AccessPoint

Open figure
block type heading

/

block type LoggingA ccessPoint 1(1)
inherits AccessPoint

For more details on constituents of process type diagrams see Process type diagram,
Controller (p.-59).

Theredefined virtual processtype Controller in Figure 13-9 (p.13-15) isgivenin Figure
13-11 (p.13-16) . Thisaso illustrates inheritance for process types and thereby inherit-
ance of behaviour: the redefined process type inherits the properties specified in the
virtual processtype (Figure 13-22 (p.13-51)) and the redefined process type adds the
state “blocked” (with the corresponding input transition) and the input of “Disable” is
added to all states (the * in the state symbol means all states).

Theredefinition of the virtual processtype Controller in Figure 13-21 (p.13-49) isgiven
inFigure 13-12 (p.13-17). Theredefinition isfinalised, so that it can not be further rede-
fined. Thetwo virtua transitions are also given finalised redefinitions.

Figure 13-11: Redefined processtype with added states and transitions

13- 16 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T”Vle Overview of SDL

Open figure
process type heading
redefined process type g
<<block type BlockingAccessPoint>> Controller
inherits <<block type AccessPoint>> Controller procedure
4 - reference
BlockDoo asterisk
[State
* blocked
Disable *
Enable asterisk
save
BlockDoor
|
I — procedure
call
blocked Idle

4 [Disable,Enable]

deshed = » y!
gate Y

Figure 13-12: Finalised processtype

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-17

Overview of SDL TIMe
Composing behaviour of processes by means of services

Open figure
process type heading

finalized process type)/
<<block type LoggingAccessPoint>> Controller

inherits <<BLOCK type AccessPoint>> Controller

< Validation) - state

finalized finalized finalised
OK NOK input

OK NOK
to cur_panel to cur_panel)-a}— OUtput
viaP viaP

procedure
unlockDoor |{«g call

Idle (Idle)

gate —— > L ¢ [Code, (validity)]

Composing behaviour of processes by means of services

If it is known that a component of the system has separate activities, each with their
behaviour and possibly with local variables like processes, and if they should not exe-
cute concurrently, then the component may in SDL by represented by a process that
consists of services representing the activities.

As an example consider the Panel process, with CardReader, Keyboard, Display, and
Panel Control as separate activities but not executed concurrently. Thisis specified in
Figure 13-13 (p.13-19).

In addition to services, the combined process may have variables. Servicesin one pro-
cess instance do not execute concurrently with each other; only one executes at atime.
The next serviceto execute is determined by theincoming signal or by signals sent from
one service to another. Services share the input queue and the variables of the enclosing
process.

13- 18 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TlMe Overview of SDL
Composing behaviour of processes by means of services

Note that the connection points CE and P1 on the frame in Figure 13-13 (p.13-19) are
not gates (the service diagram does not define atype of processes), but simply the names
of the signal routes that connect Panel with the environment (CE) and with the Control-
ler (P1), see Figure 13-2 (p.13-7).

The Panel Control servicereferenced in Figure 13-13 (p.13-19) isdefined by the service
diagram in Figure 13-14 (p.13-19).

Figure 13-13: Processin terms of services

Open figure
: - text
signal definitions symbol
process Panel /
signal
ReleaseCard, /* PanelControl TO CardReader */
Cid (integer), [* CardReader TO PanelControl */
Digit(integer), /* Keyboard TO PanelControl */
XOK ,XNOK,XERR : [* PanelControl TO Display */
signallist xvalidity = xOK,XNOK,xERR ;

CE jectCard]

[Release-
CR Card]

\
e TR

signalroute signal list

Figure 13-14: Service diagram, PanelControl

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-19

Overview of SDL

Soecifying properties of variables: data types

Open figure

TIMe

service PanelControl 1(2)
dcl pininteger; /* the calculated personal identifica-
tion*/

N i __ | easily
no_dig := 4 configurable
Validate
Idle

GetPIN
(pin,no_dig)

Validate
(cardid,pin)

|
! from
Cid Card Digit *
(cardid) Reader

ERR
to Display

=

Specifying properties of variables: data types

13- 20

As mentioned already processes and services have attributes in terms of variables, and
procedures may have local variables. Variables are declared according to data types.
Signals may carry values of datatypes.

SDL supports data types by means of abstract data type. A data type defines possible
values, behaviour and operators that can be applied to values of the type. The properties
of datatypes are defined by means of axioms. SDL supports predefined typesincluding
Character, Boolean, Integer, Natural, Pld (Process Instance Identifier), and Real.

It is possible to define data types. Thisisdone by defining the literals and the operators
of thetype. Abstract datatypes definesthese by means of axioms. Operators may instead
be defined constructively, that is more or less as a procedures.

Tutorial on SDL

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Overview of SDL
Soecifying properties of variables. data types

Asan example of asimple user-defined datatype, consider the Code signal that contains
acard identification and a personal identification number. Suppose that wefind it desir-
able to collect those two pieces of data in one structured type. Thisis done by the
STRUCT concept:

NEWTY PE AccessCode

STRUCT

cardid, pin Integer ;

If ACisavariable of sort AccessCode then we may have the following assignments:
AClcardid := 1234 ;
temp_pin:= AClpin;

Templates for defining arrays, strings and powersets are also provided.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-21

SDL asan object oriented language Tl Me
Objects

SDL as an object oriented language

Objects

13-22

i

This part of the tutorial provides you with a presentation of SDL as seen from an object
orientation perspective. The ideais that you have some kind of understanding of what
object orientation is and want to know what the correspondence isin SDL.

The entry to the material is made by means of terms that are more or less well-estab-
lished as terms within object orientation. Popup menus will lead you to the
corresponding elementsin SDL. In case there are several aternatives, you either know
what you are looking for, or you consult the “in general” entry, which will give you our
understanding of the object orientation term and then the mapping to SDL.

* object

* attributes (instance variables)
* methods

» behaviour

» object interaction

* interfaces

» class

* subclass/inheritance

» aggregation/part-whole
* localisation of definitions
» classlibraries

e parameterised classes

Thedifferent conceptsareillustrated by SDL examples. When reading thisinteractively,
it is recommended, when looking up the example for the first time, to open it in a sepa-
rate window (shift click) - subsequent referencesto exampleswill then simply show the
examplesin thissecond window. Y ou will have two windows: one with thistext and one
with the example.

This part of the tutorial may also be used in cases where you have made an object ori-
ented analysis in some other language or notation and now want to make the more
formal specification or designin SDL.

If you want some background information on the object oriented approach behind SDL,
look at Object oriented approach behind SDL (p.13-34).

As part of object modeling, components of the real world systems (or anticipated such)
are identified and selected properties are described. These components are modeled by
objects. Objects may be classified into categories of objects (modelled by classes) and
into subcategories (modelled by subclasses).

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TI Me SDL asan object oriented language -

Objects

Thecorrespondingisdonein SDL, just in other terms: SDL systemsconsist of instances.
The classification of componentsinto categories and subcategoriesisinthe SDL system
represented by types and subtypes of instances (see Subclass/inheritance (p.13-29)).

If you are interested in the approach to object orientation behind SDL, have alook at
Object oriented approach behind SDL (p.13-34).

An SDL system consists of a set of instances. Instances may be of different kinds, and
their properties may either be directly defined or they may be defined by means of a
type. If it isimportant to express that a system has only one instance with agiven set of
properties, then the instance is specified directly, without introducing any type in addi-
tion. If the system has several instances with the same set of properties, then atypeis
defined, and instances are created according to this type.

If you have an object that should act concurrently with other objects, then you are |ook-
ing for aProcess (p.13-23) in SDL, and if you have classes of these you should define a
Process type (p.13-29).

If you have objects that each contain severa concurrent activities, then represent these
activities by processes, and each container object by a Block (p.13-23). If you have
classes of these define a Block type (p.13-29).

Process

E Processes are objects that perform concurrently with other processes and communicate
ll 5 by sending signals or by remote procedure calls. Processes are the main objects of SDL.
Classes correspond to process types.

A processinstance is part of aprocess set, which in turnispart of ablock. The fact that
aprocess set ispart of block isdescribed by a process reference. Properties of processes
are either described directly by a process diagram, defining a set a processes, or by

means of process type diagram, defining atype of processes, see Processtype (p.13-29).

Service

@ A serviceobjectisaninstancethat isanintegral part of aprocess. Servicesalternate exe-
N cuting, depending on incoming signals to the container process.

The properties of aservice are either described directly in a service diagram, describing
on single service as part of aprocess, or they are defined by a service type diagram,
defining a Service type (p.13-29).

Block

@ A block is an object that contains other blocks or processes; in addition it may contain
local definitions of types, e.g. signal types, data types, procedures, process types and
block types. A block does not have variables, so it isnot possible to represent state-car-
rying objects by means of blocks.

A block is either described directly in ablock diagram or atype of blocksis described
by a block type diagram, see Block type (p.13-29).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-23

Attributes

- SDL as an object oriented language T| Me

System

@ A system object is the outermost object containing the blocks of the system connected
by channels. In addition the system may have definitions of types, but it may not have
instance variables - global, shared variables have to be global variables of shared
processes.

A system is either described directly in a system diagram or atype of systemsis
described by a system type diagram, System type (p.13-29).

Variable

A variableisthe association of aname and avalue of some datatype. Variablesare only
part of processes and services, and aslocal variablesof procedureinstances, but they are
not part of blocks and systems.

Data types defines operations that may be performed on values (objects) of these types.

Attributes

In addition to methods, objects have data item attributes. These are often just variables
of some predefined types (having values, that represent part of the state of the object)
and object references, that is variables that denote other objects. Some languages also
provides variables of user-defined classes.

Most object oriented languages follow the approach that instance variables should not
be accessed directly from other objects, but only viamethods. Variables used in thisway
thereby become part of the implementation of the class, while theinterface of the object
is represented by the methods.

Methods may also have local variables that are used as auxiliary variables.

In SDL process and service instances may have variables, while systems and blocks can
not have variables. It is possible to access variables of processes from other processes,
but it is recommended to access them either through Exchanging signals (p.13-28) or
through Calling remote procedures (p.13-28). Shared variables must therefore be vari-
ables of some shared processes.

Procedures may also define local variables.

: Variables are declared in text symbols.
Example

Types may be user-defined, see Specifying properties of variables: data types (p.-24)
for a short introduction.

Predefined In addition SDL has predefined types which are quite similar to those we are used to
types from programming languages. The common predefined types are: Boolean, Character,
Charstring, Integer, Natural and Real.

PId Object references arein SDL supported by variables of the predefined type Pid. Pid
variables may denote processes of any processtype, so object referencesin SDL are not
typed.

13-24 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TI Me SDL asan object oriented language -

Methods

Methods

Methods of objects are propertiesthat define possible behaviour patternsthat the object
may apply to the data item attributes and thereby change the state information of these.

The main kind of SDL entity corresponding to an object isa process. A process may
have procedures and functions (that is value returning procedures) defined as part of its
definition. Such procedures may be executed by the processitself, and if exported they
may be requested by other processes (see Calling remote procedures (p.13-28)).

Procedures may also be defined in block and in systems (see Globally defined proce-
dures (p.13-26)) ; they may then be executed by those processes that are defined within
these blocks/systems. Procedures may aso be defined in a service; they may only be
executed by the service itself.

Procedures

m Procedures defined locally to a process or service or globally in ablock, system or pack-
age are intended for decomposition of the behaviour specification into partial action
sequences. In order for aprocedureto represent aproperty of aprocess, so that other pro-
cesses may request its execution, the procedure must be exported by the process, see
Remote procedures (p.13-26).

Procedureswork much the same way proceduresin programming languages. They have
value parameters (in, out, in/out) and a procedure defined locally to aprocess or service
may manipulate variables of the enclosing process/service. and thereby have side-
effects.

Procedures defined in types and inherited in subtypes can only be redefined if they are
defined as virtual procedures (see Virtua procedures/functions (p.13-25)), while ordi-
nary procedures are guarantied to have the same effect for all subtypes.

A procedureisatypeinitself, and as such can be based on another more general proce-
dure by specialization. This holds for procedures in general, that isfor both ordinary
procedures, exported, virtual, and value returning procedures. See I nheritance of behav-
iour (p.13-31) for the details on how this works.

Functions - i.e. value returning procedures

Value returning procedures are procedures that can be called asintegral parts of expres-
sions. Value returning procedures can be used very much like an operator, but they may
contain states just like an ordinary procedure (while operator diagrams cannot).

Virtual procedures/functions

Most object-oriented languages have virtuals in terms of virtual procedures. BETA has
in addition virtual classes. Some languages, e.g Smalltalk, do not distinguish between
virtual and non-virtual procedures (all methods are virtual and may be redefined in sub-
classes), whilee.g. BETA, C++, Eiffel, and SIMULA distinguish. SDL dis.fmtinguishes
between virtual and non-virtual procedures (and typesin general - see Virtual classes/
types (p.13-33)). Therationale for the distinction is that the designer of a general

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-25

SDL asan object oriented language Tl Me
Behavior

(super)class may want to ensure (in order for it to work) that some of its procedure
attributes should not be redefined in subclasses. Distinguishing between virtuals and
non-virtuals is the most general approach, as a special case of thisis simply to specify
all to be virtual.

A virtual procedureis defined by a procedure diagram, where the procedure heading
starts with the keyword virtual and optionally has a virtuality constraint specified. A
virtuality constraint for a procedure is the name of another procedure. The procedure
diagram is otherwise as an ordinary procedure diagram.

A virtual procedureisredefined in asubtype of thetype containing the virtual procedure
by a procedure diagram with a procedure heading starting with the keyword r edefined
or finalized and with the same name as the virtual procedure. If the virtual procedure
has a virtuality constraint, then then the redefinition must be a procedure that is special-
isation of the constraint procedure.

Globally defined procedures

Procedures may be defined in packages, systems and blocks, even though they have to
be executed by processes, services or other procedures.

Remote procedures

Remote procedures are supported by server processes exporting a procedures, client
processes importing procedures (their signatures) and calling remote procedures.. In
addition the procedures are specified in a context enclosing both client and server.

The exporting process can control in which states it will accept the remote request. It
may also specify to save the request to other states.

The calling of the remote procedure is indistinguishable from local procedure calls
unless the caler explicitly states the client process.

Remote procedures may be value returning (as in our example above) and they may be
virtual.

For details on remote procedures, see remote procedures.

Behavior

13- 26

Most object oriented languages assume that behaviour is only associated with methods
of objects and that a method of an object may be executed whenever some client object
needsthe effect of the method. In caseswherethisisnot really the case, the methods are
described in order to take thisinto account. Special methods are executed as part of the
construction/deletion of objects, but apart from this the object itself has no specified
behaviour.

A few languages support objectswith individual behaviour. Thisisespecially languages
that also supports concurrency and where e.g. the synchronisation between objects are
described as part of the behaviour of the objects and not of the methods.

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TI Me SDL asan object oriented language -

Object interaction

Some object oriented analysis methods recommend that the behaviour of important
objects are described by state/transitions diagrams, whereimportant states are identified
and eventsthat cause transitions between states and corresponding method execution are
described.

SDL (by objects of kind process and service) belongs to the class of languages where
objects have individual behaviour.

Process behaviour by Finite State Machine

E_I Process behaviour in SDL is defined by means of Extended Finite State Machines
1 (EFSM). Assuch it fits with analysis methods that recommend the state/transition dia-
grams for important objects.

Process behaviour is described in the so-called process graph, with states and transi-
tions. In agiven state a process may input a number of signals, and the consumption of
asignal leads to the execution of the following transition and entering the next state.

Process behaviour by service composition

@ Sometimesit can be useful to describe the behaviour of aprocess asanumber of partial
behaviours. Instead of specifying the complete behaviour of aprocesstype, itispossible

to define partial behaviours by means of service types. A process type can then be
defined as a composition of service instances according to these service types. In addi-
tion to services, the combined process may have variables. Services in one process
Instance do not execute concurrently with each other; only one executes at atime. The
next serviceto execute is determined by the incoming signal or by signals sent from one
service to another. Services share the input queue and the variables of the enclosing
Process.

Object interaction

Most object oriented languages support only one thread of action and have method call
and direct instance variable access as the only kinds of object interaction. Some lan-
guages provide mechanisms for concurrent objects (with several threads) and
corresponding mechanisms for either non-synchronised message passing or synchro-
nised (remote) procedure call.

SDL belongs to the second class of language. Processes execute concurrently. The
behaviour of each processisrepresented by aFinite State Machine (see Behavior (p.13-
26)). Processes interact either by Exchanging signals (p.13-28) or by Calling remote
procedures (p.13-28).

SDL models independent behaviours as (the behaviour of) concurrent processes.

The essential information one wantsto convey in SDL models, is not the independence,
however, but the dependency between systems. It is mutual dependenciesthat give sys-
tems purpose and meaning. Hence, a precise and unambiguous definition of mutual
dependency isthe prime concern. For thisreason, all dependencies are modelled explic-
itly as signals interchange between the processes and their environments. Thereis

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-27

Exampl eI

Class

13-28

SDL as an object oriented language T| Me

Class

basically no way a process and its environment may influence each other apart from
sending signals through the signalroutes/channels that link the process and its environ-
ment together.

Exchanging signals

Processes in the system and the environment communicate with each other by sending

signalsthrough the signalroutes and channels. There are no shared data to be found out-
side the processes, so signals are the only means for processes to communicate. There

isno way for one process to directly manipulate another process.

Thereisno priority among signals; signalsarriving at a processwill be merged into one
single queue in the order in which they arrive. There is one and only one signal input
gueue associated with each process. Thisqueueiscalled the.i.input port;. If two signals
arrive at the sametime, the conflict isresolved by selecting an arbitrary sequential order.
Signals from independent sources may arrive in any order.

Calling remote procedures

In addition to the sending of signals, processes can interact by means of remote proce-
dure calls. Such procedures must be defined as remote procedures: the server processes
must export the procedures, the client must import them. In addition the procedures are
specified in a context enclosing both client and server. This makes the signatures of the
procedures known to both server and client.

The calling of the remote procedure is indistinguishable from local procedure calls
unless the caler explicitly states the client process.

For details on remote procedures, see remote procedures.

Gates

Object interaction is often based on objects having an interface or a set of interface in
terms of signatures of methods.

The corresponding mechanism in SDL isthe gate. In order for processesin process sets
to exchange signals, the process sets must be connected by signal routes, and the enclos-
ing blocks and block sets must be connected by channels. Services as part of processes
are also connected by signal routes.

When defining types of blocks, processes and services, the possible connection points
for channels/signal routes are defined as gates. A gate can be specified to be one-way or
two-way gates, and for each of the directions it can be specified which signals may be
accepted/sent.

The classification of system components into categories of componentsisin object ori-
entation modelled by classes. The corresponding notion in SDL isatype (of instances).
A type defines the common properties of a category of instances. Each instance hasiits

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TI Me SDL asan object oriented language -

Subclasyinheritance

own identity and its own set of properties, e.g variableswith different values. A typeis
not aset of instances. SDL has separate constructsfor defining sets of instances (see pro-
cess sets, block sets).

Most object oriented languages (and also analysis methods) provide only one kind of
object, and correspondingly only one kind of class. Thisisnot the case n SDL. Look at
Objects (p.13-22) to get a description of which kinds of objects that are supported by
SDL. Depending upon the kind of the category of component you are supposed to model
by a corresponding kind of SDL type of instance.

Process type

Examp,el A class of concurrent, message passing objectsisin SDL represented by a process type.

Service type

A class of alternating components within a concurrent object (process) isin SDL repre-
sented by a service type.

Block type

v— A class of container objectsisin SDL represented by a block type.

i

System type
A class of whole application-objectsisin SDL represented by a system type.

i

Example

Abstract Data Type

Classes or types defining the properties of attributes/instance variables are in SDL rep-
resented by Abstract Data Types. This mechanism allows you to define types by means
of values (literals), operation signature and behaviour by means of axioms. For a short
introduction see Specifying properties of variables: data types (p.-24).

Subclass/inheritance

Classes allow to model concepts from the application domain and to represent the clas-
sification of similar objects. Specialisation of general concepts into new more
specialised concepts isin most object oriented languages represented by subclasses.
Subclasses are said to inherit the properties specified in the superclass.

The language mechanismsfor thisin SDL are specialisation of types by means of inher-
itance, virtual types and virtual transitions.

A (sub)type may be defined asaspecialisation of another (super)type. A subtypeinherits
all the properties defined in the supertype definition, it may add properties and it may
redefine virtual types and virtual transitions. Added properties must not define entities
with the same name as defined in the supertype (within the same entity class).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-29

Subclassinheritance

- SDL as an object oriented language T| Me

A parameterised type can also be specialised. All properties of the super type, including
formal parameters and context parameters,are inherited. A subtype definition may add
formal parameters, context parameters, and other properties.

Only types and parameterised types can be used as supertypes, including procedures. It
isnot possibleto inherit from asingle block definition, from a process set definition, or
from a service definition.

I nheritance

Below follows alist of possible ways of inheritance and redefinition of properties
defined in the superclass.

* |nheritance of attributes

Most language support simple inheritance of attributes (data items, part objects).
Some languages allow additional attributes defined in a subclass to override
attributes defined in the superclass (redeclaration of attributes), while other lan-
guages do not allow this.

SDL doe.fmsnot allow redeclaration of attributes. Only type attributes defined asvir-
tuals can be redefined.

For the details on thisin SDL look at Adding properties (p.13-31).
* Redefinition of methods

Some languages (like Smalltalk) allow that all methods may be redefined in sub-
classes, while other languages (like C++ and Eiffel) require that these methods shall
be defined as virtual entities. The rationale behind thisisthat the specifier of asuper-
class may want to assure that some crucial methods are not redefined, because other
methods may depend on them.

SDL requires that types, procedures, and transitions shall be defined as virtual enti-
tiesin order to be redefinable in subtypes.

* |nheritance of actions

Most languages do not support inheritance of actions. The primereason for thisisthat
most languages support only objects with attributes, so that all actions are associated
with procedure/method attributes. And inheritance for procedures/methods are usu-
aly not supported.

Some concurrent languages support objects with actions (that is process objects
where each object hasits associated sequence of actionsthat isexecuted concurrently
with the action sequence of other objects). They support inheritance of attributes, but
not of actions.

Specialisation of actions may be done in two different ways:

» gpecializing the effect of an action, or

13-30 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TI Me SDL asan object oriented language -

Classlibraries

» gpeciadizing the ordering of partial action sequences comprising an action.

SDL provides the second aternative, see Inheritance of behaviour (p.13-31).

Adding properties

A subtype may define propertiesthat come in addition to those inherited from the super-
type. Such added properties are not allowed to have the same names as an inherited
properties of the same kind.

m When adding block sets, process sets or services, these must be connected to block sets,
process sets or services that are inherited. In order to distinguish between these in the
graphical representation, the inherited elements are dashed. The same holds for dashed
gates: it isnot only possible to connect new elements to them, but isit is also possible
to add to the constraint of the inherited gate.

Redefining virtuals

p— A virtual type (that is block-, process-, service- type or aprocedure) in an enclosing type

— Can beredefined in a subtype of the enclosing type. Aspart of the virtual type definition,
avirtuality constraint can be defined: any redefinition must then be a subtype of this
constraint. This alows for analysis of type with virtual types, even though the virtual
types can be redefined in subtypes.

I nheritance of behaviour

E A subtype of kind process, service or procedure inherits all the transitions of the super-
—— type, except the virtual transitions that are redefined.

Classlibraries

As part of analysis and specification, sets of application specific conceptswill often be
identified, and the corresponding classes defined. A common strategy is to collect
related classesin class libraries.

p— The corresponding element in SDL isapackage of type definitions. Typesthat are only
el USed in one system will normally be defined as part of the system specification. If a set
of related types are to be used in many systems within a specific application area, then
this set can be represented by a package.

Note that a package is ssmply a collection of type definitions and as such not existing
when the system is operating. It isameans for organising descriptions and not for struc-
turing systems.

Aggregation/part-whole/containment

Some object oriented languages support the notion of objects being contained in other
objects. Words being used are also aggregation, part-objects.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-31

Example

Exampl eI

Example

SDL as an object oriented language T| Me

Localisation of definitions

Two major approachesto this are:

1. contained objects are constituent parts of the containing object, that isthey are cre-
ated as part of the containing object. A given object can only be part of one object,

2. containment is rather a special relation between two separate objects and a given
object can be part of morethan one object. Thisise.g. the approach followed in OMT.

SDL hassupport for (aslight modification of) thefirst approach, and relationsin general
are not supported:

» Blocks are constituent parts of a system or ablock. Block are created as part of the
creation of the system and con not be created dynamically

» Processes can only be part of one process set that is part of ablock - processesin the
set can, however, be created dynamically,

» Services are constituent parts of processes.

Localisation of definitions

13- 32

Some phenomenaand concepts are only meaningful within the context of aspecific phe-
nomenon or concept. Localisation of definitions supports this and gives rise to nesting
of definitions.

M ost object oriented languages only provideflat name spaces, with onelarge set of class
definitions, with locally defined methods. Only few languages provides classdefinitions
within class definitions, and few languages provides any other mechanism for enclosing
a set of related object and class definitions.

SDL def.fminitions may be nested and thereby support localisation. Type definitions
may, be located where it is most convenient, aslong as they are visible from they are
supposed to be used. If identified typesin an early stage should be specified as part of
the system specification (and not yet as part of a package), they may simply be defined
at the system level, without considering where they in fact belong. General typesof e.g
processes and procedures can be defined at system level, in order to be used in several
blocks of the system. More special types should be defined where they are used.

A package of typesisthe ultimate example on non-localised type definitions, while
exported procedureswill most often be defined locally to the process (type) that exports
it. Signals are often defined in the nearest enclosing block in which they are used
between processes. Context parameters (see Parameterised classes (p.13-33))provide
the mechanism to make a type definition independent on the enclosing scope.

System structure in terms of instances implies relations between instances, while local-
isation implies arelation (is-local-to) between definitions. Localisation isin SDL
supported by nesting of definitions, and it forms the basis for scope-rules and visibility
rules.

An SDL specification consists of definitions of entities of the different entity kinds (for
alist of entity kinds, see entity kinds).

Some definitions may contain definitions of other entities (nesting) and will therefore
form the scope units for these entities. (for alist of scope units, see scope units).

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

SDL asan object oriented language
Parameterised classes

As part of the definition of an entity, the name of the entity is defined. Entities defined
in the same scope unit and bel onging to the same entity kind must have different names,
while entities of different kinds may have the same name. As an example a procedure
and signal defined in the same scope unit may have the same name. While it is some-
times convenient to be able to reuse anamein thisway, it should not be done too much-
--readers may otherwise easily be confused.

Entitiesdefined in ascope unit arevisiblein thisscopeunit and in all nested scope units.
A signal defined in ablock ise.g. visible in the block definition itself (where it can be

used in the specification of channels), and it is visible in an enclosed process type defi-
nition (where it can be used in outputs).

When several definitionsin nested scope units have the same name, the name will refer
to the definition in the innermost scope unit (starting with the one containing the use of
the name). In order to refer to one of the other definitions with the same name, a quali-
fied identifier must be used.

Parameterised classes

Thisisnot covered in thisversion, since it is not supported by tools.

One way out

Some object oriented languages support classes/types as parameters to classes. The
class/type parameter may be used almost as an ordinary class/type. Depending upon the
language it is possible to perform independent analysis of such a parameterised class.

The notion of context parameters provide one kind of parameterisation of typesin SDL,
but it does not cover block- and process types as type parameters to block types. This,
is however, covered by a specia application of virtual block- and process types.

A block type BT that hasto have aprocesstype PT as parameter is defined so that PT is
avirtual processtypein BT, with aconstraint C that matchesthe use of PT in BT. When
an actual processtype APT should be provided to BT, thisis done by defining a subtype
SBT of BT and redefining the virtual processtype PT to a subtype of APT. If just the
parameter binding is desired, then this subtype adds nothing to APT, but in general it is
possible to add properties in the subtype of APT. The requirement on APT isthat itisa
subtype of C.

Virtual classes/types

Most languages only support virtual procedures, or methods that may be redefined in
subclasses. If aclass shall be parameterised by atype or class, then a separate notion of
type parameters is introduced.

SDL provides the notion of virtual typesin general, and not just virtual procedures.

The genera ruleisthat if atype of a certain kind can have definitions of types of differ-
ent kinds, then it can have definitions of virtual types of the same kinds. This meansthat
you can define

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-33

SDL asan object oriented language Tl Me
Object oriented approach behind SDL

» system typeswith virtual block-, process-, service types and virtual procedures,
* block typeswith virtual block-, process-, service types and virtual procedures,
* process types with virtual service types and virtual procedures,

» service typeswith virtual procedures, and

» procedures with virtual procedures.

A virtual type hasin addition to the definition (e.g. in terms of behaviour in terms of a
process graph) also avirtuality constraint. Thiswill be atype of the same kind as the
virtual type, and the simple rule is that any redefinition shall be a subtype of the
constraint.

The constraint of avirtual typeisused in the analysis of the use of the virtual typein the
enclosing definition, and the ideaiisthat avirtual type can only be used according to its
constraint. In genera aconstraint typeisageneral type and can assuch contain whatever
atype may contain, but the normal cases are

» for virtual block types: gates, so that block sets of the virtual block type can be cor-
rectly connected,

» for virtual processtypes: gates, so that process sets of the virtual processtype can be
correctly connected, and formal parameters, so that instances can be created with the
correct set of actual parameters (in fact avirtual processtype redefinition cannot add
formal parameters for the same reason);

» for virtual service types: gates, so that instances can be connected correctly;

 for virtual procedures. formal parameters, so that the virtual procedure can be called
correctly, and for the same reason aredefinition of avirtual procedure cannot add for-
mal parameters.

For details on the the redefinition of virtual types, see Redefining virtuals (p.13-31).

Object oriented approach behind SDL

13-34

The benefits of object orientation range from the underlying philosophy of modelling
the phenomenain the form of objects, to the compactness of descriptions achieved by
the use of the inheritance and specialisation mechanisms. Hence, there are two separate
Ideas that go under the name of object orientation and both are part of the object orien-
tation presented here:

1. The notion of objects. It conceives each object as being characterised by dataitems
carrying state information, by local patterns of action sequences (procedures, meth-
ods) that the object may apply to these data items and by an individual sequence of
actions that the object may execute on its own.

2. The objects are active objects and not just passive data structures with associated
operations. In order to directly model the different kinds of action sequencing found
in alarge class of application areas, the approach includes the execution of objects
aspart of other objects (asisthe case for procedures and methods), as alter nating

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TI Me SDL asan object oriented language -

Object oriented approach behind SDL

(oneat atime) with other objectsand asconcurrent with other objects. An essen-
tial property isthat objects have awell-defined interface that hides the internal
structure of data items and action sequences from the environment.

3. The notion of hierarchical types. The approach makes a sharp distinction between
classes and objects. (Other words commonly used are types and instances.) Objects
are carriers of state information and behaviour, while classes are patterns defining
common structure and properties of objects. A classisnot regarded as a set of
objects, but as a definition of a category of objects. Classes do not contribute to
the total state of a system, but help in organizing objectsin type hierarchies. Objects
model the phenomena of the application area, while classes model the types. The
importance of this aspect isthat it provides effective support to reuse.

Reuse of components requires language mechanisms to support composition and adap-
tation of reusable components. Object-oriented concepts give answers to both of these:
composition by clean interfaces between classes of objects and adaptation by inherit-
ance and specialisation. The notion of objects and type hierarchies also promotes the
definition of general classes that may be reused in many different applications.

D

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-35

SDL by example Tl M e

Introduction to the example

SDL by example

KB

This part of the SDL tutorial leads you through SDL by means of an example. Y ou will
learn about the various elements of SDL by clicking on the desired elementsin the dia-
grams. In case parts of a diagram reference other diagrams, e.g. process references,
clicking the name (in underlined blue or red) will follow the reference and bring you to
the referenced diagram.

If youwant to be lead through the exampletop down, start with System diagram, Access
Control System (p.13-38) and follow the diagram references from there.Y ou may alter-
natively choose to look at the kind of diagram you want to learn about.

Introduction to the example (p.13-36) gives ashort, informal introduction to the exam-
ple being used throughout.

» Package diagram, SignalLib (p.13-40)

» Package diagram, AccessPointLib (p.13-42)

» Block type diagram, AccessPoint (p.13-44)

» Block type diagram, BlockingAccessPoint (p.13-47)

» Block type diagram, LoggingA ccessPoint (p.13-49)

* Process type diagram, Controller (p.13-51)

» Process type diagram, redefined Controller in BlockingAccessPoint (p.13-57)
* Process type diagram, finalised Controller in LoggingAccessPoint (p.13-59)
» Process diagram, Panel in terms of services (p.13-60)

» Service diagram, PanelControl (p.13-62)

* Procedure diagram, GetPIN (p.13-63)

I ntroduction to the example

13- 36

The purpose of access control systemsisin general to control the accessto some service
to people with known identity, represented by cards and personal codes. In this specific
example the system shall control access to access zones by controlling the opening of
doors.

Each card holds a unique Card-code that identifies the card. To grant access the system
will read the Card-code and then check the corresponding access right. For additional
authentication, the user will be asked to enter the secret personal number (PIN).

Figure 13-15: Panel and card of an access control system

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me SDL by example
Introduction to the example

Open figure

INSERT YOUR CARD

=
=

|
B

o

[2]
Jol

5|
[
I

=l
__/
O
il
=
o
[}
y__\

insert card here

DN | WVS3S ANVS3S

The card is a plastic card with a magnetic strip holding a card code and possibly an
encrypted PIN code. The physical appearance of the panel and the card isshown in Fig-
ure 13-15 "Panel and card of an access control system"” (p.13-36). Each panel represents
an Access Point.

The main service demanded by the user isto gain access when the card and codeis pre-
sented to the system, and to deny accessif an attempt is made to enter at an access point
where the user is not authorised to pass.

A typical access control system will consist of a number of access points and a central
unit where validation is performed. Some access points are so-called blocking access
points, that is access points that may be blocked by an operator, so that accessis denied
even with avalid card and code, until the access point is enabled again. Other access
point may have the property that they log what is going on at the point.

In order to illustrate as many mechanism of SDL as possible, the example system will
consist of three sets of access points, each of adifferent type. In areal access control
system one may choose to give all access points the possibility of being blocked and of

logging.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-37

SDL by example Tl M e
System diagram, Access Control System

System diagram, Access Control System

Figure 13-16: System diagram for access control system with three types of access points

Open figure
/ package reference
use SignalLib; L
use AccessPointLib/A ccessPoint,BlockingA ccessPoint, L oggingAccessPoint ;
SYSTEM AccessControl 1(1)
CE [(validity)] [Code]
———— € c - -
i ap(100):
[oute)] Linp)] | A esePoint (validity), =
Enable,
| e < | Disavle] [Code]
[(outp)] [(inp)]| BaP(20): ~ < Central Unit
Blocking
AccessPoint
CG lap(20): c
I — . g P
[outp)] [(np)] "&229'”9 | lvalidion cL ;\ [Code] t\

] 7 '
signa block set according \

list to ablock type system diagram channel block (single)

In SDL asystemisdefined by means of a system diagram. By making a system diagram
it has been decided what is part of the system and what is part of the environment of the
system.We choose to design the access control system such that the access terminals
(called AccessPoints) are within the system, while the users actually getting access are
outside the system. The CentralUnit containing the access rights is within the system,
whilefor our current purpose, how the accessrightsinformation got into the CentralUnit
IS not described.

Before drawing this border between the system and the environment and thereby decid-
ing what should be part of the system, adomain analysiswill normally have taken place,
different solutions will have been considered and different sketches of the system will
have been tried out.

In this presentation, the final system description is presented top-down, in order to
present the various SDL |anguage elements.

13-38 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me SDL by example

System diagram, Access Control System

This Access Control system consists of one single block (CentralUnit) and three block
sets, that is sets of blocks according to block types, connected by channels. It commu-
nicates with the environment that is supposed to behave like processes representing the
users of the system, the operators and the controlled physical panels and doors at the
access points.

System A systemisin general aset of blocks, block setsand channels. Blocksand block setsare
connected with each other or with the environment of the system by means of channels.
Thismeanse.g that there may not be processesdirectly as part of the system and systems
will not have global variables.

Environ- For the system the environment consists of a set of SDL processesthat may send signals

ment to the system and which may receive signals from the system. The signals for this pur-
pose are defined in the system or, as here, in a package (Package diagram, SignalLib
(p.13-40)) used by the system. The users of the system are thusregarded as processesin
the environment.

Block A block iscreated as part of the creation of the enclosing block or system. All blocksare
created as part of the system creation, that is there is no dynamic creation of blocks.

The CentralUnit block is specified directly (singular block), while the
CentralUnit | other blocks of the system are parts of block sets according to block
types. The symbol with CentralUnit is also areference to ablock dia-
gram that describes the properties of the block.

Note that the block reference is merely a graphical shorthand for diagrams. Block refer-
ences may be substituted by block diagrams, but the surrounding diagrams would be
very crowded and illegibleif diagrams could not be remotely referenced by block refer-
ences. The reference defines the scope of the name.

block set Type-defined blocks are contained in block sets. A block setisafixed
€ ap(100): C | number of blockswith properties according to ablock type. The set of

AccessPoint | AccessPointsis called ap and the number (100) designates the cardi-
nality of the set. A channel connected to ablock set (viathe gatese or
C) will actually represent a set of channel instances.

A block set is not areference (as CentralUnit). It defines a set of block instances, but it
relies on the definition of the block type AccessPoint. This block type definition is not
part of the system, but part of the Package diagram, AccessPointLib (p.13-42) and
defined in Block type diagram, AccessPoint (p.13-44).

channel Blocksand block sets are connected with each other and with the environment by means
of channels. A channel isaone-way or two-way directed connection. It is characterised
by the signalsthat it may carry. A channel hasasignal list for each direction.

If there is no channel between two blocks, then processes in these two blocks cannot
communicate by signal exchange. Processes may, however, communicate by means of
remote procedure calls without channels connecting the enclosing blocks.

delaying [(validity)] [Code] A delaying channel is specified by achannel symbol with

channel - > the arrows at the middle of the channel.
C

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-39

non-delay-
ing channel

package
reference
clause

SDL by example Tl M e

Package diagram, SignalLib

The delay of signalsis non-deterministic, but the order of signalsis maintained.

[(validity)] [Code] A non-delaying channel is specified asfolows, that iswith

< the arrows at the endpoints. Associated with each direction

X C of achannel are the types of signals that may be conveyed

by the channel. Thelist enclosed by the signal list symbol can be signals (as e.g. Code)
or signal lists (as e.g. validity) enclosed in ().

Channels connected to the frame symbol represent the connections to the environment.

A package reference clause specifies that a system dia-
gram or package diagram use the definitions of other
packages. The names following the “/” after the package
name denotes the subset of the definitions that are used.

use SignaLib; —
use AccessPointLib/...

The system uses the types defined in the packages SignalLib and the denoted types
(AccessPoint, BlockingAccessPoint and L oggingA ccessPoint) from the Access-
PointLib package.

Package diagram, SignalLib

13- 40

Figure 13-17: Package diagram SignalLib

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me SDL by example
Package diagram, SignalLib
Open figure

package diagram

package SignalLib signal definitions

[* Signal definitions for AccessPoint-communication */

signal

eject-card, lock, unlock /* AccessPoint to ENV */
input-card, isOpen, isClosed /* ENV to AccessPoint*/
display, [* Display to ENV */

keys; [* ENV to Keyboard */
signal Code(integer,integer); /* AccessPoint to CentralUnit */
signal OK,NOK,ERR ; /* CentralUnit to AccessPoint */

signallist validity = OK, NOK, ERR : signal list definitions

signallist outp = EjectCard, display;
signallist inp = InputCard, keys ;

* Signal definitions for BlockingAccessPoint communication */&

signal
Disable, /* CentralUnit to BlockingAccessPoint */
Enable : /* CentralUnit to BlockingAccessPoint */

/* Signal definitions within Acces%t*/\ [~
signal opened,closed ; /* Door to Controller */ signal definitions

signal open, close ; /* C8ntroller to Door 7/

This package defines al the signals being used in the access control system.

Defining a package SignalLib makes all the signal type definitions become globally
defined, and they may be used by more than one system (without “ copy-paste”). It is of
course possibleto |et additional signalsbe defined locally in order to restrict the contexts
in which they will be used.

package A packageisacollection of types, defined by apackage diagram. A package may in gen-
eral contain definitions of types, data generators, signal lists, remote specifications and
synonyms. Definitions within a package are made visible to a system definition or other
package definitions by a package-reference-clause (use clause).

The package in Figure 13-17 (p.13-40) only contains definitions of signals.

signal A signal definition defines a set of types of signals. A signal instance isaflow of infor-
definition mation between processes, and is an instantiation of asignal type defined by a signal
definition. A signal instance can be sent by either the environment or a process.

Signals may carry datavalues. Thetypes of the values are specified as parameters of the
signal definition. The signal Code defined in Figure 13-17 (p.13-40) is defined to carry
two integer values.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-41

signal list

text symbol

SDL by example Tl M e

Package diagram, AccessPointLib

Signals may be defined in system and block diagrams, and these may then be used for

communication between the blocks of the system or the processes of the block. Signals
may also be defined in process (type) diagrams, but then they can only be used for com-
muni cation between processes of the same set. Often signal definitions are collected in
packages.

Often the lists of signals associated with channels and signal routes are quite compre-
hensive and diagrams become crowded. The notion of signallist helps on this. A
signdlistisalist of signalswhich has been given aname. Validity, inp and outp are sig-
nallists defined in the package and used in the system diagram.

Text symbols are used in order to have textual specifications as part of
diagrams, especially for specification of signal types, data types and
variables.

Thereisno limit to the number of text symbols that may occur in adiagram. Text sym-
bols are not connected to other symbols by flow lines.

Thetext symbol is also used for the graphical representation of a use clause, see Figure
13-17 (p.13-40).

Package diagram, AccessPointLib

13-42

The AccessPointLib package uses the signals defined in the package SignalLib (by the
use clause) and defines three block types.

Figure 13-18: Package diagram AccessPointLib

Open figure
package reference
use SignalLib; 4 '
package AccessPointLib
AccessPoint BlockingAccessPoint| | || LOggingAccessPoint

\ package.diagram

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me SDL by example
Package diagram, AccessPointLib

block type . Block types are referenced by means of block type references. Block
reference AccessPoint || types are defined in block type diagrams, and they are referenced by

means of block type references. The block type referenceindicatesin
which block or system scope unit the block type is defined. The three block type refer-

encesin Package diagram AccessPointLib (p.13-42) indicatesthat the scope of theseare
the package and not a specific system.

Note that the block type reference (as for block references) is merely agraphical short-
hand for diagrams. Block type references may be substituted by block type diagrams.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-43

SDL by example Tl M e
Block type diagram, AccessPoint

Block type diagram, AccessPoint

The block type AccessPoint defines the properties of a general type of access point in
the system. The other types of access points (blocking and logging access points) are
defined a subtypes of this.

Each access point shall handle the interaction with the user via a panel, communicate
with the central unit and control the door.

Figure 13-19: Block type AccessPoint with virtual Controller processtype

Open figure

block (type) heading

P
block type AccessPoint 1(1)

SIGNAL opened,closed ; /* Door -> Controller */ l signal

SIGNAL open, close ; /* Controller -> Door */ > T definiti

/* signal lists (inp), (out) and (validity) defined in Initions
I enclosing block. This holds also for signal '‘Code’ */

text /

virtua

virtual <« ———— | blockt
symbol Controller ocklype
. [unlock, [unlock,

o [inp)]| g [(nP)] lock] 4 1ock]
- >l > - >

[(outp)] [(outp)] [isOpen, [isOpen,

isClosed] |isClosed]

[(validity)]
P1
[code] [opened, [open,
o P p\ closed D |close] [(validity)]
: g |
Controller U [(validity)] CU [Code] | C [Code]
gate sgndl list process \ signalroute

blocktype.diagram

This block type diagram defines the block type with name AccessPoint in the Access-
PointLib package. Each block instance of this type will consist of three process sets
(Panel, Door, apc). The first two are defined in corresponding process diagrams (they
arereally just processreferences), while apc isaset instances of processtype Controller.
The process type Controller is defined asavirtual process type, with the keyword VIR-
TUAL, so that specialisations of AccessPoint may replace that definition with their own
definition.

The Panel takes of the physical panel, the Door process takes care of controlling the
physical door, while the Controller process handles the communication with the Cen-
tralUnit in order to validate users of the access point.

13-44 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

block type

block (type)
heading

process
(reference)

process set

SDL by example
Block type diagram, AccessPoint

Note the identifiers e and C which in the system diagram occursinside the block set ap.
Theseidentifiers designate gates. Gates are used to indicate which channels of the block
type are supposed to connect to which channel connecting an instance of the type. The
gate names are defined by the type and visible wherever the type nameisvisible. Note
also that the gate symbolshave arrows at the ends and that signal lists are associated with
the arrows. The signallists are constraints on the gates and will ensure that the instances
of the block type are connected properly to their surroundings.

A block type defines the common properties for a category of blocks. All block of the
same type will have the same properties, as specified in the block type diagram.

Block types may contain aconnectivity graph of block instances connected by channels.
This makes up a structure of nested blocks. At the leaves of this structure there are
blocks which contain processes. Blocks cannot contain both blocks and processes at the
same level.

In addition to containing structures of blocksor structures of processes, block types may
contain other type definitions. This makes up the scoping hierarchy of SDL. Namesin
enclosing type definitions are the only names visible.

Block types may contain datatype definitions, but no variable declarations. Thisfollows
from the fact that processesin SDL do .fmnot share data other than signal queues. They
share asigna queue in the way that one process appends (output) signals to the queue

(the input port), while the other process consumes (input) signals from the same queue.
Appending and consuming signals are atomic, non-interruptible operations. The input

port is the basic synchronisation mechanism of SDL.

Block types may contain process types, service types and procedures as well as block
types and data types.

The heading of block type diagrams defines the name of the block type, possible formal

context parameters, whether the block typeisvirtual or not and if it inheritsfrom another
block type. The block type in Figure 13-19 (p.13-44) does not have any context param-
etersand it isnot virtual.

A process reference specifies that there is a process set in the enclosing
block and that the properties of this process are defined in a separate (ref-

erenced) process diagram outside this diagram. A processreferenceisa
shorthand for having the referenced process diagram at this place in the surrounding

diagram.

B A process set defines a set of processes according to a process type.
apc:

Controller U | Justlike we have the distinction between block reference, block type

and block set according to type, we have the distinction between pro-
cess reference, process type and process set according to a type. Our
recommendation is that process sets should be described with reference to a process

type.
While Panel above is aprocess reference, and thereby a process set without any associ-

ated type, apc isaprocess set according to the process type Controller and therefore not
a process reference.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-45

SDL by example Tl M e
Block type diagram, AccessPoint

number of B In general process sets may have specified the number of instancesin
instances apc(iim): P theset.

Controller Y) .
The numbers in parentheses after the process set name specifies the

number of instancesin the process set. As defined in above, there are
initially no processes, and there is no limit on the number of instances that may be

created.

signal route » A signal route represents acommunication path between process
- P> sets and between process sets and the environment of the enclos-
ing block/block type.

process A processtype defines the common properties of a category of processinstances. A pro-
type cess type is defined by a process type diagram.

virtual pro- _— A virtual processtypeisaprocesstype that can be redefined in a sub-
cesstype l Controller | type of the enclosing block type.

The virtuality is specified in the process type heading or by <virtual-
ity> in the corresponding process type reference symbol, asis done here for the process
type Controller.

A redefinition of the process type must be a subtype of the type identified in the virtu-
ality constraint. As specified here the process type reference symbol has no explicit
virtuality constraint, which means that any redefinition will extend the given definition
of Controller (the Controller isits own constraint).

gate [(validity)] A gateisapotential connection point for channels/signal routes when
<« p connecting setsof blocks/processes/services. The same symbol isused
C [Code] inall cases.

Gates are defined in block/process/service types and used when connecting sets or
instances of these with channels/signal routes.

The signal list associated with the endpoints represents constraints (on incoming/outgo-
ing signals) the gate.

13- 46 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

SDL by example
Block type diagram, BlockingAccessPoint

Block type diagram, BlockingAccessPoint

Figure 13-20: Block type BlockingAccessPoint as a subtype of AccessPoint

redefined
process

type

Open figure
block type BlockingAccessPoint 1(1)
inherits AccessPoint
C
redefined <E_ - k_)l_ >
Controller [Enable,
Disable]
redefined
dashed gate
process type

This block type defines a block type with name BlockingA ccessPoint as a subtype of
block type AccessPoint. It represents access points that may be blocked by some
operator.

BlockingA ccessPointsare quite similar to the plain AccessPoints. The only differenceis
that the BlockingA ccessPoints shall be ableto react to signals from the Central Unit that
plain AccessPoints will not recognise. BlockingAccessPoint will have a Door (which
should not have anew definition), a Panel (which could have anew definition, but need
not have a new definition) and a control process Controller which should be able to do
the extended controlling.

A BlockingA ccessPoint is aspecialised AccessPoint where Controller isextended. This
Is expressed by the INHERITS clause of the block type heading.

The block type diagram specifies that BlockingA ccessPoint inherits everything from
AccessPoint, but it adds a redefinition of Controller and it adds two signal types on the
inherited gate C: Enable and Disable. The fact the the gate isinherited isindicated by it
being dashed.

In general, entities defined in supertype, inherited in subtypes and for which some addi-
tional properties have to be specified in the subtype, are called existing entities, and in
the graphical syntax they are dashed entities.

. A redefined process type is aredefinition of the corresponding vir-
tual processtype in the super block type, and it isvirtual, so that it
can be redefined in further subtypes of this block type.
A redefinition of the process type must be a subtype of the type identified in the virtu-
ality constraint. In this case the constraint isnot explicitly specified; thisimpliesthat the
definition of the virtual processtype isits own constraint: the redefinition thereby
defines an extension (a subtype) of the virtual processtype.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 Tutorial onSDL 13 -47

SDL by example Tl M e
Block type diagram, BlockingAccessPoint

dashed c A dashed entity is the graphical way of representing an entity that is

entity - ---p inherited from a supertype and which needs to be used in the definition
[Enable, of the subtype. There are dashed block sets, process sets, services and
Disable] gates.

The Z.100 terminology is existing entity.

An existing block set/block may be connected by channel, and these will then be there
in addition to those specified in the super type.

An existing process set/service may be connected by signal routes, and these will then
be there in addition to those specified in the super type.

An existing gate can have constraints in terms of signals on the endpoints of the gate
specified, and these are then added to the inherited gate and will then apply in addition
to those of the inherited gate.

In the textual version of aspecification, inherited entities are simply identified by name.

13-48 Tutorial on SDL

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me SDL by example
Block type diagram, LoggingAccessPoint

Block type diagram, L oggingAccessPoint

Figure 13-21: L oggingAccessPoint as a subtype of AccessPoint

Open figure
block type heading

/

block type LoggingAccessPoint 1(1)
inherits AccessPoint

finalized
finalized ‘ process
Controller type
s N
! Controller

L
D “-T-"—" _,J'\\
LogDevice 4—[dashed
[(validity),Code] jprocess

This block type defines a block type with name L oggingA ccessPoint as a subtype of
block type AccessPoint, adding the process LogDevice.

With LoggingAccessPoint it is not sufficient to only modify the Controller, since there
Is an addition to the block, namely the LogDevice. The LogDevice must be connected
to the Controller along a signalroute (which is added compared with the supertype
AccessPoint). Isc has been defined in the AccessPoint definition and is dashed here.

We notice the keyword FINALIZED in the process type reference. This hasadightly
different meaning than REDEFINED.

process process type in the super block type, and it isnot virtual, so that it

finalised A finalised processtypeisaredefinition of the corresponding virtual
type Controfler can not be redefined in further subtypes of this block type.

A final redefinition of the process type must be a subtype of the type identified in the
virtuality constraint.

A redefined type can be redefined again in yet another specialisation. A finalised type
cannot be redefined. There is a subtle point to making this distinction. Virtual and rede-
fined types are very flexible, but analysis becomes more uncertain since some
components may not be entirely known. Finalised types are not flexible any more, they
are completely known and, therefore, analysis can be certain.

The new signalroute LD indicates that it is not be possible to derive the finalised Con-

troller by only adding anumber of new transitionsto the basic Controller. In order to get
new transitions, we need either new input signals or new states. The Controller of Log-
gingA ccessPoint has neither new signals, which can be seen from the channelsto the lap

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-49

SDL by example Tl Me
Block type diagram, LoggingAccessPoint

set of logging access points, nor new states. Infact the LogDevice should beinvoked for

most transitions since the requirement was to trace the transactions. Then our need isto
modify (redefine) some of the existing transitions.

13-50 Tutorial on SDL

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me SDL by example
Process type diagram, Controller

Process type diagram, Controller

Figure 13-22: Virtual processtype Controller

Open figure g b
process type mg;a& variables
virtual process type Controller 1)
&~ [
dcl cur_panel PId ; /* current panel whose Code will be validated */
dcl cid, PIN integer ; /* temporary variables for the data attributes of '‘Code’ */
start procedure
— reference
State
unlockDoor
1dle Validation
input
|
Code(cid,PIN) virtual OK virtual NOK
/* from /* from
7 from Panel */ Central */ Central */
‘ task ‘ ‘
OK
cur_panel := to cur_panel
sender to cur_panel _p
| ed
| procedure
Code(cid,PINp— —|© unlockDoor call output
’ Central
nextstate
[Code] [opened,closed] [(validity)]
P o D
[(validity)] [open,close] [Code]

This process type heading defines the process type Controller as avirtual process type.
This means that the process type can be redefined in a subtype of the enclosing block
type.

Plain AccessPoints have their own (default) definitions of Controller.

A Controller processwill start executing the start transition. In this case the start transi-
tion is empty and simply leadsto the Idle state. The processwill remainintheldle state

until it receives an input signal. It expects to receive a Code signal containing informa-
tion about the card id and personal identity number from the Panel. It may, however, be

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-51

process

type
diagram

process

type
heading

variablesin
processes

procedure
reference

13- 52

SDL by example Tl M e

Process type diagram, Controller

prepared to receive other signalsaswell. The ldle state isfollowed by one input symbol
which describes the consumption of the signal Code. If the processisin the Idle state
and signals other than Code are received, they will be discarded.

We have defined three process gates P, D and U with associated process gate constraints.
We note that the enclosing A ccessPoint definition uses these gates in connection with
the instance Isc of Controller.

Within the process type diagrams, the gates appear asidentifiersin the VIA-clause of
the output symbols.

When we want to analyse the type enclosing the virtual type (here, block type Access-
Point) we wish to know something about the instances of the virtual types even though
we know they may be redefined in subtypes. At least we must know the static interface,
I.e. the gates. Very often we would like to know more about the type and, therefore, the
header of avirtual type may include avirtuality constraint. The virtuality constraint is
of the form “atleast type-identifier”. All “matches’ (redefinitions and finalisations) of
the virtual must be specialisations of the type referred to by the type-identifier of the
constraint.

A processtype diagram defines the properties of aprocesstype. A processtype defines
the common properties of a category of process instances. A processtype is defined by
a process type diagram.

The heading of processtype diagrams definesthe name of the processtype, itsvirtuality
(and constraint), its formal context parameters and if it inherits from another process
type. The heading in Figure 13-22 (p.13-51) defines avirtual process types without any
context parameters and without any parameters.

Variables can be defined in processes, services and procedures. They are defined in text
symbols.

SDL supports predefined typesincluding Character, Boolean, Integer, Natural, Real and
PId (Process Instance Identifier). The variables cid and PIN in Figure 13-22 (p.13-51)
are defined to be of type Integer, while the variable cur_panel is of type PId, which
means that it denotes a process instance.

For ashort introduction to the definition of user-defined typessee Specifying properties
of variables: data types (p.-24).

Variables of process are created as part of the creation of the process instance.
Variableswill get default initial valuesif nothing elseis specified.

The following elements of SDL are used in the definition of Controller behaviour.

A procedure reference specifies that there is a procedure in the
unlockDoor enclosing entity and that the properties of this procedure are defined
in a separate (referenced) procedure diagram outside this diagram.

In the example here, unlockDoor is a procedure defined locally to Controller, and it is
referenced by the symbol containing “unlockDoor” - that isthereisaprocedure diagram
defining the properties of unlockDoor.

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me SDL by example
Process type diagram, Controller

start Thereis only one start symbol for a process. The transition from the
start takes place when the processis generated. A process may be gen-
erated either at system start-up or as aresult of a create request from

another process.

The start transition in the Controller processis empty, that isthere are no actions, so the
process just enters the Idle state upon start.

transition A transition performs a sequence of actions. During a transition, the data of a process
may be manipulated and signals may be output.

Actions may be |
e task, Example of a tran-
tion from process Code
e output, type Controller, (cid,PIN)
with a task fol- [
°© s lowed by an out- cur_panel =
. reset, put. SENDER
* export
e (Create request,

e procedure call, or

* remote procedure call.

The transition will end with the process entering a
- next state,

- with astop,

- with areturn or

- with the transfer of control to another transition.

The controller process has three transitions: one starting in the state Idle and two in the
state Validation. They areall input transitions, that isthey are triggered by the consump-
tion of asignal from the input queue of the process.

state A state represents a particular condition in which a process may con-
sume asignal resulting in atransition. If the state has neither
spontaneous transitions nor continuous signal's, and there are no sig-

nal instancesin theinput port, otherwise than those mentioned in asave, then the process
waitsin the state until asignal instanceisreceived.

input Aninput allowsthe consumption of the specified input signal instance
> g:‘i)é’gm) (here of type Code). The variables associated with the input (here cid
i and PIN) are assigned the values conveyed by the consumed signal.

Thevalueswill be assigned to the variablesfrom | eft to right. If thereis no variabl e asso-
ciated with the input for a sort specified in the signal, the value of this sort is discarded.
If thereis no value associated with a sort specified in the signal, the corresponding vari-
able becomes “ undefined”.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-53

virtual

(input)
transition

task

timer

set timer

13-54

SDL by example Tl M e

Process type diagram, Controller

The sender expression of the consuming processis given the Pld value of the originating
process, carried by the signal instance.

VIRTUAL A virtua input transition specifies that subtypes of type with thistran-
E OK sition may redefine it, that isit must input the signal in the state, but

the following transition may be redefined

A virtual input transition is a special case of ageneral notion of virtual transition:
* virtua priority input,

 virtual start,

* virtual spontaneous transition.

In addition a save may be specified as avirtual save.

Redefinition of virtual transitions/saves corresponds closely to redefinition of virtual
types:

* A virtua start transition can be redefined to a new start transition.

» A virtual priority input or input transition can be redefined to anew priority input or
input transition or to a save.

» A virtual save can be redefined to a priority input, an input transition or a save.
* A virtual spontaneous transition can be redefined to a new spontaneous transition.

A task may contain a sequence of assignment statements or behaviour
cur_panel := | - gpecified in informal text.

sender

The example here isan assignment of (the predefined) SENDER, that
is the sender of the signal triggering the transition of which thistask isa part, to aPld
variable cur_panel.

In addition to assignments, task may specify the setting and resetting of timers. Timers
arejust like alarm clocks. The process waiting for atimer is passively waiting since the
process needs not sample them. Timers will issue time-out signals when their timeis
reached.

A timer is declared similarly to avariable.

TIMER door_timeoutj

sl Timers are set and reset in tasks. When atimer has not been set, it is
(now +10, inactive. When it is set, it becomes active.
door_timeout)

A timer is set with atime value. timeisaspecial datatype and is
mainly used in connection with timers. The expression “now+10" isa
timevalueand it addsthetime expression now and the duration 10 (here:seconds). now
is an operator of the time data type and it returns the current real time. Duration is
another special datatype and it isalso mainly used in connection with timers. Y ou may
add or subtract duration to time and get time. Y ou may divide or multiply duration by
areal and get duration. Y ou may subtract atime value from another time value and get
duration.

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me SDL by example
Process type diagram, Controller

The timer signal can be input in the same way as ordinary signals:

>door_timeout

The semantics of timersisthis: atimevalueisset inatimer and it becomes active. When
the timeisreached, a signal with the same name as the timer itself will be sent to the
process itself. Then the timer becomes inactive.

A timer may be reset and it then becomes inactive and no signal will
be issued. (If an inactive timer isreset, then it remains inactive.) A
reset will also remove atimer signal instance already in theinput port.
This happens when the timer has expired, but the time-out signal has
not been consumed.

reset
door_timeout

If an active Timer is set, the time value associated with the timer receives anew value.
Thetimer isstill active. If atimer isset to atimewhich isalready passed, thetimer will
immediately issue the time-out signal.

Timer signals may contain data as other signals may contain data. Different parameter
valuesin set means generation of several timer instances. r eset must match these param-
eter valuesto eliminate the correct timer instance.

For more details, see timers.
output - An output generates asignal of the specified signal type (here
\(/:i‘;ds(c'd'P'N) > Code), containing the specified actual parameters (here cid and
PIN), and send this signal instance to the specified destination.

The destination of asignal can be specified in various ways. The output symbol may in
addition to the signal name (and actual parameters) contain ato-clause and/or avia-
clause.

When the to- and via-clauses are omitted, there should be a unique destination for the
signal based on the signal identifier. If thereisa set of possible destinations, one of the
destinations will be chosen non-deterministically. In our case the path and destination
follow implicitly from the signalroutes and channels in the block diagrams.

When theto-clauseisexplicit, it specifiesaprocessuniquely either by its(visible) name
or by a“pointer” value. This*pointer” valuein SDL isknown as*“Pld” (Process |denti-
fier). When a processisidentified by its name in the to-clause, this means that it hasto
be within the same block since process names outside the block cannot be visible.

In order to specify the path the signal shouldfollow, it ispossibleto append to the output
statement avia-clause which lists the path of signalroutes and channelswhich the signal
will be sent through. The VIA-clause may also specify agate. Furthermore, the via-
clause may be extended to “via all” and then if there is more than one channel instance
in the path a signal instance will be generated for each channel instance. This happens
for example when we have block sets. Thisis how we can describe amulticast message.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-55

procedure
call

13- 56

SDL by example

TIMe

Process type diagram, Controller

OUTPUT

/\\

No destination

One possible
target is cho-
sen

unlockDoor

VIA
Processname Pld expression Channel or ALL
J Signalrpoute ’
The process The PId must The connec- Multicast
name must be be known tion specifies

visible the target

A procedure call transfers the interpretation to the procedure defini-
tion referenced in the call, and that procedure graph is interpreted.

The interpretation of the transition containing the procedure call

continues when the interpretation of the called procedure is finished.

Note that a procedure call symbol has one and only one entrance and one and only one
exit. As specified here, the procedure has no parameters.

Tutorial on SDL

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me SDL by example
Process type diagram, redefined Controller in BlockingAccessPoint

Process type diagram, redefined Controller in BlockingAccessPoint

Figure 13-23: Redefined processtype with added states and transitions

Open figure
process type heading
redefined process type s’
<<block type BlockingAccessPoint>> Controller
inherits <<block type AccessPoint>> Controller procedure
4/ / reference
BlockDoofr adterisk
[State
* blocked
|
Disable %
Enable asterisk
save
BlockDoor
|
. procedure
call
blocked Idle

4 [Disable,Enable]
dashed i VI

gate

This process type defines the process type Controller (in block type BlockingAccess-
Point) as aredefinition of the corresponding virtual process type in block type
AccessPoint.

Itisalso specified that it inheritsthe same processtype. Thisis, however, not necessary,
asby default aredefinition of avirtual type without an explicit constraint will inherit the
properties of the virtual type.

Inheritance of aprocesstypeimpliesinheritance of all statesand transitions of the super-
type. The asterisk state implies all states, also the inherited. The state Idle indicated as
nextstate is the state Idle defined in the supertype.

For more details on this mechanisms, see virtual types and specialisation.

save A save specifies that the signalsin the save symbol are retained in the
D input port in the order of their arrival.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-57

asterisk
state

13-58

SDL by example Tl M e

Process type diagram, redefined Controller in BlockingAccessPoint

As specified in Figure 13-23 (p.13-57) (an asterisk save) all signals except Enable are
saved. For a given state there may be only one asterisk save,

The effect of the saveisvalid only for the state to which the save is attached. In the fol-

lowing state, signal instances that have been “saved” are treated as normal signal
instances.

An asterisk state is a shorthand for all states except those listed in an
(*ets2) > accompanying asterisk state list.

The state namesin an asterisk state list must be distinct and must be con-
tained in other state list in the enclosing body or in the body of a supertype. As specified
here, the asterisk state implies a state (with the corresponding transition) for each of the
states except sl and s2.

Tutorial on SDL

TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

SDL by example
Process type diagram, finalised Controller in LoggingAccessPoint

TIMe

Process type diagram, finalised Controller in LoggingAccessPoint

Figure 13-24: Finalised processtype

Open figure
process type heading

finalized process type /
<<block type LoggingAccessPoint>> Controller

inherits <<BLOCK type AccessPoint>> Controller

(Validation) -
|
finalized finalized finalised
oK NOK input

State

OK NOK
to cur_panel to cur_panel >-}— OUtpUL
via P via P

procedure

unlockDoor ||«

call

gate —— > L ‘ [Code, (validity)]

This process type defines the process type Controller (in block type L oggingAccess-
Point) as afinalised redefinition of the corresponding virtual processtype in block type
AccessPoint. Thismeansthat it is not virtual, so it can not be redefined in subtypes of
the enclosing block type.

Itisalso specified that it inheritsthe same processtype. Thisis, however, not necessary,
asby default aredefinition of avirtual typewithout an explicit constraint will inherit the
properties of the virtual type.

All transitions are inherited from the supertype, except the transitions starting with the
state Validation and the signals OK and NOK. The are redefined in this process type.

For more details on this mechanisms, see virtual types and specialisation.

TutorialonSDL 13-59

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example Tl M e
Process diagram, Panel in terms of services

Process diagram, Panel in terms of services

Figure 13-25: Processin terms of services

Open figure
text

signal definitions symbol

process Panel /
signal)/

ReleaseCard, /* PanelControl TO CardReader */
Cid (integer), /* CardReader TO PanelControl */
Digit(integer), /* Keyboard TO PanelControl */

XOK,xNOK,xERR ; /* PanelControl TO Display */
signallist xvalidity = xOK,xNOK,xERR ;

CE jectCard]

[Release-
CR Card]

\
e TR

signalroute signal list

process A process diagram defines the properties of a process set, where each of the process
diagram jnstancesin the set have the specified properties.

The behaviour of processes may be defined either by means of a procedure graph (states
and transitions) or by means of a substructure of services connected by signal routes.
The behaviour of each of the servicesis defined by means of states and transitions. The
process defined in Figure 13-25 (p.13-60) is defined by means of services.

process The heading of process diagrams (defining a process set directly without any process
heading type) defines the name of the process set and the initial/maximum number of instances
in the set.

13-60 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me SDL by example
Process diagram, Panel in terms of services

formal If the process shall have formal parametersthey are also specified as part of the process
parameters heading. Formal parameters are (local) variables of the process instances. They get val-
ues as part of the creation of the process instance.

When asystem iscreated, theinitial processes are created in arbitrary order. Theformal
parameters of these initial processes have no associated values; i.e. they are undefined.

If theinitial number isomitted (asin Figure 13-25 (p.13-60)), then the (default) valueis
1. If the maximum number is omitted, then thereis no limit on the number of instances.

service As defined in Figure 13-25 (p.13-60) the processes of this process set are defined by

composi- means of acomposition of services. Service instances are components of the process

tion instance, and cannot be addressed as separate objects. They share the input port and the
expressions self, parent, offspring and sender of the process instance.

A serviceinstance is a state machine, and it is described as in Figure 13-26 (p.13-62).

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-61

SDL by example Tl M e

Service diagram, Panel Control

Service diagram, PanelControl

13- 62

Figure 13-26: Service diagram, PanelControl

Open figure

service PanelControl 1(1)

I>

dcl pin Integer ; [* the calculated personal identification*/
dcl no_dig Integer; /* number of digits in PIN */
dcl cardid Integer; /* the identification read from the card */

. __ | easily
no_dig := 4 configurable

Validate
N Idle

i from
Cid Card Digit *
(cardid) Reader

GetPIN ERR

(pin,no_dig) to Display
I

Validate

(cardid,pin)

J

When the process instance is created, the service starts are executed in arbitrary order.
No state of any service isinterpreted, before al service starts have been completed. A
service start is considered completed when the service instance for the first time enters
a state (possibly inside a called procedure) or interprets a stop.

Only one service at atimeis executing atransition. When the executing service reaches
a state, the next signal in the input port (which is not saved by the service, otherwise
capable of consuming it) is given to the service that is capable of consuming it.

When a service ceasesto exist, theinput signalsfor that service are discarded. When all
services have ceased to exist, the process instance ceases to exist.

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me SDL by example
Procedure diagram, GetPIN

variablesin Variables can be defined in processes, services and procedures. They are defined in text
services symbols.

Variables of servicesare created when the serviceis created as part of the creation of the
containing process instance.

Variables will get default initial valuesif nothing else is specified.

procedure A procedure may have formal parameters, and in the call the actual

call with GetPIN serameters are provided.
parameters (pin,no_dig)

The pin parameter isin/out which means that the actual parameter
corresponding to formal pin will be updated whenever the formal
pin is updated within GetPIN. Thisisjust like var parameters in Pascal or reference
parametersin C++. The no_dig parameter is an in parameter which means that the pro-
cedure will have alocal variable with the name of the parameter. This variable will
assume the value of its corresponding actual argument at entry. Changesin the value of
in parameters will not be transmitted to the actual argument. Thisisjust like traditional
value parameters.

Procedure diagram, GetPIN

The Panel Control service referenced in Figure 13-26 " Service diagram, Panel Control "
(p.13-62) is defined by the service diagram in Figure 13-27 "Procedure diagram, Get-
PIN" (p.13-63).

Figure 13-27: Procedure diagram, GetPIN

Open figure

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-63

procedure

local
variable

13-64

SDL by example Tl M e

Procedure diagram, GetPIN

/ procedure diagram

procedure GetPIN 1(1))
fpar infout pin Integer, IN no_dig Integer |_variable

dcl d Integer; A,,/*/c;;t value */

dcl i Integer ; /* runner 0:no_dig */

(|) procedure
start

|
pin:=0,
i:=0
{ WaitDigit)
- ‘from
Digit(d
> gitd) Keyboard

pin := pin*10 + d,
=i+l

decision

return

¥

WaitDigit

Procedures define patterns of behaviour that processes/services may execute at several
placesor severa timesduring their life-time. The behaviour of a procedureisdefinedin
the same way as for processes (that is by means of states and transitions), a procedure
may have (local) variables, and in addition it may have in, out, in/out parameters.

State names are not visible outside the procedure. The process states are not visible
within the procedure.

The procedurein Figure 13-27 (p.13-63) accepts a number of Digitsasinput signalsin
the state WaitDigit. Thelocal variablei isincreased by one for each digit, and when i
equals the required number of digits, the procedure returns.

A procedurevariableisalocal variable within the procedureinstance. It is created when
the procedure start is interpreted, and it ceases to exist when the return of the procedure
graph isinterpreted. Variables will get default initial values if nothing else is specified.

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me SDL by example
Procedure diagram, GetPIN

procedure The start transition of a procedure is dightly different from the the
start (start of process/service.

dures only). A value returning procedure is a procedure where an expression

return @ Procedure calls may be actions or part of expressions (value returning proce-
is associated with the return, and the value of this expression is returned.

Theinterpretation of aprocedure call causesthe creation of aprocedure instance and the
interpretation to commence in the following way:

formal 1. A local variableis created for each in parameter, having the name and sort of the in

parameter parameter. The variable gets the value of the expression given by the corresponding
actual parameter if present. Otherwise the variable gets no value, i.e. it becomes
“undefined”.

2. A formal parameter with no explicit attribute has an implicit in attribute.
3. A local variable is created for each variable definition in the procedure-definition.

4. Each in/out parameter denotes a variable which is given in the actual parameter
expression. The contained Variable-nameis used throughout the interpretation of the
procedure graph when referring to the value of the variable or when assigning a new
value to the variable.

5. Thetransition contained in the <procedure start area> is interpreted.

The nodes of the procedure graph are interpreted in the same manner as the equivalent
nodes of aprocessor service graph, i.e. the procedure has the same complete valid input
signal set asthe enclosing process, and the same input port as the instance of the enclos-
ing process that has called it, either directly or indirectly.

remote A procedure may be exported by a (server) process, so that other (clients) processes (cli-
procedures ents) can request these procedures executed by the server.

The remote procedure mechanism consists of four interdependent language constructs.

1. The exporting of a procedure. A procedure which is made visible by other processes
Is marked with the keyword exported preceding the procedure heading, e.g.
“exported procedure Validate ...” from a process within the CentralUnit. The
exporting process can control in which statesit will accept the remote request. It may
also specify to save the request to other states. The controlling of the acceptanceis
done by using input and save symbols with the remote procedure name preceded by
the keyword procedure.

2. Theimporting of a procedure. When a process, service or procedure wants to import
aremote procedure, it must specify the signature of this procedure in an “imported
procedure specification” in atext area. The specification in our case would read:
“imported procedure Validate; returnsinteger;” where the integer returned would
give the result of the validation.

3. The specification of remote procedure. In SDL all names must be defined in aspecific
scope. Thus, the names of remote procedures must be defined in the context in which
the actual definition of the procedure and the calls will be contained. In our case the
definition of the procedure Validate is within the CentralUnit and the call isin Con-

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-65

create

create
action

13- 66

SDL by example Tl M e

Procedure diagram, GetPIN

troller of the AccessPoint. The scope unit enclosing all these is the system itself.
Therewe will find atext areawith the following text: “remote procedure Validate;
returnsinteger;”.

4. The calling of a remote procedure. The calling of the remote procedure isindistin-
guishable from local procedure calls unlessthe caller explicitly states which process
it will request the procedure executed by. This can be done by ato-clause with aPld
following the procedure name of the call.

Remote procedures may be value returning (asin our example above), and they may be
virtual.

Block diagram, CentralUnit

Figure 13-28: Block diagram defining the CentralUnit

Open figure
. . text
block (type) heading signal
definitions / symbol
block CentralUnit & / / 1(1)

signal rOK(PId), rNOK(PId), rERR(PId) ; /%validity with return address *h
signallist rvalidity = rOK, rNOK, rERR ;

signal rCode(integer, integer, Pld); /* Code wth explicit original Sender */

R
[(validity)] [Code] [(rvalidity)] [rCode]
[
L ______
/ /
signal list process
signalroute

A process may create processes in other process sets in the same block, possibly provid-
ing actual parametersto the new instance.

The create line (dashed line with arrowhead) indicates possible creations.
Create lines are optional.

As specified in Figure 13-28 (p.13-66) the process CUControl creates Validation pro-

cesses. In the process graph of CUControl, the creation will be specified by a create
action.

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

T| Me List of figures

Procedure diagram, GetPIN

List of figures

Behaviour Specification. 4

Block type AccessPoint With processes. oo 7

Block diagram of AccessPoint with block substructure 9

Systemdesignin SDL 10
Packagediagram SignalLib. 10
System using a package of type definition 12
Block type AccessPoint with virtual Controller processtype................. 13
Virtual processtypeController i 14
Block type BlockingAccessPoint as a subtype of AccessPoint. 15
LoggingAccessPoint as a subtype of AccessPoint. 16
Redefined process type with added statesand transitions. 16
Finalised proCesStyPe . . oot 17
Processintermsof SEIVICES.ottt 19
Servicediagram, PanelControl i 19
Panel and card of anaccesscontrol system. 36
System diagram for access control system with three types of access points. 38
Packagediagram SignalLib. 40
Package diagram AccessPointLib 42
Block type AccessPoint with virtual Controller processtype................. 44
Block type BlockingAccessPoint as a subtype of AccessPoint. a7
LoggingAccessPoint as a subtype of AccessPoint. 49
Virtual processtypeController i 51
Redefined process type with added states and transitions. 57
Finalised proCesStyPe . . oot e 59
Processintermsof SEIVICES.ottt 60
Servicediagram, PanelControl i 62
Procedurediagram, GEtPIN e 63
Block diagram definingtheCentralUnit 66

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-67

List of definitions TIMe
Procedure diagram, GetPIN

List of definitions

AN SK Sot 69
DIOCK. . . 69
DIOCK St . . . 70
DlOCK ty . . e 70
block typediagram. 71
block (type) heading i 71
block typereference. 71
Channel 71
(07 = | (A 72
dashed entity 72
JECISION .ot 72
diagramheading. 73
entity Kinds. 73
BNVITONMIENE . . o . ottt et ettt e e e e e 74
finalised INPUL. 74
fiNalised ProCESS tYPe. . . . oottt 74
DA, ot 75
dentifier. . .. 75
UL . . .o 76
local variables 76
0111011 | 76
PACKAgE . . o 77
packagereferenceclause. 77
PAJE NUMDENTNG . . . oottt ettt e e e e e et 77
PrOCEAUNEottt e e e 78
procedurecall. e 78
procedureheadingt 78
procedure referenceo 79
IO . . o et et e e e 79
ProCESS dlagram . . . oot 79
PrOCESS LY P . . . ettt e e 80
Processtype diagramot 80
process (type) headingo 80
ProCeSS (FEfEreNCe)ot 80
PrOCESS Sl . . o ittt 80
redefined ProCesStype oot 81
FEMOLE PrOCEAUIES it ittt ettt e e et ettt e 81
FEEUIN e e 82
2 82
SCOPE UNIES . . e et ettt e e e e e e 83

13-68 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe List of definitions
Procedure diagram, GetPIN

S Y7o 83
SEIVICE (TEfEIENCE) oot e 83
service(type) heading 84
signal definition 84
SIgNal [iSt .. 84
SIgNAl TOULE. . . .ottt e 84
SPECIAlISAIONo e 84
S, . 85
2 = 85
S S EIMN 86
system (type) heading 86
€21 G 86
raNSItION .. 86
text symbol. 87
L1101 87
variabledefinition 88
VIrtUal ProCESS Y PR . . . oot 89
VIRUAlILY . . o 89
virtuality constraint 89
virtual (input) transition.o 89
asterisk state

An asterisk state is a shorthand for all states except those listed in an accompanying
asterisk state list.

The state names in an asterisk state list must be distinct and must be contained in other
state list in the enclosing body or in the body of a supertype.

Z.100

block

A block isa container of processes (or of blocks, that in turn may contain processes or
blocksetc.). Processes of ablock are contained in process setsthat are connected by sig-
nal routes.

A block is created as part of the creation of the enclosing block or
system. All blocks are created as part of the system creation, that is CentralUnit
there is no dynamic creation of blocks.

A block is specified either directly (singular block), like Central-
Unit, or asablock set according to ablock type. Theblock setapis o ap(100): €
not areference (as CentralUnit). Instead it designates a set of block AccessPoint
instances. The example here specifies a set of 100 blocks of type
AccessPoint.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-69

block set

List of definitions TIMe

Procedure diagram, GetPIN

In the latter case, the AccessPoint must have been defined as a block

type, as shown here: AccessPoint

The block CentralUnit is defined in a separate block diagram, while
the properties of the blocksin the Is block set is defined by the block
type Local Sation. A block type is defined by ablock type diagram. To see ablock type
defined in terms of a substructure of blocks, look at block type diagram of AccessPoint
with block substructure.

Z.100

Type-defined blocks are contained in block sets. A block set isafixed number of blocks
with properties according to a block type.

e Is(100): C
LocalStation

The set of Loca Stationsis called Is and the number (100) designates the cardinality of
the set. All the block instances within a block set typically have the same relationship
with its surroundings (given by the channels).

A channel connected to ablock set (viathe gates e or C) will actually represent a set of
channel instances.

A block setisnot an array, so the thirteenth block cannot beidentified by e.g. IS(13). The
number of elementsin ablock set is determined when the system is created, all blocks
in the set are created as part of the creation of the system, blockswill be permanent part
(instances) of the system instance, and sets of blocks cannot be created dynamically.

Z.100

block type

13-70

A block type defines the common properties for a category of blocks.

Block types are defined in block type diagrams, and these may be referenced by means
of block type references.

Block types may contain aconnectivity graph of block instances connected by channels.
This makes up a structure of nested blocks. At the leaves of this structure there are
blocks which contain processes. In SDL, block types may not contain both blocks and
processes at the same time.

In addition to containing structures of blocksor structures of processes, block types may
contain other type definitions. This makes up the scoping hierarchy of SDL. Namesin
enclosing type definitions are the only names visible.

Block types may contain datatype definitions, but no variable declarations. Thisfollows
from the fact that processesin SDL do not share data other than signal queues. They
share asigna queue in the way that one process appends (output) signals to the queue

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

List of definitions
Procedure diagram, GetPIN

(the input port), while the other process consumes (input) signals from the same queue.
Appending and consuming signals are atomic, non-interruptible operations. The input
port is the basic synchronisation mechanism of SDL.

Block types may contain process types, service types and procedures as well as block
types and data types.

Z.100

block type diagram

A block type diagram defines the properties of a block type.
Z.100

block (type) heading

The heading of block diagrams defines the name of the block.

The heading of block type diagrams defines the name of the block type, possible formal
context parameters, whether the block typeisvirtual or not and if it inheritsfrom another
block type.

Z.100

block type reference

channel

Block types are defined in block type diagrams, and they are referenced by means of
block type references. The block type reference indicates in which block or system
scope unit the block type is defined.

Z.100

A channel isaone-way or two-way directed connection. It ischaracterised by thesignals
that it may carry; these constitute the signal list(s) of the channel. A channel hasasignal
list for each direction.

One or two arrows indicate the direction(s) of the channel.

Channels connect blocks or block sets with other blocks or block sets, or with the envi-
ronment of the system. It provides a (one or two way) communication path for signals.
If there is no channel between two blocks, then processes in these two blocks cannot
communicate by signal exchange. Processes may, however, communicate by means of
remote procedure calls without channels connecting the enclosing blocks. A channel
cannot connect a block or block set with itself.

Channels may be delaying or non-delaying.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-71

List of definitions TIMe

Procedure diagram, GetPIN

A delaying channel is specified by a channel sym-

bol with the arrows at the middle of the channel: [(Vanﬂy)] [(::de]

The delay of signalsis non-deterministic, but the C

order of signalsis maintained.

A non-delaying channel is specified asfollows, that lidi

iswith the arrows at the endpoints: i(va dity)] [COdeL
Associated with each direction of achannel are the C

types of signalsthat may be conveyed by the chan-
nel. The list enclosed by the signal list symbol can be signals (as e.g. Code) or signa
lists (as e.g. validity) enclosed in ().

Channels connected to the frame symbol represent the connections to the environment.
Z.100

create
A process may create processes in other process sets in the same block, possibly provid-
ing actual parametersto the new instance.
The create line (dashed line with arrowhead) indicates possible creations. Create lines
are optional.
Z.100

dashed entity
A dashed entity is the graphical way of representing an entity that isinherited from a
supertype and which needsto be used in the definition of the subtype. There are dashed
block sets and process sets, services and gates.
The Z.100 terminology is existing entity.
An existing block set/block may be connected by channel, and these will then be there
in addition to those specified in the super type.
An existing process set/service may be connected by signal routes, and these will then
be there in addition to those specified in the super type.
An existing gate can have constraints in terms of signals on the endpoints of the gate
specified, and these are then added to the inherited gate and will then apply in addition
to those of the inherited gate.
In the PR version of a specification, inherited entities are ssmply identified by name.
Z.100

decision
A decision transfers the interpretation to the outgoing path whose range condition con-
tains the value given by the interpretation of the question.

13-72 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

Z.100

diagram heading

List of definitions
Procedure diagram, GetPIN

In the upper left-hand corner of the first page of diagrams, we find the heading.The
heading defines the name of the entity, it may contain definition of formal parameters,
context parameters, it may specify if atypeinherits from another type and the virtuality

of atype (virtual, redefined or finalised).
The heading of the first page of a diagram must be afull heading of the form:

<heading> ::= <kernel-heading> [<additional-heading>]
while

the following pages only need a kernel heading:
<kernel-heading>::= [<virtuality>] [exported]

<diagram-kind> [<qualifier>] <diagram-name>

The kernel heading depends upon the diagram kind, see

entity kinds

system (type) heading
block (type) heading
process (type) heading
service (type) heading
procedure heading

SDL defines the folowing different kinds of entities:

packages

system

system types
blocks

block types
channels

signal routes
signas

gates

timers

block substructure
channel substructures

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Tutorial on SDL

13-73

List of definitions TIMe
Procedure diagram, GetPIN

* processes

* processtypes

* services

e sarvicetypes

* procedures

e remote procedures
» variables (and formal parameters)
e synonyms

o literas

* operators

* remote variables
e datatypes

e generators

e signd listsand

* views.

environment

The environment consists of aset of SDL processes that may send signalsto the system
and which may receive signals from the system.

Z.100

finalised input
A finalised input isaredefinition of avirtual input transition that cannot be redefined in
further subtypes. A virtual input is a specia case of avirtual transition.
Z.100

finalised process type

isafinalised redefinition of the corresponding virtual process type in the super block
type, and itisnot virtual, so that it can not be redefined in further subtypes of this block

type.

A final redefinition of the process type must be a subtype of the type identified in the
virtuality constraint.

Z.100 (virtual types)

13-74 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

gate

identifier

List of definitions
Procedure diagram, GetPIN

A gateisapotentia connection point for channels/signal routes when connecting sets
of blocks/processes/services. The same symbol isused in al cases.

Gate are defined in block/process/service types and used when connecting sets or
instances of these with channels/signal routes.

The signal list associated with the endpoints represents constraints (on incoming/outgo-
ing signals) the gate.

Z.100

Anidentifier containsan optional qualifier in order to denote the scope unit inwhich the
entity is defined:

<identifier>::= [<qualifier>] <name>

where qualifier defines the path:

<gualifier>::= <path-item>{‘/* <path-item>;* |
‘<<’ <path-item>{"/* <path-item>* *>>

The qualifier gives the path from either the system level, or from the innermost level
from where the name is unique, to the defining scope unit.

Each path-item have this form:
<path-item>::= <scope-unit-kind>{ <name> | <quoted-operator>}
where scope-unit-kind is one of
* package,
* systemtype,
* system,
* block,
* block type,
 substructure,
* process,
* processtype,
* service,
e sarvicetype,
(more)
e procedure,
e signd,
* type, or

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-75

input

List of definitions TIMe

Procedure diagram, GetPIN

 operator.

A definition in an inner scope unit overrides definitions with the same name in outer
scope units. Qualifiers may be used in order to identify overridden entities.

Qualifiers may be omitted if not needed in order to identify the right entity in the right
scope unit.

States, connectors and macros cannot be qualified. States and connectors are not visible
outside their defining scope unit, except in a subtype definition.

An input allows the consumption of the specified input signal instance. The consump-
tion of the input signal makes the information conveyed by the signal available to the
process. The variables associated with theinput are assigned the values conveyed by the
consumed signal.

Thevalueswill be assigned to the variablesfrom | eft to right. If thereis no variabl e asso-
ciated with the input for a sort specified in the signal, the value of this sort is discarded.
If thereis no value associated with a sort specified in the signal, the corresponding vari-
able becomes “ undefined”.

The sender expression of the consuming processis given the Pld value of the originating
process, carried by the signal instance.

Z.100

local variables

output

13- 76

Local variables of a procedure become parts of the procedure instance when the proce-
dureiscalled, and they cease to exist when the procedure returns.

Thelocal variables will get default initial valuesif nothing elseis specified.
Z.100 (variable definition)

An output generates asignal of the specified signal type, containing the specified actual
parameters, and send this signal instance to the specified destination.

Stating a <process identifier> in <destination> indicates the destination as any existing
instance of the set of process instances indicated by <processidentifier>. If there exist
no instances, the signal is discarded.

If no signal route identifier is specified and no destination is specified, any process, for
which there exists a communication path, may receive the signal.

If an expressioninthelist of actual parametersisomitted, no valueis conveyed with the
corresponding place of the signal instance, i.e. the corresponding place is *undefined”.

The Pid value of the originating processis also conveyed by the signal instance.

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

package

List of definitions
Procedure diagram, GetPIN

Z.100

A packageisacollection of types. A packageisdefined by apackage diagram. Packages
can be provided (that is defined) together with a system diagram (or together with
another package diagram) or they can be used by means package identifiers.

A package may contain definitions of types, data generators, signal lists, remote speci-
fications and synonyms. Definitions within a package are made visible to a system
definition or other package definitions by a package-reference-clause (use clause). All
(or selected) definitions of packages provided in thisway will be visible in the system
definition (or in the new package).

A package diagram has this form:

PACKAGE <package-name>

<type definitions>

A package can be used either either in the definition of a new
package, or as here, asystem. Thisis done by the use clause.

USE <package identifier>;

SYSTEM <system name>

Z.100

package reference clause

A package reference clause specifiesthat a system diagram or package diagram use the
definitions of other packages. The namesfollowing the “/” after the package name
denotes the subset of the definitions that are used.

Z.100

page numbering

A diagram may be split into a number of pages. In that case each page is numbered in
the rightmost upper corner of the frame symbol. The page numbering consists of the
page number followed by (an optional) total number of pages enclosed by (), e.g. 1 (4),
2(4),3(4),4 4.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorillonSDL 13-77

List of definitions TIMe

Procedure diagram, GetPIN

procedure

Procedures define patterns of behaviour that processes/services may execute at several
places or several timesduring their life-time. The behaviour of aprocedureisdefined in
the same way as for processes (that is by means of states and transitions), a procedure

may have (local) variables, and in addition it may have IN, OUT, IN/OUT parameters.

Procedures are defined by procedure diagrams.
Z.100

procedure call

A procedure call transfersthe interpretation to the procedure definition referenced in the
call, and that procedure graph is interpreted.

The interpretation of the transition containing the procedure call continues when the
interpretation of the called procedure is finished.

The actual parameter expressions are interpreted in the order given.

If an <expression> in <actual parameters> is omitted, the corresponding formal param-
eter has no value associated, i.e. it is*undefined”.

Z.100

procedure heading

13-78

The procedure-heading of a procedure diagram has this format:
<procedure heading> ::=

[<virtuality>] [<export-as> | procedur e <procedure-name>
[<virtuality-constraint> | [<specialisation>]

[<procedure-formal-parameters> |

[<result>]

<procedure-formal -parameters> defines the formal parameters of the procedure and
have the format:

<procedure-formal-parameters> ::=
fpar [in"/ out | in] <typed-parameters>
{,[in/out|in] <typed-parameters> }*

where <typed-parameters> have the format

<typed-parameters> ::
<variable-name> {°,” <variable-name>}* <data-type-identifier>

<typed-parameters> isalist of parameter names followed by a data type name.
<result> has the format:
<result> ::=returns|[<variable-name> | <data-type-identifier>

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe List of definitions
Procedure diagram, GetPIN

where <data-type-identifier> givesthe data type of the value returned by the procedure.
The optional <variable-name> can be used to name the result. The result can either be
stated as an expression next to the return symbol, or as an assignment in atask to the
variable introduced in result.

procedure reference

A procedure reference specifies that there is aprocedurein the enclosing entity and that
the properties of thisprocedure are defined in a separate (referenced) procedure diagram
outside this diagram.

Z.100

process

A process instance is part of aprocess set, which in turnis part of a block.

The properties of aprocessis either defined by a process diagram or it isdefined by a
process type diagram.

Each process consists of the input port and an extended finite state machine (EFSM)
with asequentia behaviour defined by aprocess graph, whichisasort of statetransition
diagram. The finite state machine fetches signalsfrom the input port in strict FIFO order
except when the order is modified by the save operator (see below). For each signal it
performs one transition which will take a short but undefined time.

Signals are messages that the finite state machine consumes. Each signal hasa signal
type identification which the FSM uses to select the next transition action. In addition,
the signal carries the sender identity and possibly some additional data.

SDL Process

input port
signal signal i EFSM)

signal

An SDL process with signal instances in the input port

process diagram

A process diagram defines the properties of a process set, where each of the process
instances in the set have the specified properties.

The behaviour of processes may be defined either by means of a procedure graph (states
and transitions) or by means of a substructure of services connected by signal routes.
The behaviour of each of the servicesis defined by means of states and transitions.

Z.100

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-79

List of definitions TIMe

Procedure diagram, GetPIN

process type

A processtype definesthe common properties of acategory of processinstances. A pro-
cesstypeis defined by a process type diagram.

process type diagram

A process type diagram defines the properties of a process type.
Z.100

process (type) heading

The heading of process diagrams (defining a process set directly without any process
type) is a <process heading>, defining the name of the process set and the initial/maxi-
mum number of instancesin the set.

The heading of process type diagrams is a <process type heading>, defining the name
of the processtype, itsvirtuality (and constraint), itsformal context parametersand if it
inherits from another process type.

Formal parameters are variables of the process instances. They get values as part of the
creation of the process instance.

When asystemiscreated, theinitial processes are created in arbitrary order. Theformal
parameters of these initial processes have no associated values; i.e. they are undefined.

If theinitia number is omitted, then the (default) valueis 1. If the maximum number is
omitted, then there is no limit on the number of instances.

Z.100

process (reference)

A process reference specifies that there is a process in the enclosing block and that the
properties of this process are defined in aseparate (referenced) process diagram outside
this diagram.

Z.100

process set

13- 80

A process set defines a set of processes according to a process type.

Just like we have the distinction between block reference, block type and block set
according to type, we have the distinction between process reference, process type and
process set according to atype. Our recommendation is that process sets should be

described with reference to a process type.

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe List of definitions
Procedure diagram, GetPIN

Process reference:
Process set without
any associated type.

Thisisboth aspecification of aprocess set as part of the enclosing block and areference
to the corresponding process diagram, which defines the properties of the processesin

the set.

Process set according

to a process type Valid(0,):
(Validation) Validation

The numbers in parentheses after the process set name specify the number of instances
in the process set. As defined in above, there are initially no processes, and thereis no
limit on the number of instances that may be created.

A process set according to atype requiresthat the corresponding processtypeisdefined:

Validation

Z.100

redefined process type

Isaredefinition of the corresponding virtual process type in the super block type, and it
isvirtual, so that it can be redefined in further subtypes of this block type.

A redefinition of the process type must be a subtype of the type identified in the virtu-
ality constraint.

Z.100 (virtual types)

remote procedures

The remote procedure mechanism consists of four interdependent language constructs:

1. The exporting of a procedure. A procedure which is made visible by other processes
is marked with the keyword exported preceding the procedure heading, e.g.
“exported procedure Validate ...” from a process within the CentralUnit. The
exporting process can control in which statesit will accept the remote request. It may
also specify to save the request to other states. The controlling of the acceptanceis
done by using input and save symbols with the remote procedure name preceded by
the keyword procedure.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-81

return

save

13- 82

List of definitions TIMe

Procedure diagram, GetPIN

2. Theimporting of a procedure. When a process, service or procedure wants to import
aremote procedure, it must specify the signature of this procedure in an “imported
procedure specification” in atext area. The specification in our case would read:
“imported procedure Validate; returnsinteger;” where the integer returned would
give the result of the validation.

3. The specification of remote procedure. In SDL all namesmust be defined in aspecific
scope. Thus, the names of remote procedures must be defined in the context in which
the actual definition of the procedure and the calls will be contained. In our case the
definition of the procedure Validate is within the CentralUnit and the call isin Con-
troller of the AccessPoint. The scope unit enclosing all these is the system itself.
Therewe will find atext areawith the following text: “remote procedure Validate;
returnsinteger;”.

4. The calling of a remote procedure. The calling of the remote procedure isindistin-
guishable from local procedure calls unlessthe caller explicitly states which process
it will request the procedure executed by. This can be done by ato-clause with aPld
following the procedure name of the call.

Remote procedures may be value returning (as in our example above) and they may be
virtual. Z.100

A return represents the the completion of acall of a procedure.
A returnisinterpreted in the following way:
a)All variables created by the interpretation of the procedure start will cease to exist.

b)The interpretation of the procedure-graph is completed and the procedure instance
ceases to exist.

c)Hereafter the calling process, service (or procedure) interpretation continues at the
node following the call.

Z.100

A save specifiesthat the signalsin the save symbol are retained in the input port in the
order of their arrival.

The effect of the saveisvalid only for the state to which the save is attached. In the fol-
lowing state, signal instances that have been “saved” are treated as normal signal
Instances.

Asterisk save impliesthat all signals are retained in the input port.
Z.100

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe

scope units

List of definitions
Procedure diagram, GetPIN

The following kinds of definitions form scope units:

service

package

system type
system

block

block type

block substructure
channel substructure
process

process type
service

service type
procedure

signal

operator, and
type.

A serviceisastate machine being part of aprocessinstance, and cannot be addressed as
aseparate objects. It sharestheinput port and the expressions self, parent, offspring and

sender of the process instance.

Only one service at atime is executing atransition. Services alternate based on signals

in the input port of the process.

Z.100

service (reference)

A service symbol specificiesthat aserviceis part of the containing process (type), and
that the definition of the service can be found in a separate service diagram.

Process behaviour by means of servicesis an alternative to process behaviour by means
of aprocess graph through a set of services. Each service may cover apartial behaviour
of the process.

Z.100

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Tutorial on SDL

13- 83

List of definitions TIMe

Procedure diagram, GetPIN

service (type) heading

The heading of service diagramsis:

<service-heading> ::= service [<qualifier>] <service-name>
while service type diagrams have the following heading:
<service-type-heading>::=

[<virtuality>]

servicetype [<qualifier>] <service-type-name>

[<formal-context-parameters>]
[<virtuality-constraint>] [<specialisation>]

signal definition

A signal definition defines a set of types of signals. Signal definitions are part of text
symbols.

Signals may be defined in system and block diagrams, and these may then be used for

communication between the blocks of the system or the processes of the block. Signals
may also be defined in process (type) diagrams, but then they can only be used for com-
muni cation between processes of the same set. Often signal definitions are collected in
packages.

Z.100

signal list

Associated with each arrowhead of channels and signal routes or signal lists, that spec-
ifies the allowed signalsin that direction.

Signallists are defined in text symbols.
Z.100

signal route

A signal route represents a communication path between process sets and between pro-
cess sets and the environment of the enclosing block/block type.

Z.100

specialisation

13-84

A type may be defined as a specialisation of another type. Thisis done by thefollowing
construct:

<specialisation>::= inherits <type-expression> [adding]

Specialisation applies to system, block, process, service, datatypes, and to signals and
procedures, and the same semantics apply in all cases:

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TlMe List of definitions
Procedure diagram, GetPIN
» All definitions of the supertype are inherited:

- Theformal context parameters of a subtype are the unbound, formal context param-
eters of the supertype definition followed by the formal context parametersadded in
the <specialisation>.

- Theformal parameters of a specialised process type or procedure are the \formal
parameters of the process supertype or procedure followed by the\formal parameters
added in the <specialisation>.

- Thecomplete valid input signal set of a specialised type isthe union of the complete
valid input signal set of the<specialisation> and the complete valid input signal set of
the supertype.

- A specialised signal definition may add (append) data type identifiers to the \data
type list of the supertype.

- A specialised partial type definition may add propertiesin termsof operators, literals,
axioms, operators and default assignment.

» Definitions and transitions (where appropriate) may be added in subtypes.

« Virtual \transitions and types in the supertype may be redefined in the subtype, but
for virtual types only to subtypes of their constraint.

A virtual type or procedureisdefined by prefixing the keyword of the diagram (e.g. pr o-
cess or procedure) by one of the keywords virtual, redefined and finalized.

(more)

virtual isused when atypeisintroduced asavirtual type. A virtual type must be atype
defined locally to another type; the implication isthat it can be redefined in types that
inherit from the enclosing type.r edefined is used when the redefinition of avirtua type
isstill virtual. finalized is used when the redefinition is not virtual.

Z.100

Start
Thereis only one start symbol for a process. The transition from the start takes place
when the processis generated. A process may be generated either at system start-up or
as aresult of a create request from another process.
Z.100

state

A staterepresentsaparticular condition in which aprocess may consume asignal result-
inginatransition. If the state has neither spontaneoustransitions nor continuoussignals,
and there are no signal instances in the input port, otherwise than those mentioned in a
save, then the process waits in the state until a signal instance is received.

Z.100

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-85

system

List of definitions TIMe

Procedure diagram, GetPIN

A systemisaset of blocks, block setsand channels. Blocks and block sets are connected
with each other or with the environment of the system by means of channels.

Z.100

system (type) heading

task

The heading of system diagrams, that is a system-heading is as follows:
<gystem-heading> ::= system <system-name>
while system type diagrams have system-type-headings:

<gystem-type-heading>::=

system type [<qudifier>] <system-type-name>
[<formal-context-parameters>]
[<specialisation>]

Asindicated in the syntax rule above, asystem type can have formal context parameters
and it can be a specialisation (of amore general system type).

A task may contain a sequence of <assignment statement>s or <informal text>. The
<assignment statement>s or <informal text>s are executed in the specified order.

A task is part of atransition.
Z.100

transition

13- 86

A transition performs a sequence of actions. During a transition, the data of a process
may be manipulated and signals may be output.

Actions may be:

o task,

* output,

° Set’

* resdt,

s export,

* create request,

» procedure call, or

» remote procedure call
The transition will end with the process entering a
- next state,

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

TIMe List of definitions
Procedure diagram, GetPIN
- with astop,
- with areturn or

- with the transfer of control to another transition.
Z.100

text symbol

Text symbols are used in order to have textual specifications as part of diagrams, espe-
cially for specification of signal types, datatypes and variables.

Thereisno limit to the number of text symbols that may occur in adiagram. Text sym-
bols are not connected to other symbols by flow lines.

The text symbol is also used for the graphical representation of a use clause, see
package.
Z.100

timer

The notion of timers provides a mechanism for specifying time-related matters. Timers
arejust like alarm clocks. The process waiting for atimer is passively waiting since the
process needs not sample them. Timers will issue time-out signals when their timeis
reached. There may well be several different timers active at the sametime. Activetim-
ers do not affect the behaviour of the process until the timer signal is consumed by the
Process.

A timer is declared similarly to avariable.

TIMER door_timeout ; |=|

Timersare set and reset in tasks. When atimer has not been set, it isinactive. When it
is set, it becomes active.

set
(now +10,
door_timeout)

A timer is set with atime value. timeis a special datatype and is mainly used in con-
nection with timers. The expression “now+10" isatime value and it adds the time
expression now and the duration 10 (here: seconds). now is an operator of the time data
type and it returns the current real time. Duration is another special datatypeanditis
also mainly used in connection with timers. Y ou may add or subtract duration to time
and get time. Y ou may divide or multiply duration by areal and get duration. Y ou may
subtract atime value from another time value and get duration.

(more...)

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-87

List of definitions TIMe

Procedure diagram, GetPIN

Thesemanticsof timersisthis: atimevaueisset inatimer and it becomesactive. When
the timeisreached, a signal with the same name as the timer itself will be sent to the
process itself. Then the timer becomes inactive.

The timer signal can be input in the same way as ordinary signals:

>door_timeout

A timer may bereset. It then becomesinactive and no signal will be issued. (If an inac-
tive timer isreset, then it remainsinactive.) A reset will aso remove atimer signa
instance already in theinput port. Thishappenswhen thetimer has expired, but the time-
out signal has not been consumed.

If an active Timer is set, the time value associated with the timer receives anew value.
Thetimer isstill active. If atimer isset to atime which isaready passed, the timer will
immediately issue the time-out signal.

Thereis an operator active which has atimer as a parameter and which returns a Bool-
ean that can be used to check whether a certain timer is active or not.

Timer signals may contain data as other signals may contain data. Different parameter
valuesin set means generation of several timer instances. r eset must match these param-
eter valuesto eliminate the correct timer instance.

(more...)

The following is a sketch of afinite state machine of the behaviour of atimer.

V

set(q,T) .
i i active(T)
@ reset(T) “S——

4 now >= Q:
Send T-signal to self

set(q,T);
Z.100

variable definition

13- 88

Variables can be defined in processes, services and procedures.
Variables of process are created as part of the creation of the process instance.

Variables of servicesare created when the serviceis created as part of the creation of the
containing process instance.

Local variables of a procedure become parts of the procedure instance when the proce-
dureiscalled, and they cease to exist when the procedure returns.

Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

Tl Me List of definitions
Procedure diagram, GetPIN
Variables will get default initial valuesif nothing else is specified.
Z.100

virtual processtype

A virtual processtypeisaprocess type that can be redefined in a subtype of the enclos-
ing block type.

The virtuality is specified in the process type heading or by <virtuality> in the corre-
sponding process type reference symbol.

A redefinition of the process type must be a subtype of the type identified in the virtu-
ality constraint.

Z.100 (virtual types)

virtuality

Thevirtuality of atype defineswhether the typeisvirtual (so that it can be redefined in
a subtype of the enclosing type), redefined (aredefined type, but till virtual), or final-
Ised, that a redefinition that cannot be further redefined.

<virtuality>::= virtual | redefined | finalized

 virtual isused when atypeisintroduced as avirtual type. A virtual type must be a
type defined locally to another type; theimplicationisthat it can be redefined intypes
that inherit from the enclosing type.

» redefined isused when the redefinition of avirtual typeisstill virtual.
» finalized is used when the redefinition is not virtual.

virtuality constraint

A constraint on avirtual type has the form of avirtuality\-constraint:
<virtuality-constraint> ::= atleast <identifier>

where <identifier> identifies atype (which is called the constraint type) of the appropri-
ate kind (block, process, service or procedure).

The implication of aconstraint isthat a redefined or finalized definition of the virtual
type must be atype definition that inherits from the constraint type. In case of no con-
straint specified, the definition of the virtual type itself is the constraint.

virtual (input) transition

A virtual input transition isaspecial case of ageneral notion of virtual transition (virtual
priority input, virtual start, virtual spontaneous transition). In addition SDL has virtual
save.

TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16 TutorialonSDL 13-89

List of definitions TIMe
Procedure diagram, GetPIN

Redefinition of virtual transitions/saves corresponds closely to redefinition of virtual
types.

* A virtual start transition can be redefined to a new start transition.

» A virtual priority input or input transition can be redefined to anew priority input or
input transition or to a save.

» A virtual save can be redefined to a priority input, an input transition or a save.
* A virtual spontaneous transition can be redefined to a new spontaneous transition.
Z.100

13-90 Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-16

	Introduction
	Overview of SDL
	Introduction
	Processes and process types
	Specifying behaviour: states and transitions
	Figure 13-1: Behaviour Specification
	Variables
	Procedures

	Communication by means of signal exchange
	Grouping of process sets by means of blocks
	Processes are parts of process sets
	Figure 13-2: Block type AccessPoint with processes
	Process sets are connected by signal routes
	Local definitions in blocks
	Blocks as part of blocks

	Types, sets and instances
	Figure 13-3: Block diagram of AccessPoint with block substructure

	Systems: set of blocks connected by channels
	Figure 13-4: System design in SDL
	Figure 13-5: Package diagram SignalLib

	Packages: collections of related types and definitions
	Figure 13-6: System using a package of type definition

	Subtypes
	Figure 13-7: Block type AccessPoint with virtual Controller process type
	Figure 13-8: Virtual process type Controller
	Figure 13-9: Block type BlockingAccessPoint as a subtype of AccessPoint
	Figure 13-10: LoggingAccessPoint as a subtype of AccessPoint
	Figure 13-11: Redefined process type with added states and transitions
	Figure 13-12: Finalised process type

	Composing behaviour of processes by means of services
	Figure 13-13: Process in terms of services
	Figure 13-14: Service diagram, PanelControl

	Specifying properties of variables: data types

	SDL as an object oriented language
	Objects
	Process
	Service
	Block
	System
	Variable

	Attributes
	Methods
	Procedures
	Functions - i.e. value returning procedures
	Virtual procedures/functions
	Globally defined procedures
	Remote procedures

	Behavior
	Process behaviour by Finite State Machine
	Process behaviour by service composition

	Object interaction
	Exchanging signals
	Calling remote procedures
	Gates

	Class
	Process type
	Service type
	Block type
	System type
	Abstract Data Type

	Subclass/inheritance
	Inheritance
	Adding properties
	Redefining virtuals
	Inheritance of behaviour

	Class libraries
	Aggregation/part-whole/containment
	Localisation of definitions
	Parameterised classes
	One way out

	Virtual classes/types
	Object oriented approach behind SDL

	SDL by example
	Introduction to the example
	Figure 13-15: Panel and card of an access control system

	System diagram, Access Control System
	Figure 13-16: System diagram for access control system with three types of access points

	Package diagram, SignalLib
	Figure 13-17: Package diagram SignalLib

	Package diagram, AccessPointLib
	Figure 13-18: Package diagram AccessPointLib

	Block type diagram, AccessPoint
	Figure 13-19: Block type AccessPoint with virtual Controller process type

	Block type diagram, BlockingAccessPoint
	Figure 13-20: Block type BlockingAccessPoint as a subtype of AccessPoint

	Block type diagram, LoggingAccessPoint
	Figure 13-21: LoggingAccessPoint as a subtype of AccessPoint

	Process type diagram, Controller
	Figure 13-22: Virtual process type Controller

	Process type diagram, redefined Controller in BlockingAccessPoint
	Figure 13-23: Redefined process type with added states and transitions

	Process type diagram, finalised Controller in LoggingAccessPoint
	Figure 13-24: Finalised process type

	Process diagram, Panel in terms of services
	Figure 13-25: Process in terms of services

	Service diagram, PanelControl
	Figure 13-26: Service diagram, PanelControl

	Procedure diagram, GetPIN
	Figure 13-27: Procedure diagram, GetPIN
	Figure 13-28: Block diagram defining the CentralUnit

	List of figures
	List of definitions
	asterisk state
	block
	block set
	block type
	block type diagram
	block (type) heading
	block type reference
	channel
	create
	dashed entity
	decision
	diagram heading
	entity kinds
	environment
	finalised input
	finalised process type
	gate
	identifier
	input
	local variables
	output
	package
	package reference clause
	page numbering
	procedure
	procedure call
	procedure heading
	procedure reference
	process
	process diagram
	process type
	process type diagram
	process (type) heading
	process (reference)
	process set
	redefined process type
	remote procedures
	return
	save
	scope units
	service
	service (reference)
	service (type) heading
	signal definition
	signal list
	signal route
	specialisation
	start
	state
	system
	system (type) heading
	task
	transition
	text symbol
	timer
	variable definition
	virtual process type
	virtuality
	virtuality constraint
	virtual (input) transition

