
TIMe TIMe Electronic Textbook
13 Tutorial on SDL
Introduction .2
Overview of SDL .3
SDL as an object oriented language .22
SDL by example .36
List of figures .67
List of definitions .68

SDL Tutorial
Tutorial on SDL 13 - 1 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Introduction TIMe13
Introduction

This SDL tutorial provides a number of different approaches to learning SDL:

• Overview of SDL (p.13-3)
- follow this if you would like an overview of the language elements of SDL, with an
example as illustration; this is organised according to what instances an SDL system
consists of, how they are defined, how SDL systems are structured, how processes
communicate, how subtypes can be defined and how data types may be defined.

• SDL by example
- follow this if you would rather see a complete example right away and have the lan-
guage explained through this; this is organised as a top-down introduction where you
start from a system diagram, through block diagrams, to process, service and proce-
dure diagrams.

• SDL as an object oriented language
- follow this if you would like to learn how SDL elements correspond to the various
elements of object orientation; this requires a minimal knowledge of object orienta-
tion, and you will learn what corresponds to objects, attributes, classes, subclasses,
etc.

Behind all these perspectives on SDL lies a number of definitions of the various lan-
guage concepts and most of the figures in the electronic form of this chapter will be
sensitive for mouse clicks and provide the definitions of the language element you click
at at in the diagrams.

In addition the Chapter provides you with a subset of the more formal definition of SDL.
Whenever you in the electronic form encounter a text like this “Z.100”, clicking on this
will bring you part of the Z.100 correspondence to the topic you are reading.
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 2

Overview of SDL
Introduction 13TIMe
Overview of SDL

Introduction

SDL is used for specification of systems. This is done by making SDL systems that are
models of existing or potential systems. SDL systems are specified by SDL system
specifications.

As part of the modeling process, components of systems are identified and modeled by
instances as parts of the corresponding SDL system. Categories and subcategories of
components are in SDL represented by types and subtypes of instances.

An SDL system consists of a set of instances. Instances may be of different kinds:

• blocks containing other blocks (which in turn may contain other blocks) or processes;

• processes characterised by attributes in terms of variables and procedures and which
exhibit behaviour in terms of Extended Finite State Machines;

• services being parts of processes, with the same properties as processes, but being
executed as part of the containing process execution.

SDL system can be structured by various means. A system consists of a number of
blocks connected by channels, each block may contain a substructure of blocks (to any
depth) or it may contain process sets connected by signal routes.

Processes execute concurrently with other processes and communicate by exchanging
signals; or by remote procedure calls. Reception of signals and requests for remote pro-
cedures are the events that t rigger state transitions in the behaviour of processes.
Services as part of processes execute one at a time like co-routines.

Variables are defined by means of data types:

• abstract data types that may be both predefined and user defined

• ASN.1 data types (according to a separate standard Z.105).

SDL specifications can be modularised by means of packages. A package is a collection
of type definitions. Packages can be used in the definition of new packages and the def-
inition of systems.

Processes and process types

The primary instances of an SDL system are processes. A process may have attributes
in terms of variables, it may have procedures, and it may have a certain behaviour.

A process type defines the properties of a category of process instances.

The process type diagram in Figure 13-1 (p.13-4) is an example of a definition of a pro-
cess type. Each Controller process will have:

• the variables cur_panel, cid and PIN as declared in the text frame;

• a procedure OpenDoor;
Tutorial on SDL 13 - 3 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of SDL
Processes and process types

TIMe13

a behaviour defined by states and transitions.
The process type is the central controlling part of an access control system, based on
card codes and PIN codes. The behaviour of the Controller takes care of the communi-
cation with the user (via a panel), with the central unit (that does the actual validation),
and it eventually opens the door (by means of the OpenDoor procedure).

Specifying behaviour: states and transitions

The behaviour of a process is described as an Extended Finite State Machine: When
started, a process executes its start transition and enters the first state. The reception of
a signal triggers a transition from one state to a next state. In transitions, a process may
execute actions. Actions can assign values to variable attributes of the process, branch
on values of expressions, call procedures, create new process instances and send signals
to other processes.

Communication by means of sending signals is asynchronous: the sending process does
not wait until the signal is handled by the receiver, and the receiving process will keep
signals in a queue until it reaches a state in which it is prepared to handle it.

Figure 13-1 (p.13-4) is an example on behaviour specification.

In a state (e.g. Idle) the process takes from the queue the first signal that is of one of the
types indicated in the input symbols (here Code, containing information about the card
id and PIN from the Panel). The Idle state is followed by one input symbol which
describes the consumption of the signal Code. In the transition following the reception
of the Code signal, it will use the variable cur_panel to remember from which panel the
signal came from and then send the Code to the central unit for validation. The next state
is Validation. In state Validation the Controller will only accept OK or NOK. If it gets
OK it will open the door by calling the procedure OpenDoor.

Figure 13-1: Behaviour Specification
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 4

Overview of SDL
Processes and process types 13TIMe
Open figure

P, D and U on the frame are gates: they define possible connection points for signal
routes (see below) that connect specific process sets of this type. The signals (e.g Code)
and signal lists (e.g. validity) define which signals may enter/exit through the connec-
tion point.

For more details on the constituents of a process type diagram see Virtual process type
Controller (p.-59).

Variables

Variables are declared according to data types. Each variable has a name and a data type.
Controller processes as defined in Figure 13-1 (p.13-4) have a variable cur_panel of type
PId and two Integer variables cid and PIN.

The data type defines possible values, behaviour and operators that can be applied to
values of the type. It is possible to define data types.

TO
CentralUnit

Validation

Idle

Code(cid,PIN)

/* from Panel */

Code(cid,PIN)

Validation

OK
/* from
Central */

OK
TO cur_panel

Idle

cur_panel :=
SENDER

unlockDoor

unlockDoor

 NOK
/* from
Central */

NOK
TO cur_panel

Idle

dcl cur_panel PId ; /* current panel whose Code will be validated */
dcl cid, PIN integer ; /* temporary variables for the data attributes of ’Code’ */

1(1)process type Controller

[Code]

[(validity)]

[opened,closed]

[open,close]

[(validity)]

[Code]
P D U

process type diagram

start

state

input

output

nextstate

task

procedure
call

procedure
reference

variables
Tutorial on SDL 13 - 5 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of SDL
Communication by means of signal exchange

TIMe13

Predefined types include Character, Boolean, Integer, Natural, PId (Process Instance
Identifier), and Real. Templates for defining arrays, strings and powersets are also
provided.

Variables of type PId denote process instances, so cur_panel is a variable that denotes a
process instance representing the panel that sent the Code signal.

Procedures

Procedures as part of processes define patterns of behaviour that the process may exe-
cute at several places or several times during its life-time. The behaviour of a procedure
is defined in the same way as for processes (that is by means of states and transitions),
a process may have (local) variables, and in addition it may have IN, OUT, IN/OUT
parameters.

Procedures are defined by procedure diagrams. The unlockDoor in Figure 13-1 (p.13-4)
is thus only a reference to a separate diagram defining the properties of unlockDoor.

For an example on a procedure diagram see Procedure diagram, GetPIN (p.-74).

Communication by means of signal exchange

Processes execute concurrently and communicate asynchronously by sending signals.
Each process has a queue of signals. The reception of a signal is the event that may get
a processes to perform a transition from one state to another state.

In addition to signals, processes may also communicate by means of remote procedures.
On the server side they are treated like signals (e.g. only accepted in states with an input
of the procedure), while the client side will be blocked until the remote procedure has
been executed.

Grouping of process sets by means of blocks

Types and instances of types correspond to the notion of classes and objects of class in
object oriented languages. In addition SDL supports the what would correspond to the
grouping of objects into larger units.

A block is a container for either sets of processes connected by signal routes, or for a
substructure of blocks connected by channels. Each of these blocks may in turn consist
of either process sets or a substructure of blocks. This decomposition may be applied to
any depth.

There is no specific behaviour associated with a block, and blocks cannot have attributes
in terms of variables or procedures. Therefore, the behaviour of a block is simply the
combined behaviour of its processes.

A block type defines the common properties for a category of blocks. In Figure 13-2
(p.13-7) a block type AccessPoint is defined by means of the process type Controller
(and two other processes: Panel and Door, taking care of the communication with the
actual physical panel and door).
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 6

Overview of SDL
Grouping of process sets by means of blocks 13TIMe
Panel and DOOR are defined directly (there will be process diagrams for each of them
and the process symbols with Panel and DOOR in Figure 13-2 (p.13-7) are just refer-
ences to these), while lsc is defined by the process type Controller. The symbol in Figure
13-2 (p.13-7) with the name Controller is a reference to the corresponding process type
diagram.

Processes are parts of process sets

Process instances are part of process sets. The specification of a process set includes the
name of the set, the number of instances (initial number and the maximum number of
instances), and possibly the name of a process type. If no process type name is used, then
the properties of the processes in the set are defined directly (in the corresponding pro-
cess diagram). Omitting the number of instances implies that initially there is 1 element,
and that the number of instances is unbounded. In Figure 13-2 (p.13-7) there are three
process sets of the special kind that initially has just one member:

Panel and Door are defined directly (that is the Panel and Door are references to separate
process diagrams), while lsc is the name of a process set according to the Controller pro-
cess type defined in Figure 13-1 (p.13-4).

Figure 13-2: Block type AccessPoint with processes

Open figure

� [(inp)]

[(outp)]

block type AccessPoint 1(1)

Door

[(validity)]

[code] [opened,

closed]
[open,
close]

[(inp)]

[(outp)]

[(validity)] [Code]

P1

signal opened,closed ; /* Door -> Controller */
signal open, close ; /* Controller -> Door */
/* signal lists (inp), (out) and (validity) defined in
enclosing block. This holds also for signal ’Code’ */

CE

CU

D

�

[(validity)]

[Code]

apc:
Controller

� �
�

Controller

Panel

[unlock,
lock] d

[unlock,
lock]

[isOpen,
isClosed]

[isOpen,
isClosed]

gate

text
symbol

process type

process

signalroute
signal list

signal
definitions

blocktype diagram

block (type) heading
Tutorial on SDL 13 - 7 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of SDL
Grouping of process sets by means of blocks

TIMe13

Process sets are connected by signal routes

In order for processes to interact by means of signals, their sets have to be connected by
signal routes. The signal routes and the associated signals (e.g. Code) and signal lists
(e.g. validity) only specify possible signal exchanges.

When signal routes connect process sets according to process types, they connect to the
gates defined in the types. In Figure 13-2 (p.13-7) the gates P,D,U are the gates defined
in Figure 13-1 (p.13-4).

The interaction between processes is specified on the signal routes connecting them,
whereas a process type defines gates as connection points for signal routes. The process
type Controller defines e.g. a gate P for the connection to Panels, with ingoing signal
Code and outgoing signals defined by the signal list validity (OK, NOK). The con-
straints on the gates (in terms of ingoing and outgoing signals) allows the specification
of the behaviour of process types without knowing in which context the instances of the
type will be and how they are connected. Gates can only be connected by signal routes
that carry the signals of the constraint, in the right directions.

The signal lists are defined below, see Figure 13-4 (p.13-10).

Local definitions in blocks

In addition to containing process sets or blocks, a block may have data type definitions
and signal definitions. Signals being used in the interaction between processes in a block
may therefore be defined locally to this block (providing a local name space) - here
exemplified by opened, closed, open, close.

Blocks as part of blocks

As described in Figure 13-2 (p.13-7) an AccessPoint will have three concurrent pro-
cesses, each taking care of different roles of the access point. If each of these roles would
require more than one process, then they would be represented by blocks which in turn
would contain the necessary processes. This is illustrated in Figure 13-3 (p.13-9), but is
not used in the following.

The symbols with the names Panel, Door and Controller are block symbols, specifying
that each AccessPoint block has three blocks as part of it, connected by channels.

As for signal routes, channels have associated signals (e.g. Code) and signal lists (e.g.
validity) in order to specify possible signal exchanges in the corresponding direction.
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 8

Overview of SDL
Types, sets and instances 13TIMe
Types, sets and instances

Note the distinction between process types, process sets and process instances. Process
types only define the common properties of instances, while process sets have a number
of instances. Signal routes connect process sets and not process instances. Process
instances are denoted by values of type PId. Process instances have variable attributes
and behaviour.

Figure 13-3: Block diagram of AccessPoint with block substructure

Open figure

Systems: set of blocks connected by channels

In order to provide a complete specification of a given access control system with a sin-
gle central unit and a number (100) of access points according to the block type
AccessPoint, a system diagram as in Figure 13-4 (p.13-10) is specified.

A system consists of a set of blocks connected with each other and with the environment
by channels. Note that channels connected to a block set according to a block type con-
nect to the gates (e and C) defined in the block type.

block type AccessPoint 1(1)

Panel Door

Controller
[(validity)]

[code]

[opened,
closed]

[open,
close]

[(inp)]

[(outp)]

[(validity)] [Code]

P1

signal opened,closed ; /* Door TO Controller */
signal open, close ; /* Controller TO Door */

CE

CU

D

�

�

[(outp)]

[(inp)]

[Code]

[(validity)]

gate

text
symbol

signal list

signal
definitions

block type diagram block (type) heading

channel
block (single)
Tutorial on SDL 13 - 9 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of SDL
Systems: set of blocks connected by channels

TIMe13

The system specified in Figure 13-4 (p.13-10) has interaction with its environment. The
signals used for this purpose can be defined as part of the system (as in Figure 13-4
(p.13-10)) or as part of a package used in the system. The system assumes that the envi-
ronment has processes which may receive signals from the system and send signals to
the system.

For more details on constituents of system diagrams see System diagram, Access Con-
trol System (p.-45).

Figure 13-4: System design in SDL

Open figure

Figure 13-5: Package diagram SignalLib

system AccessControl 1(1)

CentralUnit

CE

C[(inp)][(outp)]

[(validity)] [Code]

AccessPoint

AP(100):
AccessPoint

e c

/* Signal definitions for AccessPoint communication */
SIGNAL
eject-card, lock, unlock
input-card, isOpen, isClosed
display,
keys;
SIGNAL Code(integer,integer);
SIGNAL OK,NOK,ERR ;

SIGNALLIST validity = OK, NOK, ERR ;
SIGNALLIST outp = EjectCard, display;
SIGNALLIST inp = InputCard, keys ;

/* AccessPoint
/* ENV
/* Display
/* ENV
/* AccessPoint
/* CentralUnit

TO ENV */
TO AccessPoint*/
TO ENV */
TO Keyboard */
TO CentralUnit */
TO AccessPoint */

CD

d

channel

block type
(reference)

block set accord-
ing to a block type block (single)

signal
list

system diagram

[isOpen,isClosed]

[lock,unlock]
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 10

Overview of SDL
Packages: collections of related types and definitions 13TIMe
Open figure

Packages: collections of related types and definitions

Sets of related types may come as a result of a domain analysis (the types representing
application specific concepts) or as a result of a specific system specification where the
types are needed.

A package is a set of types. Types that are only used in one system will normally be
defined as part of the system specification, but for convenience they may be collected
and defined in a package and then used by the system. If a set of related types are to be
used in many systems within a specific application domain, then a package is the right
place to define the types.

In Figure 13-5 (p.13-10) the signal types for the access control domain has been col-
lected in the package SignalLib. Signals can be defined with parameters, as e.g. Code
with two Integer parameters. This means that each Code signal carries two values of
type Integer. The package also defines the signal list validity, inp and outp.

In Figure 13-6 (p.13-12) the signal definition of SignalLib are made available by a use
clause as part of a system diagram.

package SignalLib

/* Signal definitions for BlockingAccessPoint communication */
signal
Disable,
Enable ;

/* CentralUnit to
/* CentralUnit to

BlockingAccessPoint */
BlockingAccessPoint */

signal opened,closed ; /* Door to Controller */
signal open, close ; /* Controller to Door */

/* Signal definitions within AccessPoint */

/* Signal definitions for AccessPoint communication */
signal
eject-card, lock, unlock
input-card, isOpen, isClosed
display,
keys;
signal Code(integer,integer);
signal OK,NOK,ERR ;

signallist validity = OK, NOK, ERR ;
signallist outp = EjectCard, display;
signallist inp = InputCard, keys ;

/* AccessPoint
/* ENV
/* Display
/* ENV
/* AccessPoint
/* CentralUnit

to ENV */
to AccessPoint*/
to ENV */
to Keyboard */
to CentralUnit */
to AccessPoint */

package diagram

signal definitions

signal list defini-
tions

signal definitions
Tutorial on SDL 13 - 11 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of SDL
Subtypes

TIMe13

In a similar way, the block type AccessPoint in Figure 13-6 (p.13-12) may defined in a
package, possibly together with other types, instead of being defined in the system
diagram.

For more details on constituents of packages see Package diagram, SignalLib (p.-48).

Figure 13-6: System using a package of type definition

Open figure

Subtypes

In general a type in SDL can be defined as a subtype of another type (the supertype) and
thereby inherit the properties specified for the supertype. This holds for system, block
process and service types, and for signals and procedures.

A general type intended to act as a supertype will often have some properties that should
be defined differently in different subtypes, while other properties should remain the
same for all subtypes. This is supported by virtual types and virtual transitions: these
types and transitions can be redefined in subtypes. The behaviour of an instance of a sub-
type will follow the pattern given by redefinitions.

A subtype

• inherits all definitions of the supertype and can add own definitions; these include
definitions of variables, procedures, signals and type definitions;

• redefine virtual types and procedures defined as virtual types and procedures in the
supertype;

• inherits states and transitions (for those types where this applies) and may redefine
virtual transitions;

system AccessControl 1(1)

CentralUnit

CE

C[(inp)][(outp)]

[(validity)] [Code]

AccessPoint

AP(100):
AccessPoint

e C

use SignalLib

CD

d

package reference clause

[isOpen,isClosed]

[lock,unlock]
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 12

Overview of SDL
Subtypes 13TIMe
As an example on this, we define two new block types (BlockingAccessPoint and Log-
gingAccessPoint) as subtypes of the block type AccessPoint, as illustrated below.

They will inherit all properties of AccessPoint, but it is essential that they can redefine
the Controller part:

• BlockingAccessPoint so that it can be blocked even for people with validated card
and PIN codes, and

• LoggingAccessPoint so that these access points will log what is going on at the point.

Therefore the Controller process type in AccessPoint is specified as a virtual (process)
type in Figure 13-7 (p.13-13) and defined in the process type diagram in Figure 13-22
(p.13-51). Some of the input transitions are also defined to be virtual so that they can be
redefined in redefinitions of the virtual process type.

Figure 13-7: Block type AccessPoint with virtual Controller process type

AccessPoint

LoggingAccessPointBlockingAccessPoint
Tutorial on SDL 13 - 13 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of SDL
Subtypes

TIMe13

Open figure

Figure 13-8: Virtual process type Controller

� [(inp)]

[(outp)]

virtual

block type AccessPoint 1(1)

Door

[(validity)]

[code] [opened,

closed]
[open,
close]

[(inp)]

[(outp)]

[(validity)] [Code]

P1

SIGNAL opened,closed ; /* Door -> Controller */
SIGNAL open, close ; /* Controller -> Door */
/* signal lists (inp), (out) and (validity) defined in
enclosing block. This holds also for signal ’Code’ */

CE

CU

D

�

[(validity)]

[Code]

apc:
Controller

� �
�

Controller

Panel

[unloc
k, d

[unloc
k,

[isOpen,
isClosed

[isOpen,
isClosed

blocktype.diagram

gate signal list

text
symbol

block (type) heading

virtual
block type

process signalroute

signal
definitions
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 14

Overview of SDL
Subtypes 13TIMe
Open figure

For more details on constituents of block types see Block type diagram, AccessPoint (p.-
51).

For BlockingAccessPoint the virtual process type is redefined as indicated in Figure 13-
9 (p.13-15) and for LoggingAccessPoint as indicated in Figure 13-21 (p.13-49).

Figure 13-9: Block type BlockingAccessPoint as a subtype of AccessPoint

to

Central

Validation

Idle

Code(cid,PIN)

/* from Panel */

Code(cid,PIN)
via U

Validation

virtual OK
/* from
Central */

OK
to cur_panel

Idle

cur_panel :=
sender

unlockDoor

unlockDoor

virtual NOK
/* from
Central */

NOK
to cur_panel

Idle

virtual process type Controller

dcl cur_panel PId ; /* current panel whose Code will be validated */
dcl cid, PIN integer ; /* temporary variables for the data attributes of ’Code’ */

1(1)

[Code]

[(validity)]

[opened,closed]

[open,close]

[(validity)]

[Code]
P D U

process type diagram

start

state

input

output

nextstate

task

procedure
call

procedure
reference

variables
Tutorial on SDL 13 - 15 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of SDL
Subtypes

TIMe13

Open figure

Figure 13-10: LoggingAccessPoint as a subtype of AccessPoint

Open figure

For more details on constituents of process type diagrams see Process type diagram,
Controller (p.-59).

The redefined virtual process type Controller in Figure 13-9 (p.13-15) is given in Figure
13-11 (p.13-16) . This also illustrates inheritance for process types and thereby inherit-
ance of behaviour: the redefined process type inherits the properties specified in the
virtual process type (Figure 13-22 (p.13-51)) and the redefined process type adds the
state “blocked” (with the corresponding input transition) and the input of “Disable” is
added to all states (the * in the state symbol means all states).

The redefinition of the virtual process type Controller in Figure 13-21 (p.13-49) is given
in Figure 13-12 (p.13-17). The redefinition is finalised, so that it can not be further rede-
fined. The two virtual transitions are also given finalised redefinitions.

Figure 13-11: Redefined process type with added states and transitions

1(1)

redefined

C

[Enable,
Disable]

block type BlockingAccessPoint
inherits AccessPoint

Controller

redefined
process type

dashed gate

1(1)

finalized

lsc:
Controller

LogDevice
[(validity),Code]

L
LD

Controller

block type LoggingAccessPoint
inherits AccessPoint

dashed
process
set

finalized
process
type

block type heading
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 16

Overview of SDL
Subtypes 13TIMe
Open figure

Figure 13-12: Finalised process type

redefined process type

inherits <<block type AccessPoint>> Controller

*

Disable

BlockDoor

BlockDoor

blocked

blocked

Idle

U
[Disable,Enable]

 <<block type BlockingAccessPoint>> Controller

 process type heading

Enable *

procedure
reference

asterisk
state

procedure
call

asterisk
save

dashed
gate
Tutorial on SDL 13 - 17 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of SDL
Composing behaviour of processes by means of services

TIMe13

Open figure

Composing behaviour of processes by means of services

If it is known that a component of the system has separate activities, each with their
behaviour and possibly with local variables like processes, and if they should not exe-
cute concurrently, then the component may in SDL by represented by a process that
consists of services representing the activities.

As an example consider the Panel process, with CardReader, Keyboard, Display, and
PanelControl as separate activities but not executed concurrently. This is specified in
Figure 13-13 (p.13-19).

In addition to services, the combined process may have variables. Services in one pro-
cess instance do not execute concurrently with each other; only one executes at a time.
The next service to execute is determined by the incoming signal or by signals sent from
one service to another. Services share the input queue and the variables of the enclosing
process.

Validation

finalized
OK

OK
to cur_panel
via P

Idle

unlockDoor

NOK
to cur_panel
via P

Idle

finalized
NOK

finalized process type

inherits <<BLOCK type AccessPoint>> Controller

OK,
Code(cid,PIN)
via L

NOK,
Code(cid,PIN)
via L

[Code, (validity)]
L

<<block type LoggingAccessPoint>> Controller

process type heading

state

finalised
input

procedure
call

output

gate
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 18

Overview of SDL
Composing behaviour of processes by means of services 13TIMe
Note that the connection points CE and P1 on the frame in Figure 13-13 (p.13-19) are
not gates (the service diagram does not define a type of processes), but simply the names
of the signal routes that connect Panel with the environment (CE) and with the Control-
ler (P1), see Figure 13-2 (p.13-7).

The PanelControl service referenced in Figure 13-13 (p.13-19) is defined by the service
diagram in Figure 13-14 (p.13-19).

Figure 13-13: Process in terms of services

Open figure

Figure 13-14: Service diagram, PanelControl

process Panel

CardReader
[EjectCard]

[InputCard]

[Release-
Card]

[Cid]

Display

[Digit]
Keyboard

[(validity)]

[Code]

P1

CE

signal
ReleaseCard,
Cid (integer),
Digit(integer),
xOK,xNOK,xERR ;
signallist xvalidity = xOK,xNOK,xERR ;

/* PanelControl TO CardReader */
/* CardReader TO PanelControl */
/* Keyboard TO PanelControl */
/* PanelControl TO Display */

CR

PC

K

C

D

[(xvalidity)]

[display]

[keys]

Y

B

R

PanelControl

service
signalroute

signal list

text
symbolsignal definitions
Tutorial on SDL 13 - 19 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Overview of SDL
Specifying properties of variables: data types

TIMe13

Open figure

Specifying properties of variables: data types

As mentioned already processes and services have attributes in terms of variables, and
procedures may have local variables. Variables are declared according to data types.
Signals may carry values of data types.

SDL supports data types by means of abstract data type. A data type defines possible
values, behaviour and operators that can be applied to values of the type. The properties
of data types are defined by means of axioms. SDL supports predefined types including
Character, Boolean, Integer, Natural, PId (Process Instance Identifier), and Real.

It is possible to define data types. This is done by defining the literals and the operators
of the type. Abstract data types defines these by means of axioms. Operators may instead
be defined constructively, that is more or less as a procedures.

dcl pin Integer ; /* the calculated personal identifica-
tion*/

––Idle

service PanelControl 1(1)

Idle

Cid
(cardid)

from
Card
Reader

*

GetPIN
(pin,no_dig)

ERR
to Display

no_dig := 4
easily
configurable

Validate
(cardid,pin)

Validate

Digit

GetPIN
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 20

Overview of SDL
Specifying properties of variables: data types 13TIMe
As an example of a simple user-defined data type, consider the Code signal that contains
a card identification and a personal identification number. Suppose that we find it desir-
able to collect those two pieces of data in one structured type. This is done by the
STRUCT concept:

If AC is a variable of sort AccessCode then we may have the following assignments:

Templates for defining arrays, strings and powersets are also provided.

NEWTYPE AccessCode

STRUCT

cardid, pin Integer ;

AC!cardid := 1234 ;

temp_pin := AC!pin ;
Tutorial on SDL 13 - 21 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL as an object oriented language
Objects

TIMe13
SDL as an object oriented language

This part of the tutorial provides you with a presentation of SDL as seen from an object
orientation perspective. The idea is that you have some kind of understanding of what
object orientation is and want to know what the correspondence is in SDL.

The entry to the material is made by means of terms that are more or less well-estab-
lished as terms within object orientation. Popup menus will lead you to the
corresponding elements in SDL. In case there are several alternatives, you either know
what you are looking for, or you consult the “in general” entry, which will give you our
understanding of the object orientation term and then the mapping to SDL.

The different concepts are illustrated by SDL examples. When reading this interactively,
it is recommended, when looking up the example for the first time, to open it in a sepa-
rate window (shift click) - subsequent references to examples will then simply show the
examples in this second window. You will have two windows: one with this text and one
with the example.

This part of the tutorial may also be used in cases where you have made an object ori-
ented analysis in some other language or notation and now want to make the more
formal specification or design in SDL.

If you want some background information on the object oriented approach behind SDL,
look at Object oriented approach behind SDL (p.13-34).

Objects

As part of object modeling, components of the real world systems (or anticipated such)
are identified and selected properties are described. These components are modeled by
objects. Objects may be classified into categories of objects (modelled by classes) and
into subcategories (modelled by subclasses).

• object

• attributes (instance variables)

• methods

• behaviour

• object interaction

• interfaces

• class

• subclass/inheritance

• aggregation/part-whole

• localisation of definitions

• class libraries

• parameterised classes
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 22

SDL as an object oriented language
Objects 13TIMe
The corresponding is done in SDL, just in other terms: SDL systems consist of instances.
The classification of components into categories and subcategories is in the SDL system
represented by types and subtypes of instances (see Subclass/inheritance (p.13-29)).

If you are interested in the approach to object orientation behind SDL, have a look at
Object oriented approach behind SDL (p.13-34).

An SDL system consists of a set of instances. Instances may be of different kinds, and
their properties may either be directly defined or they may be defined by means of a
type. If it is important to express that a system has only one instance with a given set of
properties, then the instance is specified directly, without introducing any type in addi-
tion. If the system has several instances with the same set of properties, then a type is
defined, and instances are created according to this type.

If you have an object that should act concurrently with other objects, then you are look-
ing for a Process (p.13-23) in SDL, and if you have classes of these you should define a
Process type (p.13-29).

If you have objects that each contain several concurrent activities, then represent these
activities by processes, and each container object by a Block (p.13-23). If you have
classes of these define a Block type (p.13-29).

Process

Processes are objects that perform concurrently with other processes and communicate
by sending signals or by remote procedure calls. Processes are the main objects of SDL.
Classes correspond to process types.

A process instance is part of a process set, which in turn is part of a block. The fact that
a process set is part of block is described by a process reference. Properties of processes
are either described directly by a process diagram, defining a set a processes, or by
means of process type diagram, defining a type of processes, see Process type (p.13-29).

Service

A service object is an instance that is an integral part of a process. Services alternate exe-
cuting, depending on incoming signals to the container process.

The properties of a service are either described directly in a service diagram, describing
on single service as part of a process, or they are defined by a service type diagram,
defining a Service type (p.13-29).

Block

A block is an object that contains other blocks or processes; in addition it may contain
local definitions of types, e.g. signal types, data types, procedures, process types and
block types. A block does not have variables, so it is not possible to represent state-car-
rying objects by means of blocks.

A block is either described directly in a block diagram or a type of blocks is described
by a block type diagram, see Block type (p.13-29).

Example

Example

Example
Tutorial on SDL 13 - 23 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL as an object oriented language
Attributes

TIMe13

System

A system object is the outermost object containing the blocks of the system connected
by channels. In addition the system may have definitions of types, but it may not have
instance variables - global, shared variables have to be global variables of shared
processes.

A system is either described directly in a system diagram or a type of systems is
described by a system type diagram, System type (p.13-29).

Variable

A variable is the association of a name and a value of some data type. Variables are only
part of processes and services, and as local variables of procedure instances, but they are
not part of blocks and systems.

Data types defines operations that may be performed on values (objects) of these types.

Attributes

In addition to methods, objects have data item attributes. These are often just variables
of some predefined types (having values, that represent part of the state of the object)
and object references, that is variables that denote other objects. Some languages also
provides variables of user-defined classes.

Most object oriented languages follow the approach that instance variables should not
be accessed directly from other objects, but only via methods. Variables used in this way
thereby become part of the implementation of the class, while the interface of the object
is represented by the methods.

Methods may also have local variables that are used as auxiliary variables.

In SDL process and service instances may have variables, while systems and blocks can
not have variables. It is possible to access variables of processes from other processes,
but it is recommended to access them either through Exchanging signals (p.13-28) or
through Calling remote procedures (p.13-28). Shared variables must therefore be vari-
ables of some shared processes.

Procedures may also define local variables.

Variables are declared in text symbols.

Types may be user-defined, see Specifying properties of variables: data types (p.-24)
for a short introduction.

Predefined
types

In addition SDL has predefined types which are quite similar to those we are used to
from programming languages. The common predefined types are: Boolean, Character,
Charstring, Integer, Natural and Real.

PId Object references are in SDL supported by variables of the predefined type PId. PId
variables may denote processes of any process type, so object references in SDL are not
typed.

Example

Example
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 24

SDL as an object oriented language
Methods 13TIMe
Methods

Methods of objects are properties that define possible behaviour patterns that the object
may apply to the data item attributes and thereby change the state information of these.

The main kind of SDL entity corresponding to an object is a process. A process may
have procedures and functions (that is value returning procedures) defined as part of its
definition. Such procedures may be executed by the process itself, and if exported they
may be requested by other processes (see Calling remote procedures (p.13-28)).

Procedures may also be defined in block and in systems (see Globally defined proce-
dures (p.13-26)) ; they may then be executed by those processes that are defined within
these blocks/systems. Procedures may also be defined in a service; they may only be
executed by the service itself.

Procedures

Procedures defined locally to a process or service or globally in a block, system or pack-
age are intended for decomposition of the behaviour specification into partial action
sequences. In order for a procedure to represent a property of a process, so that other pro-
cesses may request its execution, the procedure must be exported by the process, see
Remote procedures (p.13-26).

Procedures work much the same way procedures in programming languages. They have
value parameters (in, out, in/out) and a procedure defined locally to a process or service
may manipulate variables of the enclosing process/service. and thereby have side-
effects.

Procedures defined in types and inherited in subtypes can only be redefined if they are
defined as virtual procedures (see Virtual procedures/functions (p.13-25)), while ordi-
nary procedures are guarantied to have the same effect for all subtypes.

A procedure is a type in itself, and as such can be based on another more general proce-
dure by specialization. This holds for procedures in general, that is for both ordinary
procedures, exported, virtual, and value returning procedures. See Inheritance of behav-
iour (p.13-31) for the details on how this works.

Functions - i.e. value returning procedures

Value returning procedures are procedures that can be called as integral parts of expres-
sions. Value returning procedures can be used very much like an operator, but they may
contain states just like an ordinary procedure (while operator diagrams cannot).

Virtual procedures/functions

Most object-oriented languages have virtuals in terms of virtual procedures. BETA has
in addition virtual classes. Some languages, e.g Smalltalk, do not distinguish between
virtual and non-virtual procedures (all methods are virtual and may be redefined in sub-
classes), while e.g. BETA, C++, Eiffel, and SIMULA distinguish. SDL dis.fmtinguishes
between virtual and non-virtual procedures (and types in general - see Virtual classes/
types (p.13-33)). The rationale for the distinction is that the designer of a general

Example
Tutorial on SDL 13 - 25 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL as an object oriented language
Behavior

TIMe13

(super)class may want to ensure (in order for it to work) that some of its procedure
attributes should not be redefined in subclasses. Distinguishing between virtuals and
non-virtuals is the most general approach, as a special case of this is simply to specify
all to be virtual.

A virtual procedure is defined by a procedure diagram, where the procedure heading
starts with the keyword virtual and optionally has a virtuality constraint specified. A
virtuality constraint for a procedure is the name of another procedure. The procedure
diagram is otherwise as an ordinary procedure diagram.

A virtual procedure is redefined in a subtype of the type containing the virtual procedure
by a procedure diagram with a procedure heading starting with the keyword redefined
or finalized and with the same name as the virtual procedure. If the virtual procedure
has a virtuality constraint, then then the redefinition must be a procedure that is special-
isation of the constraint procedure.

Globally defined procedures

Procedures may be defined in packages, systems and blocks, even though they have to
be executed by processes, services or other procedures.

Remote procedures

Remote procedures are supported by server processes exporting a procedures, client
processes importing procedures (their signatures) and calling remote procedures.. In
addition the procedures are specified in a context enclosing both client and server.

The exporting process can control in which states it will accept the remote request. It
may also specify to save the request to other states.

The calling of the remote procedure is indistinguishable from local procedure calls
unless the caller explicitly states the client process.

Remote procedures may be value returning (as in our example above) and they may be
virtual.

For details on remote procedures, see remote procedures.

Behavior

Most object oriented languages assume that behaviour is only associated with methods
of objects and that a method of an object may be executed whenever some client object
needs the effect of the method. In cases where this is not really the case, the methods are
described in order to take this into account. Special methods are executed as part of the
construction/deletion of objects, but apart from this the object itself has no specified
behaviour.

A few languages support objects with individual behaviour. This is especially languages
that also supports concurrency and where e.g. the synchronisation between objects are
described as part of the behaviour of the objects and not of the methods.
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 26

SDL as an object oriented language
Object interaction 13TIMe
Some object oriented analysis methods recommend that the behaviour of important
objects are described by state/transitions diagrams, where important states are identified
and events that cause transitions between states and corresponding method execution are
described.

SDL (by objects of kind process and service) belongs to the class of languages where
objects have individual behaviour.

Process behaviour by Finite State Machine

Process behaviour in SDL is defined by means of Extended Finite State Machines
(EFSM). As such it fits with analysis methods that recommend the state/transition dia-
grams for important objects.

Process behaviour is described in the so-called process graph, with states and transi-
tions. In a given state a process may input a number of signals, and the consumption of
a signal leads to the execution of the following transition and entering the next state.

Process behaviour by service composition

Sometimes it can be useful to describe the behaviour of a process as a number of partial
behaviours. Instead of specifying the complete behaviour of a process type, it is possible
to define partial behaviours by means of service types. A process type can then be
defined as a composition of service instances according to these service types. In addi-
tion to services, the combined process may have variables. Services in one process
instance do not execute concurrently with each other; only one executes at a time. The
next service to execute is determined by the incoming signal or by signals sent from one
service to another. Services share the input queue and the variables of the enclosing
process.

Object interaction

Most object oriented languages support only one thread of action and have method call
and direct instance variable access as the only kinds of object interaction. Some lan-
guages provide mechanisms for concurrent objects (with several threads) and
corresponding mechanisms for either non-synchronised message passing or synchro-
nised (remote) procedure call.

SDL belongs to the second class of language. Processes execute concurrently. The
behaviour of each process is represented by a Finite State Machine (see Behavior (p.13-
26)). Processes interact either by Exchanging signals (p.13-28) or by Calling remote
procedures (p.13-28).

SDL models independent behaviours as (the behaviour of) concurrent processes.

The essential information one wants to convey in SDL models, is not the independence,
however, but the dependency between systems. It is mutual dependencies that give sys-
tems purpose and meaning. Hence, a precise and unambiguous definition of mutual
dependency is the prime concern. For this reason, all dependencies are modelled explic-
itly as signals interchange between the processes and their environments. There is

Example

Example
Tutorial on SDL 13 - 27 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL as an object oriented language
Class

TIMe13

basically no way a process and its environment may influence each other apart from
sending signals through the signalroutes/channels that link the process and its environ-
ment together.

Exchanging signals

Processes in the system and the environment communicate with each other by sending
signals through the signalroutes and channels. There are no shared data to be found out-
side the processes, so signals are the only means for processes to communicate. There
is no way for one process to directly manipulate another process.

There is no priority among signals; signals arriving at a process will be merged into one
single queue in the order in which they arrive. There is one and only one signal input
queue associated with each process. This queue is called the .i.input port;. If two signals
arrive at the same time, the conflict is resolved by selecting an arbitrary sequential order.
Signals from independent sources may arrive in any order.

Calling remote procedures

In addition to the sending of signals, processes can interact by means of remote proce-
dure calls. Such procedures must be defined as remote procedures: the server processes
must export the procedures, the client must import them. In addition the procedures are
specified in a context enclosing both client and server. This makes the signatures of the
procedures known to both server and client.

The calling of the remote procedure is indistinguishable from local procedure calls
unless the caller explicitly states the client process.

For details on remote procedures, see remote procedures.

Gates

Object interaction is often based on objects having an interface or a set of interface in
terms of signatures of methods.

The corresponding mechanism in SDL is the gate. In order for processes in process sets
to exchange signals, the process sets must be connected by signal routes, and the enclos-
ing blocks and block sets must be connected by channels. Services as part of processes
are also connected by signal routes.

When defining types of blocks, processes and services, the possible connection points
for channels/signal routes are defined as gates. A gate can be specified to be one-way or
two-way gates, and for each of the directions it can be specified which signals may be
accepted/sent.

Class

The classification of system components into categories of components is in object ori-
entation modelled by classes. The corresponding notion in SDL is a type (of instances).
A type defines the common properties of a category of instances. Each instance has its

Example
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 28

SDL as an object oriented language
Subclass/inheritance 13TIMe
own identity and its own set of properties, e.g variables with different values. A type is
not a set of instances: SDL has separate constructs for defining sets of instances (see pro-
cess sets, block sets).

Most object oriented languages (and also analysis methods) provide only one kind of
object, and correspondingly only one kind of class. This is not the case n SDL. Look at
Objects (p.13-22) to get a description of which kinds of objects that are supported by
SDL. Depending upon the kind of the category of component you are supposed to model
by a corresponding kind of SDL type of instance.

Process type

A class of concurrent, message passing objects is in SDL represented by a process type.

Service type

A class of alternating components within a concurrent object (process) is in SDL repre-
sented by a service type.

Block type

A class of container objects is in SDL represented by a block type.

System type

A class of whole application-objects is in SDL represented by a system type.

Abstract Data Type

Classes or types defining the properties of attributes/instance variables are in SDL rep-
resented by Abstract Data Types. This mechanism allows you to define types by means
of values (literals), operation signature and behaviour by means of axioms. For a short
introduction see Specifying properties of variables: data types (p.-24).

Subclass/inheritance

Classes allow to model concepts from the application domain and to represent the clas-
sification of similar objects. Specialisation of general concepts into new more
specialised concepts is in most object oriented languages represented by subclasses.
Subclasses are said to inherit the properties specified in the superclass.

The language mechanisms for this in SDL are specialisation of types by means of inher-
itance, virtual types and virtual transitions.

A (sub)type may be defined as a specialisation of another (super)type. A subtype inherits
all the properties defined in the supertype definition, it may add properties and it may
redefine virtual types and virtual transitions. Added properties must not define entities
with the same name as defined in the supertype (within the same entity class).

Example

Example

Example
Tutorial on SDL 13 - 29 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL as an object oriented language
Subclass/inheritance

TIMe13

A parameterised type can also be specialised. All properties of the super type, including
formal parameters and context parameters,are inherited. A subtype definition may add
formal parameters, context parameters, and other properties.

Only types and parameterised types can be used as supertypes, including procedures. It
is not possible to inherit from a single block definition, from a process set definition, or
from a service definition.

Inheritance

Below follows a list of possible ways of inheritance and redefinition of properties
defined in the superclass.

• Inheritance of attributes

Most language support simple inheritance of attributes (data items, part objects).
Some languages allow additional attributes defined in a subclass to override
attributes defined in the superclass (redeclaration of attributes), while other lan-
guages do not allow this.

SDL doe.fms not allow redeclaration of attributes. Only type attributes defined as vir-
tuals can be redefined.

For the details on this in SDL look at Adding properties (p.13-31).

• Redefinition of methods

Some languages (like Smalltalk) allow that all methods may be redefined in sub-
classes, while other languages (like C++ and Eiffel) require that these methods shall
be defined as virtual entities. The rationale behind this is that the specifier of a super-
class may want to assure that some crucial methods are not redefined, because other
methods may depend on them.

SDL requires that types, procedures, and transitions shall be defined as virtual enti-
ties in order to be redefinable in subtypes.

• Inheritance of actions

Most languages do not support inheritance of actions. The prime reason for this is that
most languages support only objects with attributes, so that all actions are associated
with procedure/method attributes. And inheritance for procedures/methods are usu-
ally not supported.

Some concurrent languages support objects with actions (that is process objects
where each object has its associated sequence of actions that is executed concurrently
with the action sequence of other objects). They support inheritance of attributes, but
not of actions.

Specialisation of actions may be done in two different ways:

• specializing the effect of an action, or
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 30

SDL as an object oriented language
Class libraries 13TIMe
• specializing the ordering of partial action sequences comprising an action.

SDL provides the second alternative, see Inheritance of behaviour (p.13-31).

Adding properties

A subtype may define properties that come in addition to those inherited from the super-
type. Such added properties are not allowed to have the same names as an inherited
properties of the same kind.

When adding block sets, process sets or services, these must be connected to block sets,
process sets or services that are inherited. In order to distinguish between these in the
graphical representation, the inherited elements are dashed. The same holds for dashed
gates: it is not only possible to connect new elements to them, but is it is also possible
to add to the constraint of the inherited gate.

Redefining virtuals

A virtual type (that is block-, process-, service- type or a procedure) in an enclosing type
can be redefined in a subtype of the enclosing type. As part of the virtual type definition,
a virtuality constraint can be defined: any redefinition must then be a subtype of this
constraint. This allows for analysis of type with virtual types, even though the virtual
types can be redefined in subtypes.

Inheritance of behaviour

A subtype of kind process, service or procedure inherits all the transitions of the super-
type, except the virtual transitions that are redefined.

Class libraries

As part of analysis and specification, sets of application specific concepts will often be
identified, and the corresponding classes defined. A common strategy is to collect
related classes in class libraries.

The corresponding element in SDL is a package of type definitions. Types that are only
used in one system will normally be defined as part of the system specification. If a set
of related types are to be used in many systems within a specific application area, then
this set can be represented by a package.

Note that a package is simply a collection of type definitions and as such not existing
when the system is operating. It is a means for organising descriptions and not for struc-
turing systems.

Aggregation/part-whole/containment

Some object oriented languages support the notion of objects being contained in other
objects. Words being used are also aggregation, part-objects.

Example

Example

Example

Example
Tutorial on SDL 13 - 31 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL as an object oriented language
Localisation of definitions

TIMe13

Two major approaches to this are:

1. contained objects are constituent parts of the containing object, that is they are cre-
ated as part of the containing object. A given object can only be part of one object,

2. containment is rather a special relation between two separate objects and a given
object can be part of more than one object. This is e.g. the approach followed in OMT.

SDL has support for (a slight modification of) the first approach, and relations in general
are not supported:

• Blocks are constituent parts of a system or a block. Block are created as part of the
creation of the system and con not be created dynamically

• Processes can only be part of one process set that is part of a block - processes in the
set can, however, be created dynamically,

• Services are constituent parts of processes.

Localisation of definitions

Some phenomena and concepts are only meaningful within the context of a specific phe-
nomenon or concept. Localisation of definitions supports this and gives rise to nesting
of definitions.

Most object oriented languages only provide flat name spaces, with one large set of class
definitions, with locally defined methods. Only few languages provides class definitions
within class definitions, and few languages provides any other mechanism for enclosing
a set of related object and class definitions.

SDL def.fminitions may be nested and thereby support localisation. Type definitions
may, be located where it is most convenient, as long as they are visible from they are
supposed to be used. If identified types in an early stage should be specified as part of
the system specification (and not yet as part of a package), they may simply be defined
at the system level, without considering where they in fact belong. General types of e.g
processes and procedures can be defined at system level, in order to be used in several
blocks of the system. More special types should be defined where they are used.

A package of types is the ultimate example on non-localised type definitions, while
exported procedures will most often be defined locally to the process (type) that exports
it. Signals are often defined in the nearest enclosing block in which they are used
between processes. Context parameters (see Parameterised classes (p.13-33))provide
the mechanism to make a type definition independent on the enclosing scope.

System structure in terms of instances implies relations between instances, while local-
isation implies a relation (is-local-to) between definitions. Localisation is in SDL
supported by nesting of definitions, and it forms the basis for scope-rules and visibility
rules.

An SDL specification consists of definitions of entities of the different entity kinds (for
a list of entity kinds, see entity kinds).

Some definitions may contain definitions of other entities (nesting) and will therefore
form the scope units for these entities. (for a list of scope units, see scope units).

Example

Example

Example
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 32

SDL as an object oriented language
Parameterised classes 13TIMe
As part of the definition of an entity, the name of the entity is defined. Entities defined
in the same scope unit and belonging to the same entity kind must have different names,
while entities of different kinds may have the same name. As an example a procedure
and signal defined in the same scope unit may have the same name. While it is some-
times convenient to be able to reuse a name in this way, it should not be done too much-
--readers may otherwise easily be confused.

Entities defined in a scope unit are visible in this scope unit and in all nested scope units.
A signal defined in a block is e.g. visible in the block definition itself (where it can be
used in the specification of channels), and it is visible in an enclosed process type defi-
nition (where it can be used in outputs).

When several definitions in nested scope units have the same name, the name will refer
to the definition in the innermost scope unit (starting with the one containing the use of
the name). In order to refer to one of the other definitions with the same name, a quali-
fied identifier must be used.

Parameterised classes

This is not covered in this version, since it is not supported by tools.

One way out

Some object oriented languages support classes/types as parameters to classes. The
class/type parameter may be used almost as an ordinary class/type. Depending upon the
language it is possible to perform independent analysis of such a parameterised class.

The notion of context parameters provide one kind of parameterisation of types in SDL,
but it does not cover block- and process types as type parameters to block types. This,
is however, covered by a special application of virtual block- and process types.

A block type BT that has to have a process type PT as parameter is defined so that PT is
a virtual process type in BT, with a constraint C that matches the use of PT in BT. When
an actual process type APT should be provided to BT, this is done by defining a subtype
SBT of BT and redefining the virtual process type PT to a subtype of APT. If just the
parameter binding is desired, then this subtype adds nothing to APT, but in general it is
possible to add properties in the subtype of APT. The requirement on APT is that it is a
subtype of C.

Virtual classes/types

Most languages only support virtual procedures, or methods that may be redefined in
subclasses. If a class shall be parameterised by a type or class, then a separate notion of
type parameters is introduced.

SDL provides the notion of virtual types in general, and not just virtual procedures.

The general rule is that if a type of a certain kind can have definitions of types of differ-
ent kinds, then it can have definitions of virtual types of the same kinds. This means that
you can define
Tutorial on SDL 13 - 33 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL as an object oriented language
Object oriented approach behind SDL

TIMe13

• system types with virtual block-, process-, service types and virtual procedures,

• block types with virtual block-, process-, service types and virtual procedures,

• process types with virtual service types and virtual procedures,

• service types with virtual procedures, and

• procedures with virtual procedures.

A virtual type has in addition to the definition (e.g. in terms of behaviour in terms of a
process graph) also a virtuality constraint. This will be a type of the same kind as the
virtual type, and the simple rule is that any redefinition shall be a subtype of the
constraint.

The constraint of a virtual type is used in the analysis of the use of the virtual type in the
enclosing definition, and the idea is that a virtual type can only be used according to its
constraint. In general a constraint type is a general type and can as such contain whatever
a type may contain, but the normal cases are

• for virtual block types: gates, so that block sets of the virtual block type can be cor-
rectly connected;

• for virtual process types: gates, so that process sets of the virtual process type can be
correctly connected, and formal parameters, so that instances can be created with the
correct set of actual parameters (in fact a virtual process type redefinition cannot add
formal parameters for the same reason);

• for virtual service types: gates, so that instances can be connected correctly;

• for virtual procedures: formal parameters, so that the virtual procedure can be called
correctly, and for the same reason a redefinition of a virtual procedure cannot add for-
mal parameters.

For details on the the redefinition of virtual types, see Redefining virtuals (p.13-31).

Object oriented approach behind SDL

The benefits of object orientation range from the underlying philosophy of modelling
the phenomena in the form of objects, to the compactness of descriptions achieved by
the use of the inheritance and specialisation mechanisms. Hence, there are two separate
ideas that go under the name of object orientation and both are part of the object orien-
tation presented here:

1. The notion of objects. It conceives each object as being characterised by data items
carrying state information, by local patterns of action sequences (procedures, meth-
ods) that the object may apply to these data items and by an individual sequence of
actions that the object may execute on its own.

2. The objects are active objects and not just passive data structures with associated
operations. In order to directly model the different kinds of action sequencing found
in a large class of application areas, the approach includes the execution of objects
as part of other objects (as is the case for procedures and methods), as alternating
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 34

SDL as an object oriented language
Object oriented approach behind SDL 13TIMe
(one at a time) with other objects and as concurrent with other objects. An essen-
tial property is that objects have a well-defined interface that hides the internal
structure of data items and action sequences from the environment.

3. The notion of hierarchical types. The approach makes a sharp distinction between
classes and objects. (Other words commonly used are types and instances.) Objects
are carriers of state information and behaviour, while classes are patterns defining
common structure and properties of objects. A class is not regarded as a set of
objects, but as a definition of a category of objects. Classes do not contribute to
the total state of a system, but help in organizing objects in type hierarchies. Objects
model the phenomena of the application area, while classes model the types. The
importance of this aspect is that it provides effective support to reuse.

Reuse of components requires language mechanisms to support composition and adap-
tation of reusable components. Object-oriented concepts give answers to both of these:
composition by clean interfaces between classes of objects and adaptation by inherit-
ance and specialisation. The notion of objects and type hierarchies also promotes the
definition of general classes that may be reused in many different applications.
Tutorial on SDL 13 - 35 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Introduction to the example

TIMe13
SDL by example

This part of the SDL tutorial leads you through SDL by means of an example. You will
learn about the various elements of SDL by clicking on the desired elements in the dia-
grams. In case parts of a diagram reference other diagrams, e.g. process references,
clicking the name (in underlined blue or red) will follow the reference and bring you to
the referenced diagram.

If you want to be lead through the example top down, start with System diagram, Access
Control System (p.13-38) and follow the diagram references from there.You may alter-
natively choose to look at the kind of diagram you want to learn about.

 Introduction to the example (p.13-36) gives a short, informal introduction to the exam-
ple being used throughout.

• Package diagram, SignalLib (p.13-40)

• Package diagram, AccessPointLib (p.13-42)

• Block type diagram, AccessPoint (p.13-44)

• Block type diagram, BlockingAccessPoint (p.13-47)

• Block type diagram, LoggingAccessPoint (p.13-49)

• Process type diagram, Controller (p.13-51)

• Process type diagram, redefined Controller in BlockingAccessPoint (p.13-57)

• Process type diagram, finalised Controller in LoggingAccessPoint (p.13-59)

• Process diagram, Panel in terms of services (p.13-60)

• Service diagram, PanelControl (p.13-62)

• Procedure diagram, GetPIN (p.13-63)

Introduction to the example

The purpose of access control systems is in general to control the access to some service
to people with known identity, represented by cards and personal codes. In this specific
example the system shall control access to access zones by controlling the opening of
doors.

Each card holds a unique Card-code that identifies the card. To grant access the system
will read the Card-code and then check the corresponding access right. For additional
authentication, the user will be asked to enter the secret personal number (PIN).

Figure 13-15: Panel and card of an access control system
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 36

SDL by example
Introduction to the example 13TIMe
Open figure

The card is a plastic card with a magnetic strip holding a card code and possibly an
encrypted PIN code. The physical appearance of the panel and the card is shown in Fig-
ure 13-15 "Panel and card of an access control system" (p.13-36). Each panel represents
an Access Point.

The main service demanded by the user is to gain access when the card and code is pre-
sented to the system, and to deny access if an attempt is made to enter at an access point
where the user is not authorised to pass.

A typical access control system will consist of a number of access points and a central
unit where validation is performed. Some access points are so-called blocking access
points, that is access points that may be blocked by an operator, so that access is denied
even with a valid card and code, until the access point is enabled again. Other access
point may have the property that they log what is going on at the point.

In order to illustrate as many mechanism of SDL as possible, the example system will
consist of three sets of access points, each of a different type. In a real access control
system one may choose to give all access points the possibility of being blocked and of
logging.

INSERT YOUR CARD

1 2 3

4 5 6

7 8 9

0 cancel

LQVHUW�FDUG�KHUH

S
E
S
A
M

S
E
S
A
M

I
N
C

Tutorial on SDL 13 - 37 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
System diagram, Access Control System

TIMe13

System diagram, Access Control System

Figure 13-16: System diagram for access control system with three types of access points

Open figure

In SDL a system is defined by means of a system diagram. By making a system diagram
it has been decided what is part of the system and what is part of the environment of the
system.We choose to design the access control system such that the access terminals
(called AccessPoints) are within the system, while the users actually getting access are
outside the system. The CentralUnit containing the access rights is within the system,
while for our current purpose, how the access rights information got into the CentralUnit
is not described.

Before drawing this border between the system and the environment and thereby decid-
ing what should be part of the system, a domain analysis will normally have taken place,
different solutions will have been considered and different sketches of the system will
have been tried out.

In this presentation, the final system description is presented top-down, in order to
present the various SDL language elements.

SYSTEM AccessControl 1(1)

CE

C[(inp)][(outp)]

[(validity)] [Code]

CF

[(validity),
Enable,
Disable]

[Code]

CB

CG

CL

ap(100):
C

bap(20):
e C

lap(20):
e C

[(validity)] [Code]

[(inp)][(outp)]

[(inp)][(outp)]

Blocking
AccessPoint

e

Logging
AccessPoint

CentralUnit

use AccessPointLib/AccessPoint,BlockingAccessPoint,LoggingAccessPoint ;

use SignalLib;

AccessPoint

channel
block set according
to a block type

signal
list

package reference

block (single)
system.diagram
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 38

SDL by example
System diagram, Access Control System 13TIMe
This Access Control system consists of one single block (CentralUnit) and three block
sets, that is sets of blocks according to block types, connected by channels. It commu-
nicates with the environment that is supposed to behave like processes representing the
users of the system, the operators and the controlled physical panels and doors at the
access points.

System A system is in general a set of blocks, block sets and channels. Blocks and block sets are
connected with each other or with the environment of the system by means of channels.
This means e.g that there may not be processes directly as part of the system and systems
will not have global variables.

Environ-
ment

For the system the environment consists of a set of SDL processes that may send signals
to the system and which may receive signals from the system. The signals for this pur-
pose are defined in the system or, as here, in a package (Package diagram, SignalLib
(p.13-40)) used by the system. The users of the system are thus regarded as processes in
the environment.

Block A block is created as part of the creation of the enclosing block or system. All blocks are
created as part of the system creation, that is there is no dynamic creation of blocks.

The CentralUnit block is specified directly (singular block), while the
other blocks of the system are parts of block sets according to block
types. The symbol with CentralUnit is also a reference to a block dia-

gram that describes the properties of the block.

Note that the block reference is merely a graphical shorthand for diagrams. Block refer-
ences may be substituted by block diagrams, but the surrounding diagrams would be
very crowded and illegible if diagrams could not be remotely referenced by block refer-
ences. The reference defines the scope of the name.

block set Type-defined blocks are contained in block sets. A block set is a fixed
number of blocks with properties according to a block type. The set of
AccessPoints is called ap and the number (100) designates the cardi-
nality of the set. A channel connected to a block set (via the gates e or

C) will actually represent a set of channel instances.

A block set is not a reference (as CentralUnit). It defines a set of block instances, but it
relies on the definition of the block type AccessPoint. This block type definition is not
part of the system, but part of the Package diagram, AccessPointLib (p.13-42) and
defined in Block type diagram, AccessPoint (p.13-44).

channel Blocks and block sets are connected with each other and with the environment by means
of channels. A channel is a one-way or two-way directed connection. It is characterised
by the signals that it may carry. A channel has a signal list for each direction.

If there is no channel between two blocks, then processes in these two blocks cannot
communicate by signal exchange. Processes may, however, communicate by means of
remote procedure calls without channels connecting the enclosing blocks.

delaying
channel

A delaying channel is specified by a channel symbol with
the arrows at the middle of the channel.

CentralUnit

ap(100):
AccessPoint

� �

C

[(validity)] [Code]
Tutorial on SDL 13 - 39 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Package diagram, SignalLib

TIMe13

The delay of signals is non-deterministic, but the order of signals is maintained.

non-delay-
ing channel

A non-delaying channel is specified as folows, that is with
the arrows at the endpoints. Associated with each direction
of a channel are the types of signals that may be conveyed

by the channel. The list enclosed by the signal list symbol can be signals (as e.g. Code)
or signal lists (as e.g. validity) enclosed in ().

Channels connected to the frame symbol represent the connections to the environment.

package
reference
clause

A package reference clause specifies that a system dia-
gram or package diagram use the definitions of other
packages. The names following the “/” after the package
name denotes the subset of the definitions that are used.

The system uses the types defined in the packages SignalLib and the denoted types
(AccessPoint, BlockingAccessPoint and LoggingAccessPoint) from the Access-
PointLib package.

Package diagram, SignalLib

Figure 13-17: Package diagram SignalLib

C

[(validity)] [Code]

use AccessPointLib/...
use SignalLib;
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 40

SDL by example
Package diagram, SignalLib 13TIMe
Open figure

This package defines all the signals being used in the access control system.

Defining a package SignalLib makes all the signal type definitions become globally
defined, and they may be used by more than one system (without “copy-paste”). It is of
course possible to let additional signals be defined locally in order to restrict the contexts
in which they will be used.

package A package is a collection of types, defined by a package diagram. A package may in gen-
eral contain definitions of types, data generators, signal lists, remote specifications and
synonyms. Definitions within a package are made visible to a system definition or other
package definitions by a package-reference-clause (use clause).

The package in Figure 13-17 (p.13-40) only contains definitions of signals.

signal
definition

A signal definition defines a set of types of signals. A signal instance is a flow of infor-
mation between processes, and is an instantiation of a signal type defined by a signal
definition. A signal instance can be sent by either the environment or a process.

Signals may carry data values. The types of the values are specified as parameters of the
signal definition. The signal Code defined in Figure 13-17 (p.13-40) is defined to carry
two integer values.

package SignalLib

/* Signal definitions for BlockingAccessPoint communication */
signal
Disable,
Enable ;

/* CentralUnit to
/* CentralUnit to

BlockingAccessPoint */
BlockingAccessPoint */

signal opened,closed ; /* Door to Controller */
signal open, close ; /* Controller to Door */

/* Signal definitions within AccessPoint */

/* Signal definitions for AccessPoint communication */
signal
eject-card, lock, unlock
input-card, isOpen, isClosed
display,
keys;
signal Code(integer,integer);
signal OK,NOK,ERR ;

signallist validity = OK, NOK, ERR ;
signallist outp = EjectCard, display;
signallist inp = InputCard, keys ;

/* AccessPoint
/* ENV
/* Display
/* ENV
/* AccessPoint
/* CentralUnit

to ENV */
to AccessPoint*/
to ENV */
to Keyboard */
to CentralUnit */
to AccessPoint */

package diagram

signal definitions

signal list definitions

signal definitions
Tutorial on SDL 13 - 41 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Package diagram, AccessPointLib

TIMe13

Signals may be defined in system and block diagrams, and these may then be used for
communication between the blocks of the system or the processes of the block. Signals
may also be defined in process (type) diagrams, but then they can only be used for com-
munication between processes of the same set. Often signal definitions are collected in
packages.

signal list Often the lists of signals associated with channels and signal routes are quite compre-
hensive and diagrams become crowded. The notion of signallist helps on this. A
signallist is a list of signals which has been given a name. Validity, inp and outp are sig-
nallists defined in the package and used in the system diagram.

text symbol Text symbols are used in order to have textual specifications as part of
diagrams, especially for specification of signal types, data types and
variables.

There is no limit to the number of text symbols that may occur in a diagram. Text sym-
bols are not connected to other symbols by flow lines.

The text symbol is also used for the graphical representation of a use clause, see Figure
13-17 (p.13-40).

Package diagram, AccessPointLib

The AccessPointLib package uses the signals defined in the package SignalLib (by the
use clause) and defines three block types.

Figure 13-18: Package diagram AccessPointLib

Open figure

package AccessPointLib

AccessPoint BlockingAccessPoint

use SignalLib ;

LoggingAccessPoint

package reference

package.diagram
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 42

SDL by example
Package diagram, AccessPointLib 13TIMe
block type
reference

Block types are referenced by means of block type references. Block
types are defined in block type diagrams, and they are referenced by
means of block type references. The block type reference indicates in

which block or system scope unit the block type is defined. The three block type refer-
ences in Package diagram AccessPointLib (p.13-42) indicates that the scope of these are
the package and not a specific system.

Note that the block type reference (as for block references) is merely a graphical short-
hand for diagrams. Block type references may be substituted by block type diagrams.

AccessPoint
Tutorial on SDL 13 - 43 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Block type diagram, AccessPoint

TIMe13

Block type diagram, AccessPoint

The block type AccessPoint defines the properties of a general type of access point in
the system. The other types of access points (blocking and logging access points) are
defined a subtypes of this.

Each access point shall handle the interaction with the user via a panel, communicate
with the central unit and control the door.

Figure 13-19: Block type AccessPoint with virtual Controller process type

Open figure

This block type diagram defines the block type with name AccessPoint in the Access-
PointLib package. Each block instance of this type will consist of three process sets
(Panel, Door, apc). The first two are defined in corresponding process diagrams (they
are really just process references), while apc is a set instances of process type Controller.
The process type Controller is defined as a virtual process type, with the keyword VIR-
TUAL, so that specialisations of AccessPoint may replace that definition with their own
definition.

The Panel takes of the physical panel, the Door process takes care of controlling the
physical door, while the Controller process handles the communication with the Cen-
tralUnit in order to validate users of the access point.

� [(inp)]

[(outp)]

virtual

block type AccessPoint 1(1)

Door

[(validity)]

[code] [opened,

closed]
[open,
close]

[(inp)]

[(outp)]

[(validity)] [Code]

P1

SIGNAL opened,closed ; /* Door -> Controller */
SIGNAL open, close ; /* Controller -> Door */
/* signal lists (inp), (out) and (validity) defined in
enclosing block. This holds also for signal ’Code’ */

CE

CU

D

�

[(validity)]

[Code]

apc:
Controller

� �
�

Controller

Panel

[unlock,
lock] d

[unlock,
lock]

[isOpen,
isClosed]

[isOpen,
isClosed]

blocktype.diagram

gate signal list

text
symbol

block (type) heading

virtual
block type

process signalroute

signal
definitions
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 44

SDL by example
Block type diagram, AccessPoint 13TIMe
Note the identifiers e and C which in the system diagram occurs inside the block set ap.
These identifiers designate gates. Gates are used to indicate which channels of the block
type are supposed to connect to which channel connecting an instance of the type. The
gate names are defined by the type and visible wherever the type name is visible. Note
also that the gate symbols have arrows at the ends and that signal lists are associated with
the arrows. The signallists are constraints on the gates and will ensure that the instances
of the block type are connected properly to their surroundings.

block type A block type defines the common properties for a category of blocks. All block of the
same type will have the same properties, as specified in the block type diagram.

Block types may contain a connectivity graph of block instances connected by channels.
This makes up a structure of nested blocks. At the leaves of this structure there are
blocks which contain processes. Blocks cannot contain both blocks and processes at the
same level.

In addition to containing structures of blocks or structures of processes, block types may
contain other type definitions. This makes up the scoping hierarchy of SDL. Names in
enclosing type definitions are the only names visible.

Block types may contain data type definitions, but no variable declarations. This follows
from the fact that processes in SDL do .fmnot share data other than signal queues. They
share a signal queue in the way that one process appends (output) signals to the queue
(the input port), while the other process consumes (input) signals from the same queue.
Appending and consuming signals are atomic, non-interruptible operations. The input
port is the basic synchronisation mechanism of SDL.

Block types may contain process types, service types and procedures as well as block
types and data types.

block (type)
heading

The heading of block type diagrams defines the name of the block type, possible formal
context parameters, whether the block type is virtual or not and if it inherits from another
block type. The block type in Figure 13-19 (p.13-44) does not have any context param-
eters and it is not virtual.

process
(reference)

A process reference specifies that there is a process set in the enclosing
block and that the properties of this process are defined in a separate (ref-
erenced) process diagram outside this diagram. A process reference is a

shorthand for having the referenced process diagram at this place in the surrounding
diagram.

process set A process set defines a set of processes according to a process type.

Just like we have the distinction between block reference, block type
and block set according to type, we have the distinction between pro-
cess reference, process type and process set according to a type. Our

recommendation is that process sets should be described with reference to a process
type.

While Panel above is a process reference, and thereby a process set without any associ-
ated type, apc is a process set according to the process type Controller and therefore not
a process reference.

Panel

apc:
Controller

�
�

�

Tutorial on SDL 13 - 45 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Block type diagram, AccessPoint

TIMe13

number of
instances

In general process sets may have specified the number of instances in
the set.

The numbers in parentheses after the process set name specifies the
number of instances in the process set. As defined in above, there are

initially no processes, and there is no limit on the number of instances that may be
created.

signal route A signal route represents a communication path between process
sets and between process sets and the environment of the enclos-

ing block/block type.

process
type

A process type defines the common properties of a category of process instances. A pro-
cess type is defined by a process type diagram.

virtual pro-
cess type

A virtual process type is a process type that can be redefined in a sub-
type of the enclosing block type.

The virtuality is specified in the process type heading or by <virtual-
ity> in the corresponding process type reference symbol, as is done here for the process
type Controller.

A redefinition of the process type must be a subtype of the type identified in the virtu-
ality constraint. As specified here the process type reference symbol has no explicit
virtuality constraint, which means that any redefinition will extend the given definition
of Controller (the Controller is its own constraint).

gate A gate is a potential connection point for channels/signal routes when
connecting sets of blocks/processes/services. The same symbol is used
in all cases.

Gates are defined in block/process/service types and used when connecting sets or
instances of these with channels/signal routes.

The signal list associated with the endpoints represents constraints (on incoming/outgo-
ing signals) the gate.

apc(i,m):
Controller

�
�

�

virtual
Controller

�

[(validity)]

[Code]
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 46

SDL by example
Block type diagram, BlockingAccessPoint 13TIMe
Block type diagram, BlockingAccessPoint

Figure 13-20: Block type BlockingAccessPoint as a subtype of AccessPoint

Open figure

This block type defines a block type with name BlockingAccessPoint as a subtype of
block type AccessPoint. It represents access points that may be blocked by some
operator.

BlockingAccessPoints are quite similar to the plain AccessPoints.The only difference is
that the BlockingAccessPoints shall be able to react to signals from the CentralUnit that
plain AccessPoints will not recognise. BlockingAccessPoint will have a Door (which
should not have a new definition), a Panel (which could have a new definition, but need
not have a new definition) and a control process Controller which should be able to do
the extended controlling.

A BlockingAccessPoint is a specialised AccessPoint where Controller is extended. This
is expressed by the INHERITS clause of the block type heading.

The block type diagram specifies that BlockingAccessPoint inherits everything from
AccessPoint, but it adds a redefinition of Controller and it adds two signal types on the
inherited gate C: Enable and Disable. The fact the the gate is inherited is indicated by it
being dashed.

In general, entities defined in supertype, inherited in subtypes and for which some addi-
tional properties have to be specified in the subtype, are called existing entities, and in
the graphical syntax they are dashed entities.

redefined
process
type

A redefined process type is a redefinition of the corresponding vir-
tual process type in the super block type, and it is virtual, so that it
can be redefined in further subtypes of this block type.

A redefinition of the process type must be a subtype of the type identified in the virtu-
ality constraint. In this case the constraint is not explicitly specified; this implies that the
definition of the virtual process type is its own constraint: the redefinition thereby
defines an extension (a subtype) of the virtual process type.

1(1)

redefined

C

[Enable,
Disable]

block type BlockingAccessPoint
inherits AccessPoint

Controller

redefined
process type

dashed gate

redefined
Controller
Tutorial on SDL 13 - 47 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Block type diagram, BlockingAccessPoint

TIMe13

dashed
entity

A dashed entity is the graphical way of representing an entity that is
inherited from a supertype and which needs to be used in the definition
of the subtype. There are dashed block sets, process sets, services and
gates.

The Z.100 terminology is existing entity.

An existing block set/block may be connected by channel, and these will then be there
in addition to those specified in the super type.

An existing process set/service may be connected by signal routes, and these will then
be there in addition to those specified in the super type.

An existing gate can have constraints in terms of signals on the endpoints of the gate
specified, and these are then added to the inherited gate and will then apply in addition
to those of the inherited gate.

In the textual version of a specification, inherited entities are simply identified by name.

�

[Enable,
Disable]
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 48

SDL by example
Block type diagram, LoggingAccessPoint 13TIMe
Block type diagram, LoggingAccessPoint

Figure 13-21: LoggingAccessPoint as a subtype of AccessPoint

Open figure

This block type defines a block type with name LoggingAccessPoint as a subtype of
block type AccessPoint, adding the process LogDevice.

With LoggingAccessPoint it is not sufficient to only modify the Controller, since there
is an addition to the block, namely the LogDevice. The LogDevice must be connected
to the Controller along a signalroute (which is added compared with the supertype
AccessPoint). lsc has been defined in the AccessPoint definition and is dashed here.

We notice the keyword FINALIZED in the process type reference. This has a slightly
different meaning than REDEFINED.

finalised
process
type

A finalised process type is a redefinition of the corresponding virtual
process type in the super block type, and it is not virtual, so that it
can not be redefined in further subtypes of this block type.

A final redefinition of the process type must be a subtype of the type identified in the
virtuality constraint.

A redefined type can be redefined again in yet another specialisation. A finalised type
cannot be redefined. There is a subtle point to making this distinction. Virtual and rede-
fined types are very flexible, but analysis becomes more uncertain since some
components may not be entirely known. Finalised types are not flexible any more, they
are completely known and, therefore, analysis can be certain.

The new signalroute LD indicates that it is not be possible to derive the finalised Con-
troller by only adding a number of new transitions to the basic Controller. In order to get
new transitions, we need either new input signals or new states. The Controller of Log-
gingAccessPoint has neither new signals, which can be seen from the channels to the lap

1(1)

finalized

lsc:
Controller

LogDevice
[(validity),Code]

L
LD

Controller

block type LoggingAccessPoint
inherits AccessPoint

dashed
process
set

finalized
process
type

block type heading

finalized
Controller
Tutorial on SDL 13 - 49 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Block type diagram, LoggingAccessPoint

TIMe13

set of logging access points, nor new states. In fact the LogDevice should be invoked for
most transitions since the requirement was to trace the transactions. Then our need is to
modify (redefine) some of the existing transitions.
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 50

SDL by example
Process type diagram, Controller 13TIMe
Process type diagram, Controller

Figure 13-22: Virtual process type Controller

Open figure

This process type heading defines the process type Controller as a virtual process type.
This means that the process type can be redefined in a subtype of the enclosing block
type.

Plain AccessPoints have their own (default) definitions of Controller.

A Controller process will start executing the start transition. In this case the start transi-
tion is empty and simply leads to the Idle state. The process will remain in the Idle state
until it receives an input signal. It expects to receive a Code signal containing informa-
tion about the card id and personal identity number from the Panel. It may, however, be

to

Central

Validation

Idle

Code(cid,PIN)

/* from Panel */

Code(cid,PIN)
via U

Validation

virtual OK
/* from
Central */

OK
to cur_panel

Idle

cur_panel :=
sender

unlockDoor

unlockDoor

virtual NOK
/* from
Central */

NOK
to cur_panel

Idle

virtual process type Controller

dcl cur_panel PId ; /* current panel whose Code will be validated */
dcl cid, PIN integer ; /* temporary variables for the data attributes of ’Code’ */

1(1)

[Code]

[(validity)]

[opened,closed]

[open,close]

[(validity)]

[Code]
P D U

process type diagram

start

state

input

output

nextstate

task

procedure
call

procedure
reference

variables
Tutorial on SDL 13 - 51 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Process type diagram, Controller

TIMe13

prepared to receive other signals as well. The Idle state is followed by one input symbol
which describes the consumption of the signal Code. If the process is in the Idle state
and signals other than Code are received, they will be discarded.

We have defined three process gates P, D and U with associated process gate constraints.
We note that the enclosing AccessPoint definition uses these gates in connection with
the instance lsc of Controller.

Within the process type diagrams, the gates appear as identifiers in the VIA-clause of
the output symbols.

When we want to analyse the type enclosing the virtual type (here, block type Access-
Point) we wish to know something about the instances of the virtual types even though
we know they may be redefined in subtypes. At least we must know the static interface,
i.e. the gates. Very often we would like to know more about the type and, therefore, the
header of a virtual type may include a virtuality constraint. The virtuality constraint is
of the form “atleast type-identifier”. All “matches” (redefinitions and finalisations) of
the virtual must be specialisations of the type referred to by the type-identifier of the
constraint.

process
type
diagram

A process type diagram defines the properties of a process type. A process type defines
the common properties of a category of process instances. A process type is defined by
a process type diagram.

process
type
heading

The heading of process type diagrams defines the name of the process type, its virtuality
(and constraint), its formal context parameters and if it inherits from another process
type. The heading in Figure 13-22 (p.13-51) defines a virtual process types without any
context parameters and without any parameters.

variables in
processes

Variables can be defined in processes, services and procedures. They are defined in text
symbols.

SDL supports predefined types including Character, Boolean, Integer, Natural, Real and
PId (Process Instance Identifier). The variables cid and PIN in Figure 13-22 (p.13-51)
are defined to be of type Integer, while the variable cur_panel is of type PId, which
means that it denotes a process instance.

For a short introduction to the definition of user-defined types see Specifying properties
of variables: data types (p.-24).

Variables of process are created as part of the creation of the process instance.

Variables will get default initial values if nothing else is specified.

The following elements of SDL are used in the definition of Controller behaviour.

procedure
reference

A procedure reference specifies that there is a procedure in the
enclosing entity and that the properties of this procedure are defined
in a separate (referenced) procedure diagram outside this diagram.

In the example here, unlockDoor is a procedure defined locally to Controller, and it is
referenced by the symbol containing “unlockDoor” - that is there is a procedure diagram
defining the properties of unlockDoor.

unlockDoor
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 52

SDL by example
Process type diagram, Controller 13TIMe
start There is only one start symbol for a process. The transition from the
start takes place when the process is generated. A process may be gen-
erated either at system start-up or as a result of a create request from

another process.

The start transition in the Controller process is empty, that is there are no actions, so the
process just enters the Idle state upon start.

transition A transition performs a sequence of actions. During a transition, the data of a process
may be manipulated and signals may be output.

Actions may be

• task,

• output,

• set,

• reset,

• export

• create request,

• procedure call, or

• remote procedure call.

The transition will end with the process entering a

- next state,

- with a stop,

- with a return or

- with the transfer of control to another transition.

The controller process has three transitions: one starting in the state Idle and two in the
state Validation. They are all input transitions, that is they are triggered by the consump-
tion of a signal from the input queue of the process.

state A state represents a particular condition in which a process may con-
sume a signal resulting in a transition. If the state has neither
spontaneous transitions nor continuous signals, and there are no sig-

nal instances in the input port, otherwise than those mentioned in a save, then the process
waits in the state until a signal instance is received.

input An input allows the consumption of the specified input signal instance
(here of type Code).The variables associated with the input (here cid
and PIN) are assigned the values conveyed by the consumed signal.

The values will be assigned to the variables from left to right. If there is no variable asso-
ciated with the input for a sort specified in the signal, the value of this sort is discarded.
If there is no value associated with a sort specified in the signal, the corresponding vari-
able becomes “undefined”.

Code

Code(cid,PIN)
VIA U

cur_panel :=
SENDER

(cid,PIN)

Example of a tran-
tion from process
type Controller,
with a task fol-

lowed by an out-
put.

Idle

Code
(cid,PIN)
Tutorial on SDL 13 - 53 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Process type diagram, Controller

TIMe13

The sender expression of the consuming process is given the PId value of the originating
process, carried by the signal instance.

virtual
(input)
transition

A virtual input transition specifies that subtypes of type with this tran-
sition may redefine it, that is it must input the signal in the state, but
the following transition may be redefined

A virtual input transition is a special case of a general notion of virtual transition:

• virtual priority input,

• virtual start,

• virtual spontaneous transition.

In addition a save may be specified as a virtual save.

Redefinition of virtual transitions/saves corresponds closely to redefinition of virtual
types:

• A virtual start transition can be redefined to a new start transition.

• A virtual priority input or input transition can be redefined to a new priority input or
input transition or to a save.

• A virtual save can be redefined to a priority input, an input transition or a save.

• A virtual spontaneous transition can be redefined to a new spontaneous transition.

task A task may contain a sequence of assignment statements or behaviour
specified in informal text.

The example here is an assignment of (the predefined) SENDER, that
is the sender of the signal triggering the transition of which this task is a part, to a PId
variable cur_panel.

timer In addition to assignments, task may specify the setting and resetting of timers. Timers
are just like alarm clocks. The process waiting for a timer is passively waiting since the
process needs not sample them. Timers will issue time-out signals when their time is
reached.

A timer is declared similarly to a variable.

set timer Timers are set and reset in tasks. When a timer has not been set, it is
inactive. When it is set, it becomes active.

A timer is set with a time value. time is a special data type and is
mainly used in connection with timers. The expression “now+10” is a

time value and it adds the time expression now and the duration 10 (here:seconds). now
is an operator of the time data type and it returns the current real time. Duration is
another special data type and it is also mainly used in connection with timers. You may
add or subtract duration to time and get time. You may divide or multiply duration by
a real and get duration. You may subtract a time value from another time value and get
duration.

VIRTUAL
 OK

cur_panel :=
sender

TIMER door_timeout ;

set
(now +10,
door_timeout)
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 54

SDL by example
Process type diagram, Controller 13TIMe
The timer signal can be input in the same way as ordinary signals:

The semantics of timers is this: a time value is set in a timer and it becomes active. When
the time is reached, a signal with the same name as the timer itself will be sent to the
process itself. Then the timer becomes inactive.

A timer may be reset and it then becomes inactive and no signal will
be issued. (If an inactive timer is reset, then it remains inactive.) A
reset will also remove a timer signal instance already in the input port.
This happens when the timer has expired, but the time-out signal has

not been consumed.

If an active Timer is set, the time value associated with the timer receives a new value.
The timer is still active. If a timer is set to a time which is already passed, the timer will
immediately issue the time-out signal.

Timer signals may contain data as other signals may contain data. Different parameter
values in set means generation of several timer instances. reset must match these param-
eter values to eliminate the correct timer instance.

For more details, see timers.

output An output generates a signal of the specified signal type (here
Code), containing the specified actual parameters (here cid and
PIN), and send this signal instance to the specified destination.

The destination of a signal can be specified in various ways. The output symbol may in
addition to the signal name (and actual parameters) contain a to-clause and/or a via-
clause.

When the to- and via-clauses are omitted, there should be a unique destination for the
signal based on the signal identifier. If there is a set of possible destinations, one of the
destinations will be chosen non-deterministically. In our case the path and destination
follow implicitly from the signalroutes and channels in the block diagrams.

When the to-clause is explicit, it specifies a process uniquely either by its (visible) name
or by a “pointer” value. This “pointer” value in SDL is known as “PId” (Process Identi-
fier). When a process is identified by its name in the to-clause, this means that it has to
be within the same block since process names outside the block cannot be visible.

In order to specify the path the signal should follow, it is possible to append to the output
statement a via-clause which lists the path of signalroutes and channels which the signal
will be sent through. The VIA-clause may also specify a gate. Furthermore, the via-
clause may be extended to “via all” and then if there is more than one channel instance
in the path a signal instance will be generated for each channel instance. This happens
for example when we have block sets. This is how we can describe a multicast message.

door_timeout

reset
door_timeout

Code(cid,PIN)
via U
Tutorial on SDL 13 - 55 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Process type diagram, Controller

TIMe13
procedure
call

A procedure call transfers the interpretation to the procedure defini-
tion referenced in the call, and that procedure graph is interpreted.

The interpretation of the transition containing the procedure call
continues when the interpretation of the called procedure is finished.

Note that a procedure call symbol has one and only one entrance and one and only one
exit. As specified here, the procedure has no parameters.

OUTPUT

No destination TO VIA

Process name PId expression Channel or
Signalroute

ALL

One possible
target is cho-
sen

The process
name must be
visible

The PId must
be known

The connec-
tion specifies
the target

Multicast

unlockDoor
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 56

SDL by example
Process type diagram, redefined Controller in BlockingAccessPoint 13TIMe
Process type diagram, redefined Controller in BlockingAccessPoint

Figure 13-23: Redefined process type with added states and transitions

Open figure

This process type defines the process type Controller (in block type BlockingAccess-
Point) as a redefinition of the corresponding virtual process type in block type
AccessPoint.

It is also specified that it inherits the same process type. This is, however, not necessary,
as by default a redefinition of a virtual type without an explicit constraint will inherit the
properties of the virtual type.

Inheritance of a process type implies inheritance of all states and transitions of the super-
type. The asterisk state implies all states, also the inherited. The state Idle indicated as
nextstate is the state Idle defined in the supertype.

For more details on this mechanisms, see virtual types and specialisation.

save A save specifies that the signals in the save symbol are retained in the
input port in the order of their arrival.

redefined process type

inherits <<block type AccessPoint>> Controller

*

Disable

BlockDoor

BlockDoor

blocked

blocked

Idle

U
[Disable,Enable]

 <<block type BlockingAccessPoint>> Controller

 process type heading

Enable *

procedure
reference

asterisk
state

procedure
call

asterisk
save

dashed
gate
Tutorial on SDL 13 - 57 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Process type diagram, redefined Controller in BlockingAccessPoint

TIMe13

As specified in Figure 13-23 (p.13-57) (an asterisk save) all signals except Enable are
saved. For a given state there may be only one asterisk save,

The effect of the save is valid only for the state to which the save is attached. In the fol-
lowing state, signal instances that have been “saved” are treated as normal signal
instances.

asterisk
state

An asterisk state is a shorthand for all states except those listed in an
accompanying asterisk state list.

The state names in an asterisk state list must be distinct and must be con-
tained in other state list in the enclosing body or in the body of a supertype. As specified
here, the asterisk state implies a state (with the corresponding transition) for each of the
states except s1 and s2.

*(s1,s2)
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 58

SDL by example
Process type diagram, finalised Controller in LoggingAccessPoint 13TIMe
Process type diagram, finalised Controller in LoggingAccessPoint

Figure 13-24: Finalised process type

Open figure

This process type defines the process type Controller (in block type LoggingAccess-
Point) as a finalised redefinition of the corresponding virtual process type in block type
AccessPoint. This means that it is not virtual, so it can not be redefined in subtypes of
the enclosing block type.

It is also specified that it inherits the same process type. This is, however, not necessary,
as by default a redefinition of a virtual type without an explicit constraint will inherit the
properties of the virtual type.

All transitions are inherited from the supertype, except the transitions starting with the
state Validation and the signals OK and NOK. The are redefined in this process type.

For more details on this mechanisms, see virtual types and specialisation.

Validation

finalized
OK

OK
to cur_panel
via P

Idle

unlockDoor

NOK
to cur_panel
via P

Idle

finalized
NOK

finalized process type

inherits <<BLOCK type AccessPoint>> Controller

OK,
Code(cid,PIN)
via L

NOK,
Code(cid,PIN)
via L

[Code, (validity)]
L

<<block type LoggingAccessPoint>> Controller

process type heading

state

finalised
input

procedure
call

output

gate
Tutorial on SDL 13 - 59 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Process diagram, Panel in terms of services

TIMe13

Process diagram, Panel in terms of services

Figure 13-25: Process in terms of services

Open figure

process
diagram

A process diagram defines the properties of a process set, where each of the process
instances in the set have the specified properties.

The behaviour of processes may be defined either by means of a procedure graph (states
and transitions) or by means of a substructure of services connected by signal routes.
The behaviour of each of the services is defined by means of states and transitions. The
process defined in Figure 13-25 (p.13-60) is defined by means of services.

process
heading

The heading of process diagrams (defining a process set directly without any process
type) defines the name of the process set and the initial/maximum number of instances
in the set.

process Panel

CardReader
[EjectCard]

[InputCard]

[Release-
Card]

[Cid]

Display

[Digit]
Keyboard

[(validity)]

[Code]

P1

CE

signal
ReleaseCard,
Cid (integer),
Digit(integer),
xOK,xNOK,xERR ;
signallist xvalidity = xOK,xNOK,xERR ;

/* PanelControl TO CardReader */
/* CardReader TO PanelControl */
/* Keyboard TO PanelControl */
/* PanelControl TO Display */

CR

PC

K

C

D

[(xvalidity)]

[display]

[keys]

Y

B

R

PanelControl

service
signalroute

signal list

text
symbolsignal definitions
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 60

SDL by example
Process diagram, Panel in terms of services 13TIMe
formal
parameters

If the process shall have formal parameters they are also specified as part of the process
heading. Formal parameters are (local) variables of the process instances. They get val-
ues as part of the creation of the process instance.

When a system is created, the initial processes are created in arbitrary order. The formal
parameters of these initial processes have no associated values; i.e. they are undefined.

If the initial number is omitted (as in Figure 13-25 (p.13-60)), then the (default) value is
1. If the maximum number is omitted, then there is no limit on the number of instances.

service
composi-
tion

As defined in Figure 13-25 (p.13-60) the processes of this process set are defined by
means of a composition of services. Service instances are components of the process
instance, and cannot be addressed as separate objects. They share the input port and the
expressions self, parent, offspring and sender of the process instance.

A service instance is a state machine, and it is described as in Figure 13-26 (p.13-62).
Tutorial on SDL 13 - 61 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Service diagram, PanelControl

TIMe13

Service diagram, PanelControl

Figure 13-26: Service diagram, PanelControl

Open figure

When the process instance is created, the service starts are executed in arbitrary order.
No state of any service is interpreted, before all service starts have been completed. A
service start is considered completed when the service instance for the first time enters
a state (possibly inside a called procedure) or interprets a stop.

Only one service at a time is executing a transition. When the executing service reaches
a state, the next signal in the input port (which is not saved by the service, otherwise
capable of consuming it) is given to the service that is capable of consuming it.

When a service ceases to exist, the input signals for that service are discarded. When all
services have ceased to exist, the process instance ceases to exist.

dcl pin Integer ; /* the calculated personal identification*/
dcl no_dig Integer; /* number of digits in PIN */
dcl cardid Integer; /* the identification read from the card */

––Idle

service PanelControl 1(1)

Idle

Cid
(cardid)

from
Card
Reader

*

GetPIN
(pin,no_dig)

ERR
to Display

no_dig := 4
easily
configurable

Validate
(cardid,pin)

Validate

Digit

GetPIN
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 62

SDL by example
Procedure diagram, GetPIN 13TIMe
variables in
services

Variables can be defined in processes, services and procedures. They are defined in text
symbols.

Variables of services are created when the service is created as part of the creation of the
containing process instance.

Variables will get default initial values if nothing else is specified.

procedure
call with
parameters

A procedure may have formal parameters, and in the call the actual
parameters are provided.

The pin parameter is in/out which means that the actual parameter
corresponding to formal pin will be updated whenever the formal

pin is updated within GetPIN. This is just like var parameters in Pascal or reference
parameters in C++. The no_dig parameter is an in parameter which means that the pro-
cedure will have a local variable with the name of the parameter. This variable will
assume the value of its corresponding actual argument at entry. Changes in the value of
in parameters will not be transmitted to the actual argument. This is just like traditional
value parameters.

Procedure diagram, GetPIN

The PanelControl service referenced in Figure 13-26 "Service diagram, PanelControl"
(p.13-62) is defined by the service diagram in Figure 13-27 "Procedure diagram, Get-
PIN" (p.13-63).

Figure 13-27: Procedure diagram, GetPIN

Open figure

GetPIN
(pin,no_dig)
Tutorial on SDL 13 - 63 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Procedure diagram, GetPIN

TIMe13
procedure Procedures define patterns of behaviour that processes/services may execute at several
places or several times during their life-time. The behaviour of a procedure is defined in
the same way as for processes (that is by means of states and transitions), a procedure
may have (local) variables, and in addition it may have in, out, in/out parameters.

State names are not visible outside the procedure. The process states are not visible
within the procedure.

The procedure in Figure 13-27 (p.13-63) accepts a number of Digits as input signals in
the state WaitDigit. The local variable i is increased by one for each digit, and when i
equals the required number of digits, the procedure returns.

local
variable

A procedure variable is a local variable within the procedure instance. It is created when
the procedure start is interpreted, and it ceases to exist when the return of the procedure
graph is interpreted. Variables will get default initial values if nothing else is specified.

WaitDigit

dcl d Integer; /* digit value */
dcl i Integer ; /* runner 0:no_dig */

1(1)

pin := 0 ,
i := 0

WaitDigit

Digit(d)

pin := pin*10 + d ,
i := i + 1

i = no_digFalse True

from
Keyboard

procedure GetPIN
fpar in/out pin Integer, IN no_dig Integer

procedure diagram

procedure
start

decision

return

variable
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 64

SDL by example
Procedure diagram, GetPIN 13TIMe
procedure
start

The start transition of a procedure is slightly different from the the
start of process/service.

return Procedure calls may be actions or part of expressions (value returning proce-
dures only). A value returning procedure is a procedure where an expression
is associated with the return, and the value of this expression is returned.

The interpretation of a procedure call causes the creation of a procedure instance and the
interpretation to commence in the following way:

formal
parameter

1. A local variable is created for each in parameter, having the name and sort of the in
parameter. The variable gets the value of the expression given by the corresponding
actual parameter if present. Otherwise the variable gets no value, i.e. it becomes
“undefined”.

2. A formal parameter with no explicit attribute has an implicit in attribute.

3. A local variable is created for each variable definition in the procedure-definition.

4. Each in/out parameter denotes a variable which is given in the actual parameter
expression. The contained Variable-name is used throughout the interpretation of the
procedure graph when referring to the value of the variable or when assigning a new
value to the variable.

5. The transition contained in the <procedure start area> is interpreted.

The nodes of the procedure graph are interpreted in the same manner as the equivalent
nodes of a process or service graph, i.e. the procedure has the same complete valid input
signal set as the enclosing process, and the same input port as the instance of the enclos-
ing process that has called it, either directly or indirectly.

remote
procedures

A procedure may be exported by a (server) process, so that other (clients) processes (cli-
ents) can request these procedures executed by the server.

The remote procedure mechanism consists of four interdependent language constructs:

1. The exporting of a procedure. A procedure which is made visible by other processes
is marked with the keyword exported preceding the procedure heading, e.g.
“exported procedure Validate ...” from a process within the CentralUnit. The
exporting process can control in which states it will accept the remote request. It may
also specify to save the request to other states. The controlling of the acceptance is
done by using input and save symbols with the remote procedure name preceded by
the keyword procedure.

2. The importing of a procedure. When a process, service or procedure wants to import
a remote procedure, it must specify the signature of this procedure in an “imported
procedure specification” in a text area. The specification in our case would read:
“imported procedure Validate; returns integer;” where the integer returned would
give the result of the validation.

3. The specification of remote procedure. In SDL all names must be defined in a specific
scope. Thus, the names of remote procedures must be defined in the context in which
the actual definition of the procedure and the calls will be contained. In our case the
definition of the procedure Validate is within the CentralUnit and the call is in Con-
Tutorial on SDL 13 - 65 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

SDL by example
Procedure diagram, GetPIN

TIMe13

troller of the AccessPoint. The scope unit enclosing all these is the system itself.
There we will find a text area with the following text: “remote procedure Validate;
returns integer;”.

4. The calling of a remote procedure. The calling of the remote procedure is indistin-
guishable from local procedure calls unless the caller explicitly states which process
it will request the procedure executed by. This can be done by a to-clause with a PId
following the procedure name of the call.

Remote procedures may be value returning (as in our example above), and they may be
virtual.

Block diagram, CentralUnit

Figure 13-28: Block diagram defining the CentralUnit

Open figure

create A process may create processes in other process sets in the same block, possibly provid-
ing actual parameters to the new instance.

The create line (dashed line with arrowhead) indicates possible creations.

Create lines are optional.

create
action

As specified in Figure 13-28 (p.13-66) the process CUControl creates Validation pro-
cesses. In the process graph of CUControl, the creation will be specified by a create
action.

block CentralUnit 1(1)

CUControl(1,1)
Rc

C
[(validity)] [Code] [(rvalidity)]

Validation(0,)

[rCode]
V

signal rOK(PId), rNOK(PId), rERR(PId) ; /* validity with return address */
signallist rvalidity = rOK, rNOK, rERR ;

signal rCode(integer, integer, PId); /* Code wth explicit original Sender */

process
signalroute

signal list

block (type) heading
text
symbol

signal
definitions
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 66

List of figures
Procedure diagram, GetPIN 13TIMe
List of figures

Behaviour Specification. 4

Block type AccessPoint with processes . 7

Block diagram of AccessPoint with block substructure . 9

System design in SDL . 10

Package diagram SignalLib . 10

System using a package of type definition . 12

Block type AccessPoint with virtual Controller process type 13

Virtual process type Controller . 14

Block type BlockingAccessPoint as a subtype of AccessPoint 15

LoggingAccessPoint as a subtype of AccessPoint. 16

Redefined process type with added states and transitions . 16

Finalised process type . 17

Process in terms of services . 19

Service diagram, PanelControl . 19

Panel and card of an access control system . 36

System diagram for access control system with three types of access points 38

Package diagram SignalLib . 40

Package diagram AccessPointLib . 42

Block type AccessPoint with virtual Controller process type 44

Block type BlockingAccessPoint as a subtype of AccessPoint 47

LoggingAccessPoint as a subtype of AccessPoint. 49

Virtual process type Controller . 51

Redefined process type with added states and transitions . 57

Finalised process type . 59

Process in terms of services . 60

Service diagram, PanelControl . 62

Procedure diagram, GetPIN . 63

Block diagram defining the CentralUnit . 66
Tutorial on SDL 13 - 67 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Procedure diagram, GetPIN

TIMe13
List of definitions

asterisk state . 69
block. 69
block set . 70
block type. 70
block type diagram. 71
block (type) heading . 71
block type reference . 71
channel . 71
create . 72
dashed entity . 72
decision . 72
diagram heading. 73
entity kinds. 73
environment . 74
finalised input. 74
finalised process type . 74
gate . 75
identifier . 75
input . 76
local variables . 76
output . 76
package . 77
package reference clause . 77
page numbering . 77
procedure . 78
procedure call. 78
procedure heading . 78
procedure reference . 79
process . 79
process diagram . 79
process type . 80
process type diagram . 80
process (type) heading . 80
process (reference) . 80
process set . 80
redefined process type . 81
remote procedures . 81
return . 82
save . 82
scope units . 83
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 68

List of definitions
Procedure diagram, GetPIN 13TIMe
service . 83
service (reference) . 83
service (type) heading . 84
signal definition . 84
signal list . 84
signal route. 84
specialisation . 84
start. 85
state . 85
system . 86
system (type) heading . 86
task . 86
transition . 86
text symbol. 87
timer . 87
variable definition . 88
virtual process type . 89
virtuality . 89
virtuality constraint . 89
virtual (input) transition . 89

asterisk state

An asterisk state is a shorthand for all states except those listed in an accompanying
asterisk state list.

The state names in an asterisk state list must be distinct and must be contained in other
state list in the enclosing body or in the body of a supertype.

Z.100

block

A block is a container of processes (or of blocks, that in turn may contain processes or
blocks etc.). Processes of a block are contained in process sets that are connected by sig-
nal routes.

A block is created as part of the creation of the enclosing block or
system. All blocks are created as part of the system creation, that is
there is no dynamic creation of blocks.

A block is specified either directly (singular block), like Central-
Unit, or as a block set according to a block type. The block set ap is
not a reference (as CentralUnit). Instead it designates a set of block
instances. The example here specifies a set of 100 blocks of type
AccessPoint.

CentralUnit

ap(100):
AccessPoint

� �
Tutorial on SDL 13 - 69 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Procedure diagram, GetPIN

TIMe13

In the latter case, the AccessPoint must have been defined as a block
type, as shown here:

The block CentralUnit is defined in a separate block diagram, while
the properties of the blocks in the ls block set is defined by the block
type LocalStation. A block type is defined by a block type diagram. To see a block type
defined in terms of a substructure of blocks, look at block type diagram of AccessPoint
with block substructure.

Z.100

block set

Type-defined blocks are contained in block sets. A block set is a fixed number of blocks
with properties according to a block type.

The set of LocalStations is called ls and the number (100) designates the cardinality of
the set. All the block instances within a block set typically have the same relationship
with its surroundings (given by the channels).

A channel connected to a block set (via the gates e or C) will actually represent a set of
channel instances.

A block set is not an array, so the thirteenth block cannot be identified by e.g. ls(13). The
number of elements in a block set is determined when the system is created, all blocks
in the set are created as part of the creation of the system, blocks will be permanent part
(instances) of the system instance, and sets of blocks cannot be created dynamically.

Z.100

block type

A block type defines the common properties for a category of blocks.

Block types are defined in block type diagrams, and these may be referenced by means
of block type references.

Block types may contain a connectivity graph of block instances connected by channels.
This makes up a structure of nested blocks. At the leaves of this structure there are
blocks which contain processes. In SDL, block types may not contain both blocks and
processes at the same time.

In addition to containing structures of blocks or structures of processes, block types may
contain other type definitions. This makes up the scoping hierarchy of SDL. Names in
enclosing type definitions are the only names visible.

Block types may contain data type definitions, but no variable declarations. This follows
from the fact that processes in SDL do not share data other than signal queues. They
share a signal queue in the way that one process appends (output) signals to the queue

AccessPoint

ls(100):
LocalStation

� �
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 70

List of definitions
Procedure diagram, GetPIN 13TIMe
(the input port), while the other process consumes (input) signals from the same queue.
Appending and consuming signals are atomic, non-interruptible operations. The input
port is the basic synchronisation mechanism of SDL.

Block types may contain process types, service types and procedures as well as block
types and data types.

Z.100

block type diagram

A block type diagram defines the properties of a block type.

Z.100

block (type) heading

The heading of block diagrams defines the name of the block.

The heading of block type diagrams defines the name of the block type, possible formal
context parameters, whether the block type is virtual or not and if it inherits from another
block type.

Z.100

block type reference

Block types are defined in block type diagrams, and they are referenced by means of
block type references. The block type reference indicates in which block or system
scope unit the block type is defined.

Z.100

channel

A channel is a one-way or two-way directed connection. It is characterised by the signals
that it may carry; these constitute the signal list(s) of the channel. A channel has a signal
list for each direction.

One or two arrows indicate the direction(s) of the channel.

Channels connect blocks or block sets with other blocks or block sets, or with the envi-
ronment of the system. It provides a (one or two way) communication path for signals.
If there is no channel between two blocks, then processes in these two blocks cannot
communicate by signal exchange. Processes may, however, communicate by means of
remote procedure calls without channels connecting the enclosing blocks. A channel
cannot connect a block or block set with itself.

Channels may be delaying or non-delaying.
Tutorial on SDL 13 - 71 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Procedure diagram, GetPIN

TIMe13

A delaying channel is specified by a channel sym-
bol with the arrows at the middle of the channel:

The delay of signals is non-deterministic, but the
order of signals is maintained.

A non-delaying channel is specified as follows, that
is with the arrows at the endpoints:

Associated with each direction of a channel are the
types of signals that may be conveyed by the chan-
nel. The list enclosed by the signal list symbol can be signals (as e.g. Code) or signal
lists (as e.g. validity) enclosed in ().

Channels connected to the frame symbol represent the connections to the environment.

Z.100

create

A process may create processes in other process sets in the same block, possibly provid-
ing actual parameters to the new instance.

The create line (dashed line with arrowhead) indicates possible creations. Create lines
are optional.

Z.100

dashed entity

A dashed entity is the graphical way of representing an entity that is inherited from a
supertype and which needs to be used in the definition of the subtype. There are dashed
block sets and process sets, services and gates.

The Z.100 terminology is existing entity.

An existing block set/block may be connected by channel, and these will then be there
in addition to those specified in the super type.

An existing process set/service may be connected by signal routes, and these will then
be there in addition to those specified in the super type.

An existing gate can have constraints in terms of signals on the endpoints of the gate
specified, and these are then added to the inherited gate and will then apply in addition
to those of the inherited gate.

In the PR version of a specification, inherited entities are simply identified by name.

Z.100

decision

A decision transfers the interpretation to the outgoing path whose range condition con-
tains the value given by the interpretation of the question.

C

[(validity)] [Code]

C

[(validity)] [Code]
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 72

List of definitions
Procedure diagram, GetPIN 13TIMe
Z.100

diagram heading

In the upper left-hand corner of the first page of diagrams, we find the heading.The
heading defines the name of the entity, it may contain definition of formal parameters,
context parameters, it may specify if a type inherits from another type and the virtuality
of atype (virtual, redefined or finalised).

The heading of the first page of a diagram must be a full heading of the form:

<heading> ::= <kernel-heading> [<additional-heading>]

while

the following pages only need a kernel heading:

<kernel-heading>::= [<virtuality>] [exported]

 <diagram-kind> [<qualifier>] <diagram-name>

The kernel heading depends upon the diagram kind, see

• system (type) heading

• block (type) heading

• process (type) heading

• service (type) heading

• procedure heading

entity kinds

SDL defines the folowing different kinds of entities:

• packages

• system

• system types

• blocks

• block types

• channels

• signal routes

• signals

• gates

• timers

• block substructure

• channel substructures
Tutorial on SDL 13 - 73 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Procedure diagram, GetPIN

TIMe13

• processes

• process types

• services

• service types

• procedures

• remote procedures

• variables (and formal parameters)

• synonyms

• literals

• operators

• remote variables

• data types

• generators

• signal lists and

• views.

environment

The environment consists of a set of SDL processes that may send signals to the system
and which may receive signals from the system.

Z.100

finalised input

A finalised input is a redefinition of a virtual input transition that cannot be redefined in
further subtypes. A virtual input is a special case of a virtual transition.

Z.100

finalised process type

is a finalised redefinition of the corresponding virtual process type in the super block
type, and it is not virtual, so that it can not be redefined in further subtypes of this block
type.

A final redefinition of the process type must be a subtype of the type identified in the
virtuality constraint.

Z.100 (virtual types)
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 74

List of definitions
Procedure diagram, GetPIN 13TIMe
gate

A gate is a potential connection point for channels/signal routes when connecting sets
of blocks/processes/services. The same symbol is used in all cases.

Gate are defined in block/process/service types and used when connecting sets or
instances of these with channels/signal routes.

The signal list associated with the endpoints represents constraints (on incoming/outgo-
ing signals) the gate.

Z.100

identifier

An identifier contains an optional qualifier in order to denote the scope unit in which the
entity is defined:

<identifier>::= [<qualifier>] <name>

where qualifier defines the path:

<qualifier>::= <path-item>{‘/‘<path-item>;* |

 ‘<<‘ <path-item>{‘/‘<path-item>* ‘>>‘

The qualifier gives the path from either the system level, or from the innermost level
from where the name is unique, to the defining scope unit.

Each path-item have this form:

<path-item>::= <scope-unit-kind>{<name> | <quoted-operator>}

where scope-unit-kind is one of

• package,

• system type,

• system,

• block,

• block type,

• substructure,

• process,

• process type,

• service,

• service type,

(more)

• procedure,

• signal,

• type, or
Tutorial on SDL 13 - 75 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Procedure diagram, GetPIN

TIMe13

• operator.

A definition in an inner scope unit overrides definitions with the same name in outer
scope units. Qualifiers may be used in order to identify overridden entities.

Qualifiers may be omitted if not needed in order to identify the right entity in the right
scope unit.

States, connectors and macros cannot be qualified. States and connectors are not visible
outside their defining scope unit, except in a subtype definition.

input

An input allows the consumption of the specified input signal instance. The consump-
tion of the input signal makes the information conveyed by the signal available to the
process. The variables associated with the input are assigned the values conveyed by the
consumed signal.

The values will be assigned to the variables from left to right. If there is no variable asso-
ciated with the input for a sort specified in the signal, the value of this sort is discarded.
If there is no value associated with a sort specified in the signal, the corresponding vari-
able becomes “undefined”.

The sender expression of the consuming process is given the PId value of the originating
process, carried by the signal instance.

Z.100

local variables

Local variables of a procedure become parts of the procedure instance when the proce-
dure is called, and they cease to exist when the procedure returns.

The local variables will get default initial values if nothing else is specified.

Z.100 (variable definition)

output

An output generates a signal of the specified signal type, containing the specified actual
parameters, and send this signal instance to the specified destination.

Stating a <process identifier> in <destination> indicates the destination as any existing
instance of the set of process instances indicated by <process identifier>. If there exist
no instances, the signal is discarded.

If no signal route identifier is specified and no destination is specified, any process, for
which there exists a communication path, may receive the signal.

If an expression in the list of actual parameters is omitted, no value is conveyed with the
corresponding place of the signal instance, i.e. the corresponding place is “undefined”.

The PId value of the originating process is also conveyed by the signal instance.
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 76

List of definitions
Procedure diagram, GetPIN 13TIMe
Z.100

package

A package is a collection of types. A package is defined by a package diagram. Packages
can be provided (that is defined) together with a system diagram (or together with
another package diagram) or they can be used by means package identifiers.

A package may contain definitions of types, data generators, signal lists, remote speci-
fications and synonyms. Definitions within a package are made visible to a system
definition or other package definitions by a package-reference-clause (use clause). All
(or selected) definitions of packages provided in this way will be visible in the system
definition (or in the new package).

A package diagram has this form:

A package can be used either either in the definition of a new
package, or as here, a system. This is done by the use clause.

Z.100

package reference clause

A package reference clause specifies that a system diagram or package diagram use the
definitions of other packages. The names following the “/” after the package name
denotes the subset of the definitions that are used.

Z.100

page numbering

A diagram may be split into a number of pages. In that case each page is numbered in
the rightmost upper corner of the frame symbol. The page numbering consists of the
page number followed by (an optional) total number of pages enclosed by (), e.g. 1 (4),
2 (4), 3 (4), 4 (4).

PACKAGE <package-name>

<type definitions>

SYSTEM <system name>

USE <package identifier>;
Tutorial on SDL 13 - 77 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Procedure diagram, GetPIN

TIMe13

procedure

Procedures define patterns of behaviour that processes/services may execute at several
places or several times during their life-time. The behaviour of a procedure is defined in
the same way as for processes (that is by means of states and transitions), a procedure
may have (local) variables, and in addition it may have IN, OUT, IN/OUT parameters.

Procedures are defined by procedure diagrams.

Z.100

procedure call

A procedure call transfers the interpretation to the procedure definition referenced in the
call, and that procedure graph is interpreted.

The interpretation of the transition containing the procedure call continues when the
interpretation of the called procedure is finished.

The actual parameter expressions are interpreted in the order given.

If an <expression> in <actual parameters> is omitted, the corresponding formal param-
eter has no value associated, i.e. it is “undefined”.

Z.100

procedure heading

The procedure-heading of a procedure diagram has this format:

<procedure heading> ::=

[<virtuality>] [<export-as>] procedure <procedure-name>
[<virtuality-constraint>] [<specialisation>]
[<procedure-formal-parameters>]
[<result>]

<procedure-formal-parameters> defines the formal parameters of the procedure and
have the format:

<procedure-formal-parameters> ::=
fpar [in`/`out | in] <typed-parameters>
{, [in`/`out | in] <typed-parameters> }*

where <typed-parameters> have the format

<typed-parameters> ::
<variable-name> {`,` <variable-name>}* <data-type-identifier>

<typed-parameters> is a list of parameter names followed by a data type name.

<result> has the format:

<result> ::= returns [<variable-name>] <data-type-identifier>
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 78

List of definitions
Procedure diagram, GetPIN 13TIMe
where <data-type-identifier> gives the data type of the value returned by the procedure.
The optional <variable-name> can be used to name the result. The result can either be
stated as an expression next to the return symbol, or as an assignment in a task to the
variable introduced in result.

procedure reference

A procedure reference specifies that there is a procedure in the enclosing entity and that
the properties of this procedure are defined in a separate (referenced) procedure diagram
outside this diagram.

Z.100

process

A process instance is part of a process set, which in turn is part of a block.

The properties of a process is either defined by a process diagram or it is defined by a
process type diagram.

Each process consists of the input port and an extended finite state machine (EFSM)
with a sequential behaviour defined by a process graph, which is a sort of state transition
diagram. The finite state machine fetches signals from the input port in strict FIFO order
except when the order is modified by the save operator (see below). For each signal it
performs one transition which will take a short but undefined time.

Signals are messages that the finite state machine consumes. Each signal has a signal
type identification which the FSM uses to select the next transition action. In addition,
the signal carries the sender identity and possibly some additional data.

An SDL process with signal instances in the input port

process diagram

A process diagram defines the properties of a process set, where each of the process
instances in the set have the specified properties.

The behaviour of processes may be defined either by means of a procedure graph (states
and transitions) or by means of a substructure of services connected by signal routes.
The behaviour of each of the services is defined by means of states and transitions.

Z.100

input port

EFSM

signal
route

signal
SDL Process

signal

signalsignal
Tutorial on SDL 13 - 79 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Procedure diagram, GetPIN

TIMe13

process type

A process type defines the common properties of a category of process instances. A pro-
cess type is defined by a process type diagram.

process type diagram

A process type diagram defines the properties of a process type.

Z.100

process (type) heading

The heading of process diagrams (defining a process set directly without any process
type) is a <process heading>, defining the name of the process set and the initial/maxi-
mum number of instances in the set.

The heading of process type diagrams is a <process type heading>, defining the name
of the process type, its virtuality (and constraint), its formal context parameters and if it
inherits from another process type.

Formal parameters are variables of the process instances. They get values as part of the
creation of the process instance.

When a system is created, the initial processes are created in arbitrary order. The formal
parameters of these initial processes have no associated values; i.e. they are undefined.

If the initial number is omitted, then the (default) value is 1. If the maximum number is
omitted, then there is no limit on the number of instances.

Z.100

process (reference)

A process reference specifies that there is a process in the enclosing block and that the
properties of this process are defined in a separate (referenced) process diagram outside
this diagram.

Z.100

process set

A process set defines a set of processes according to a process type.

Just like we have the distinction between block reference, block type and block set
according to type, we have the distinction between process reference, process type and
process set according to a type. Our recommendation is that process sets should be
described with reference to a process type.

Validation(0,)
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 80

List of definitions
Procedure diagram, GetPIN 13TIMe
Process reference:
Process set without
any associated type.

This is both a specification of a process set as part of the enclosing block and a reference
to the corresponding process diagram, which defines the properties of the processes in
the set.

Process set according
to a process type
(Validation)

The numbers in parentheses after the process set name specify the number of instances
in the process set. As defined in above, there are initially no processes, and there is no
limit on the number of instances that may be created.

A process set according to a type requires that the corresponding process type is defined:

Z.100

redefined process type

is a redefinition of the corresponding virtual process type in the super block type, and it
is virtual, so that it can be redefined in further subtypes of this block type.

A redefinition of the process type must be a subtype of the type identified in the virtu-
ality constraint.

Z.100 (virtual types)

remote procedures

The remote procedure mechanism consists of four interdependent language constructs:

1. The exporting of a procedure. A procedure which is made visible by other processes
is marked with the keyword exported preceding the procedure heading, e.g.
“exported procedure Validate ...” from a process within the CentralUnit. The
exporting process can control in which states it will accept the remote request. It may
also specify to save the request to other states. The controlling of the acceptance is
done by using input and save symbols with the remote procedure name preceded by
the keyword procedure.

Valid(0,):
Validation

Validation
Tutorial on SDL 13 - 81 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Procedure diagram, GetPIN

TIMe13

2. The importing of a procedure. When a process, service or procedure wants to import

a remote procedure, it must specify the signature of this procedure in an “imported
procedure specification” in a text area. The specification in our case would read:
“imported procedure Validate; returns integer;” where the integer returned would
give the result of the validation.

3. The specification of remote procedure. In SDL all names must be defined in a specific
scope. Thus, the names of remote procedures must be defined in the context in which
the actual definition of the procedure and the calls will be contained. In our case the
definition of the procedure Validate is within the CentralUnit and the call is in Con-
troller of the AccessPoint. The scope unit enclosing all these is the system itself.
There we will find a text area with the following text: “remote procedure Validate;
returns integer;”.

4. The calling of a remote procedure. The calling of the remote procedure is indistin-
guishable from local procedure calls unless the caller explicitly states which process
it will request the procedure executed by. This can be done by a to-clause with a PId
following the procedure name of the call.

Remote procedures may be value returning (as in our example above) and they may be
virtual. Z.100

return

A return represents the the completion of a call of a procedure.

A return is interpreted in the following way:

a)All variables created by the interpretation of the procedure start will cease to exist.

b)The interpretation of the procedure-graph is completed and the procedure instance
ceases to exist.

c)Hereafter the calling process, service (or procedure) interpretation continues at the
node following the call.

Z.100

save

A save specifies that the signals in the save symbol are retained in the input port in the
order of their arrival.

The effect of the save is valid only for the state to which the save is attached. In the fol-
lowing state, signal instances that have been “saved” are treated as normal signal
instances.

Asterisk save implies that all signals are retained in the input port.

Z.100
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 82

List of definitions
Procedure diagram, GetPIN 13TIMe
scope units

The following kinds of definitions form scope units:

• package

• system type

• system

• block

• block type

• block substructure

• channel substructure

• process

• process type

• service

• service type

• procedure

• signal

• operator, and

• type.

service

A service is a state machine being part of a process instance, and cannot be addressed as
a separate objects. It shares the input port and the expressions self, parent, offspring and
sender of the process instance.

Only one service at a time is executing a transition. Services alternate based on signals
in the input port of the process.

Z.100

service (reference)

A service symbol specificies that a service is part of the containing process (type), and
that the definition of the service can be found in a separate service diagram.

Process behaviour by means of services is an alternative to process behaviour by means
of a process graph through a set of services. Each service may cover a partial behaviour
of the process.

Z.100
Tutorial on SDL 13 - 83 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Procedure diagram, GetPIN

TIMe13

service (type) heading

The heading of service diagrams is:

<service-heading> ::= service [<qualifier>] <service-name>

while service type diagrams have the following heading:

<service-type-heading>::=
[<virtuality>]
service type [<qualifier>] <service-type-name>
[<formal-context-parameters>]
[<virtuality-constraint>][<specialisation>]

signal definition

A signal definition defines a set of types of signals. Signal definitions are part of text
symbols.

Signals may be defined in system and block diagrams, and these may then be used for
communication between the blocks of the system or the processes of the block. Signals
may also be defined in process (type) diagrams, but then they can only be used for com-
munication between processes of the same set. Often signal definitions are collected in
packages.

Z.100

signal list

Associated with each arrowhead of channels and signal routes or signal lists, that spec-
ifies the allowed signals in that direction.

Signallists are defined in text symbols.

Z.100

signal route

A signal route represents a communication path between process sets and between pro-
cess sets and the environment of the enclosing block/block type.

Z.100

specialisation

A type may be defined as a specialisation of another type. This is done by the following
construct:

 <specialisation>::= inherits <type-expression> [adding]

Specialisation applies to system, block, process, service, data types, and to signals and
procedures, and the same semantics apply in all cases:
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 84

List of definitions
Procedure diagram, GetPIN 13TIMe
• All definitions of the supertype are inherited:

- The formal context parameters of a subtype are the unbound, formal context param-
eters of the supertype definition followed by the formal context parameters added in
the <specialisation>.

- The formal parameters of a specialised process type or procedure are the \formal
parameters of the process supertype or procedure followed by the \formal parameters
added in the <specialisation>.

- The complete valid input signal set of a specialised type is the union of the complete
valid input signal set of the<specialisation> and the complete valid input signal set of
the supertype.

- A specialised signal definition may add (append) data type identifiers to the \data
type list of the supertype.

- A specialised partial type definition may add properties in terms of operators, literals,
axioms, operators and default assignment.

• Definitions and transitions (where appropriate) may be added in subtypes.

• Virtual \transitions and types in the supertype may be redefined in the subtype, but
for virtual types only to subtypes of their constraint.

A virtual type or procedure is defined by prefixing the keyword of the diagram (e.g. pro-
cess or procedure) by one of the keywords virtual, redefined and finalized.

(more)

virtual is used when a type is introduced as a virtual type. A virtual type must be a type
defined locally to another type; the implication is that it can be redefined in types that
inherit from the enclosing type.redefined is used when the redefinition of a virtual type
is still virtual. finalized is used when the redefinition is not virtual.

Z.100

start

There is only one start symbol for a process. The transition from the start takes place
when the process is generated. A process may be generated either at system start-up or
as a result of a create request from another process.

Z.100

state

A state represents a particular condition in which a process may consume a signal result-
ing in a transition. If the state has neither spontaneous transitions nor continuous signals,
and there are no signal instances in the input port, otherwise than those mentioned in a
save, then the process waits in the state until a signal instance is received.

Z.100
Tutorial on SDL 13 - 85 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Procedure diagram, GetPIN

TIMe13

system

A system is a set of blocks, block sets and channels. Blocks and block sets are connected
with each other or with the environment of the system by means of channels.

Z.100

system (type) heading

The heading of system diagrams, that is a system-heading is as follows:

<system-heading> ::= system <system-name>

while system type diagrams have system-type-headings:

<system-type-heading>::=
system type [<qualifier>] <system-type-name>
[<formal-context-parameters>]
[<specialisation>]

As indicated in the syntax rule above, a system type can have formal context parameters
and it can be a specialisation (of a more general system type).

task

A task may contain a sequence of <assignment statement>s or <informal text>. The
<assignment statement>s or <informal text>s are executed in the specified order.

A task is part of a transition.

Z.100

transition

A transition performs a sequence of actions. During a transition, the data of a process
may be manipulated and signals may be output.

Actions may be:

• task,

• output,

• set,

• reset,

• export,

• create request,

• procedure call, or

• remote procedure call

The transition will end with the process entering a:

- next state,
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 86

List of definitions
Procedure diagram, GetPIN 13TIMe
- with a stop,

- with a return or

- with the transfer of control to another transition.

Z.100

text symbol

Text symbols are used in order to have textual specifications as part of diagrams, espe-
cially for specification of signal types, data types and variables.

There is no limit to the number of text symbols that may occur in a diagram. Text sym-
bols are not connected to other symbols by flow lines.

The text symbol is also used for the graphical representation of a use clause, see
package.

Z.100

timer

The notion of timers provides a mechanism for specifying time-related matters. Timers
are just like alarm clocks. The process waiting for a timer is passively waiting since the
process needs not sample them. Timers will issue time-out signals when their time is
reached. There may well be several different timers active at the same time. Active tim-
ers do not affect the behaviour of the process until the timer signal is consumed by the
process.

A timer is declared similarly to a variable.

Timers are set and reset in tasks. When a timer has not been set, it is inactive. When it
is set, it becomes active.

A timer is set with a time value. time is a special data type and is mainly used in con-
nection with timers. The expression “now+10” is a time value and it adds the time
expression now and the duration 10 (here: seconds). now is an operator of the time data
type and it returns the current real time. Duration is another special data type and it is
also mainly used in connection with timers. You may add or subtract duration to time
and get time. You may divide or multiply duration by a real and get duration. You may
subtract a time value from another time value and get duration.

(more...)

TIMER door_timeout ;

set
(now +10,
door_timeout)
Tutorial on SDL 13 - 87 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Procedure diagram, GetPIN

TIMe13

The semantics of timers is this: a time value is set in a timer and it becomes active. When
the time is reached, a signal with the same name as the timer itself will be sent to the
process itself. Then the timer becomes inactive.

The timer signal can be input in the same way as ordinary signals:

A timer may be reset. It then becomes inactive and no signal will be issued. (If an inac-
tive timer is reset, then it remains inactive.) A reset will also remove a timer signal
instance already in the input port. This happens when the timer has expired, but the time-
out signal has not been consumed.

If an active Timer is set, the time value associated with the timer receives a new value.
The timer is still active. If a timer is set to a time which is already passed, the timer will
immediately issue the time-out signal.

There is an operator active which has a timer as a parameter and which returns a Bool-
ean that can be used to check whether a certain timer is active or not.

Timer signals may contain data as other signals may contain data. Different parameter
values in set means generation of several timer instances. reset must match these param-
eter values to eliminate the correct timer instance.

(more...)

The following is a sketch of a finite state machine of the behaviour of a timer.

Z.100

variable definition

Variables can be defined in processes, services and procedures.

Variables of process are created as part of the creation of the process instance.

Variables of services are created when the service is created as part of the creation of the
containing process instance.

Local variables of a procedure become parts of the procedure instance when the proce-
dure is called, and they cease to exist when the procedure returns.

door_timeout

timer T ;

now >= q:
Send T-signal to self

set(q,T);

reset(T)

set(q,T)

T inactive active(T)
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 88

List of definitions
Procedure diagram, GetPIN 13TIMe
Variables will get default initial values if nothing else is specified.

Z.100

virtual process type

A virtual process type is a process type that can be redefined in a subtype of the enclos-
ing block type.

The virtuality is specified in the process type heading or by <virtuality> in the corre-
sponding process type reference symbol.

A redefinition of the process type must be a subtype of the type identified in the virtu-
ality constraint.

Z.100 (virtual types)

virtuality

The virtuality of a type defines whether the type is virtual (so that it can be redefined in
a subtype of the enclosing type), redefined (a redefined type, but still virtual), or final-
ised, that a redefinition that cannot be further redefined.

<virtuality>::= virtual | redefined | finalized

• virtual is used when a type is introduced as a virtual type. A virtual type must be a
type defined locally to another type; the implication is that it can be redefined in types
that inherit from the enclosing type.

• redefined is used when the redefinition of a virtual type is still virtual.

• finalized is used when the redefinition is not virtual.

virtuality constraint

A constraint on a virtual type has the form of a virtuality\-constraint:

<virtuality-constraint> ::= atleast <identifier>

where <identifier> identifies a type (which is called the constraint type) of the appropri-
ate kind (block, process, service or procedure).

The implication of a constraint is that a redefined or finalized definition of the virtual
type must be a type definition that inherits from the constraint type. In case of no con-
straint specified, the definition of the virtual type itself is the constraint.

virtual (input) transition

A virtual input transition is a special case of a general notion of virtual transition (virtual
priority input, virtual start, virtual spontaneous transition). In addition SDL has virtual
save.
Tutorial on SDL 13 - 89 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
Procedure diagram, GetPIN

TIMe13

Redefinition of virtual transitions/saves corresponds closely to redefinition of virtual
types.

• A virtual start transition can be redefined to a new start transition.

• A virtual priority input or input transition can be redefined to a new priority input or
input transition or to a save.

• A virtual save can be redefined to a priority input, an input transition or a save.

• A virtual spontaneous transition can be redefined to a new spontaneous transition.

Z.100
Tutorial on SDL TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1613 - 90

	Introduction
	Overview of SDL
	Introduction
	Processes and process types
	Specifying behaviour: states and transitions
	Figure 13-1: Behaviour Specification
	Variables
	Procedures

	Communication by means of signal exchange
	Grouping of process sets by means of blocks
	Processes are parts of process sets
	Figure 13-2: Block type AccessPoint with processes
	Process sets are connected by signal routes
	Local definitions in blocks
	Blocks as part of blocks

	Types, sets and instances
	Figure 13-3: Block diagram of AccessPoint with block substructure

	Systems: set of blocks connected by channels
	Figure 13-4: System design in SDL
	Figure 13-5: Package diagram SignalLib

	Packages: collections of related types and definitions
	Figure 13-6: System using a package of type definition

	Subtypes
	Figure 13-7: Block type AccessPoint with virtual Controller process type
	Figure 13-8: Virtual process type Controller
	Figure 13-9: Block type BlockingAccessPoint as a subtype of AccessPoint
	Figure 13-10: LoggingAccessPoint as a subtype of AccessPoint
	Figure 13-11: Redefined process type with added states and transitions
	Figure 13-12: Finalised process type

	Composing behaviour of processes by means of services
	Figure 13-13: Process in terms of services
	Figure 13-14: Service diagram, PanelControl

	Specifying properties of variables: data types

	SDL as an object oriented language
	Objects
	Process
	Service
	Block
	System
	Variable

	Attributes
	Methods
	Procedures
	Functions - i.e. value returning procedures
	Virtual procedures/functions
	Globally defined procedures
	Remote procedures

	Behavior
	Process behaviour by Finite State Machine
	Process behaviour by service composition

	Object interaction
	Exchanging signals
	Calling remote procedures
	Gates

	Class
	Process type
	Service type
	Block type
	System type
	Abstract Data Type

	Subclass/inheritance
	Inheritance
	Adding properties
	Redefining virtuals
	Inheritance of behaviour

	Class libraries
	Aggregation/part-whole/containment
	Localisation of definitions
	Parameterised classes
	One way out

	Virtual classes/types
	Object oriented approach behind SDL

	SDL by example
	Introduction to the example
	Figure 13-15: Panel and card of an access control system

	System diagram, Access Control System
	Figure 13-16: System diagram for access control system with three types of access points

	Package diagram, SignalLib
	Figure 13-17: Package diagram SignalLib

	Package diagram, AccessPointLib
	Figure 13-18: Package diagram AccessPointLib

	Block type diagram, AccessPoint
	Figure 13-19: Block type AccessPoint with virtual Controller process type

	Block type diagram, BlockingAccessPoint
	Figure 13-20: Block type BlockingAccessPoint as a subtype of AccessPoint

	Block type diagram, LoggingAccessPoint
	Figure 13-21: LoggingAccessPoint as a subtype of AccessPoint

	Process type diagram, Controller
	Figure 13-22: Virtual process type Controller

	Process type diagram, redefined Controller in BlockingAccessPoint
	Figure 13-23: Redefined process type with added states and transitions

	Process type diagram, finalised Controller in LoggingAccessPoint
	Figure 13-24: Finalised process type

	Process diagram, Panel in terms of services
	Figure 13-25: Process in terms of services

	Service diagram, PanelControl
	Figure 13-26: Service diagram, PanelControl

	Procedure diagram, GetPIN
	Figure 13-27: Procedure diagram, GetPIN
	Figure 13-28: Block diagram defining the CentralUnit

	List of figures
	List of definitions
	asterisk state
	block
	block set
	block type
	block type diagram
	block (type) heading
	block type reference
	channel
	create
	dashed entity
	decision
	diagram heading
	entity kinds
	environment
	finalised input
	finalised process type
	gate
	identifier
	input
	local variables
	output
	package
	package reference clause
	page numbering
	procedure
	procedure call
	procedure heading
	procedure reference
	process
	process diagram
	process type
	process type diagram
	process (type) heading
	process (reference)
	process set
	redefined process type
	remote procedures
	return
	save
	scope units
	service
	service (reference)
	service (type) heading
	signal definition
	signal list
	signal route
	specialisation
	start
	state
	system
	system (type) heading
	task
	transition
	text symbol
	timer
	variable definition
	virtual process type
	virtuality
	virtuality constraint
	virtual (input) transition

