
TIMe TIMe Electronic Textbook
11 Property Modelling
Introduction .2
What is Property Modelling? .3
Property descriptions cover specific aspects .3
Property descriptions may overlap and underlap .3
Property descriptions are often declarative rather than imperative.4
Property descriptions supplement object descriptions .4

Dimensions of the property concept .6
Relating to the existence of the system .6
Relating to the origin of the properties .7
Relating to whether the properties define functionality .7
Relating to market of product .9

Some Property Languages. .11
Prose. .12
Industry standard languages. .12
Languages based on logic .16
Summary property languages .22
Alignment .23
Formal basis .24

The SISU Property Modelling Technique .26
Service orientation .26
Role orientation .27
The dialectics of refinement .29
Example: Access Control: Change PIN .31
Strategies for property modelling .38
The art of Formalizing .39
Summary of property modelling methodology. .44

On the constructive use of MSC .45
The purely property-oriented approach. .45
The purely object-oriented approach .46
The combined approach .46
Construction of SDL Skeletons from MSC .47
A worked out example. .50

List of definitions .59

Property Modelling
Property Modelling 11 - 1 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Introduction TIMe11
Introduction

Property modelling is the activity related to making the property model, one of the two
halves of our description models. The domain model, the application model, the frame-
work model and the architecture model all have two halves: an object model and a
property model. Together these two halves make up a full model. The reader is referred
to the example to see how concrete descriptions together form a unit of description.

While the object model eventually becomes the imperative definition of the system, the
properties define the requirements and the capabilities of the system relative to its sur-
roundings. Properties are normally more fragmented and partial. Often property
descriptions are not as formal and precise as the object descriptions. This is, however,
not a necessary characteristics of property models, but more a consequence of the gen-
eral desire to express more than the formal languages can express.

Property models are expressed in a variety of languages. Prose and structured prose are
popular for some descriptions while temporal logic and sequence diagrams (MSC) are
popular in others.

In this theme we shall give the most common characteristics of properties in What is
Property Modelling? (p.11-3) and then we want to go into some dimensions which also
give more insight into what is covered by the concept properties in Dimensions of the
property concept (p.11-6).

Having achieved a better understanding of what we want to describe, it is reasonable to
analyze by which means the description can be expressed. In Some Property Languages
(p.11-10) we go through a set of different groups of languages each with its own strong-
holds and shortcomings. This section is of a slightly more theoretical nature and the
readers who are more practically inclined may skip this section until their desire to learn
more becomes unbearable.

Then for the more practically inclined we present The SISU Property Modelling Tech-
nique (p.11-26). This section can be read and used without thorough knowledge of the
other sections. We present our overall strategy for property modelling which can be
characterized by the slogans: Service orientation (p.11-26) and Role orientation (p.11-
27).

Our dialectic approach to refinement of property models is shown in The dialectics of
refinement (p.11-29) where we highlight the idea that to make models more precise is
not the same as making models more detailed. In order to make the concepts more easily
understood we show how these approaches can be used in an example Example: Access
Control: Change PIN (p.11-31). The section is wrapped up by Strategies for property
modelling (p.11-38) and The art of Formalizing (p.11-39) which in a stepwise manner
give the engineer advice on how to go about performing the property modelling.

 On the constructive use of MSC (p.11-45) is the section which brings the property mod-
elling together with the object modelling. The ultimate strength of our approach can only
be reaped if the two perspectives object orientation and property orientation are jointly
persued. In this section we show alternative combinations of object- and property orien-
tation. As a technique for “requirement engineering” we show how SDL skeletons can
be mechanically produced from MSCs.
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 2

What is Property Modelling?
Property descriptions cover specific aspects 11TIMe
What is Property Modelling?

According to American Heritage Dictionary “property” means “a characteristic trait or
quality”. The properties characterize of course the objects which we identify in the
object modelling (see theme on object modelling). It is, however, not always the case
that the object model has been created before the property model. During the identifica-
tion of the objects, properties become clear, and during the description of properties, the
objects and their interaction is established.

What characterizes a property description compared with an object description? Here
are some common properties of property descriptions:

• Property descriptions cover specific aspects (p.11-3) (traits, qualities).

• Property descriptions may overlap and underlap (p.11-3).

• Property descriptions are often declarative rather than imperative (p.11-4).

• Property descriptions supplement object descriptions (p.11-4).

Every language has its “universe of discourse”, that is the set of concepts which makes
up its semantic base. SDL expresses signal exchange between objects, with success, but
fails to describe the splendor of an Ibsen drama or the humidity of the air in Trondheim.
Property notations are often used to supplement the object model in areas it does not
cover.

Property descriptions cover specific aspects

Such specific aspect may be:

• liveness properties: something good will eventually happen;

• safety properties: something bad will never happen;

• possibility properties: something which might happen;

• overview of functionality (functions and function lists, functional roles);

• focus on interaction (use cases, Message Sequence Charts (MSC) diagrams);

• capacity and timing constraints;

• physical constraints: temperature, humidity, power consumption, concrete
interfaces,

• other not so easily formalized properties: modifiability, security, error handling, user
friendliness and price

Property descriptions may overlap and underlap

Since property descriptions concentrate on particular aspects, it is quite natural that the
set of property descriptions does not cover the model without mutual overlap/underlap.
Property Modelling 11 - 3 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

What is Property Modelling?
Property descriptions are often declarative rather than imperative

TIMe11

The goal of the property descriptions may not be to give a complete model description,
but to give descriptions which are sufficient for the verification and validation of certain
important characteristics of the system.

As an example we are used to accepting that the MSC document will not comprise a
description of all traces possible in the SDL model (object model), but rather defines
possibility properties.

It is also the case that overlap between different property descriptions may allow con-
sistency checks provided that there exists a common semantic model. This may not
always be the case. The official semantic models of MSC and SDL unfortunately do not
have a common basic theory so consistency checks between MSC descriptions and SDL
descriptions must take as their starting point formal semantics which differ from the
official ones. MSC formal semantics is defined in process algebra (See Process algebra
(p.11-12)) while SDL semantics is described in MetaIV – a variant of VDM (See Pred-
icate logic (p.11-16)).

Property descriptions are often declarative rather than imperative

While our ultimate object model in SDL may be seen as a complete imperative descrip-
tion of the system, property models are often declarative, meaning that they express
something which either holds or does not hold in the model.

First order predicate logic is an example of a declarative language for property descrip-
tion. The property has the form of a predicate which is either true or false in a given
model (at a given time).

Declarative descriptions are often formulaes which relate the objects of the system in
more or less intricate ways. From the literature of structured programming we are famil-
iar with pre- and post- conditions, and with invariants.

Invariants are conditions which hold at certain times and/or at certain program points.
Such conditions represent properties which describe stability and structure in execu-
tions, but do not prescribe the execution actions.

An example is a statement like: “Response shall be given within 15 ms in 90% of the
cases.”

Property descriptions supplement object descriptions

We have some property descriptions which may be some MSC diagrams, and we have
an object model which is an SDL model. If we have means to “align” the two descrip-
tions such that we know that they are supposed to describe the same reality, we may use
logic to verify whether the properties (stated in the MSCs) are satisfied by the object
description. In this way the property description supplements the object description in
Figure 11-1 (p.11-5).
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 4

What is Property Modelling?
Property descriptions supplement object descriptions 11TIMe
Figure 11-1: Property model supplementing object model

Open figure

Sometimes the property descriptions may even express properties that are not evident
from the object model. This happens when we describe performance capacities and tim-
ing constraints which formally cannot be described in (say) SDL.

prop.
mod

obj.
mod.

prop.
mod

obj.
mod.

mappinginterleaving
Property Modelling 11 - 5 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Dimensions of the property concept
Relating to the existence of the system

TIMe11
Dimensions of the property concept

As we have seen from What is Property Modelling? (p.11-3) there are many different
aspects of the property concepts. In this section we shall go into more ways to charac-
terize the property concept.

Relating to the existence of the system

We may distinguish between required properties and provided properties. The required
properties are often made and expressed before the object (to which the properties
relate) is actually made, while the provided properties by necessity relate to an existing
system.

Still the provided properties may not necessarily be provided by some implemented sys-
tem. We may also say that an SDL system provides properties.

The required properties also relate to the development process activity “analysing
requirements”. The required properties are sometimes included in documents which
make up the contract for the development job.

Figure 11-2: Required and provided properties

Open figure

In Figure 11-2 (p.11-6) we try to illustrate the relations between required and provided
properties and the system which is being developed.

Relating to the origin of the properties

The described properties are made by a system developer or a team of system designers,
while the derived properties have their origin in the system itself or in a complete spec-
ification thereof. Such a complete specification may be the SDL object model of the
system.

required properties provided properties

specification

the system to be the system as

development

developed

Verification
& Validation
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 6

Dimensions of the property concept
Relating to whether the properties define functionality 11TIMe
Figure 11-3: The origin of the properties

Open figure

In Figure 11-3 (p.11-7) we illustrate the position of the developer relative to the
described and derived properties.

Relating to whether the properties define functionality

Some properties describe what the system does, i.e. which output it gives as a result of
which input. When we focus on the results of the behavior of the system, we focus on
its functionality. If we focus on the color of the physical components, we focus on non-
functional aspects, as the color most probably will have no effect on the operating of the

system1. The non-functional properties relate to what the system is, rather than what it
does.

Figure 11-4: Functional and non-functional properties

Open figure

described properties derived properties

the system as is

1. This may of course be different on certain systems where color play an important role, but normally the color
has a visualizing effect only.

functional properties

non-functional properties

the system as is
Property Modelling 11 - 7 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Dimensions of the property concept
Relating to whether the properties define functionality

TIMe11

In Figure 11-4 (p.11-7) we illustrate that the functional properties in principle relate to
the effects of the system as modelled as functions from input to output (See Focus (p.11-
19)). The non-functional ones on the other hand relate to the aspects of the system which
characterize the system as a whole and independent of the specific input. This does by
no means indicate that the non-functional properties are unimportant!

Functional properties

Functional properties can be divided in categories related loosely to the Application ref-
erence model which has three parts: interface given, domain given, and system given.

• interface properties, related to interface given aspects, such as protocol properties of
the channels;

• general properties, related to the domain given aspects, such as freedom from dead-
lock and absence of unreachable transitions;

• sevice properties, related to system given aspects, such as how the access control sys-
tem should react upon the magnetic card in its card reader.

Non-functional properties

The non-functional properties are very varied since they relate to everything but the
operation of the system. Even though the properties are non-functional they may be
fairly closely related to the functional ones. Some users will say that if an interactive sys-
tem gives no response within 10 seconds it cannot be said to function. In our terms
response times are considered non-functional, but there is no doubt that performance
may be very important.

Furthermore the non-functional properties may be just as susceptible to formalization as
the functional ones. Response times can be measured in seconds and reliability by

MTBF1. The non-functional properties may also be very closely attached to the func-
tional ones. Response times may be associated with specific services or operations;
capacity may be related to only parts of the system.

We may classify the non-functional properties:

• Performance (response times and capacity)

• Reliability (how often can one expect an error recovery?)

• Security (what are the protection mechanisms?)

• Physical (humidity constraints, temperature, color etc.) which again may be subdi-
vided into property requirements to the environment and of the constructed system
itself.

• Modifiability (how easily can improvements and extensions be made?)

1. MTBF=Mean Time Between Failures
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 8

Dimensions of the property concept
Relating to market of product 11TIMe
Relating to market of product

A system is of little use if it is not sold or used. To be sold it is often necessary to high-
light properties which are different from the competitors (supposedly better).

Figure 11-5: Market oriented properties

Open figure

In Figure 11-5 (p.11-9) we illustrate that some of the properties of a system are related
to the position of the product in the marketplace. Some properties may be called duty
properties meaning that those are the properties which the user will consider essential in
order to take your product into consideration at all. Once your product is taken into con-
sideration, it will become important how it compares with other products. The
positioning properties are those which place your product in the competition.

While the distinction between duty and positioning properties relates to the choice of
your product by a customer, the distinction between mandatory and optional properties
relates to the development of a product which in some way has been chosen. The man-
datory properties must be fulfilled to adhere to the contract while the optional properties
are “nice to have” features which the customer may have to pay extra to get.

For our example Access Control system, duty properties must be the ability to control
doors subject to access by an electronic card. Positioning properties could be the price
of a given system, the compactness of the panels, or the security of the central unit. Man-
datory properties of the Access Control system are related to the access control, while
optional properties could be related to PIN changing facilities, backup procedures etc.

positioning properties

duty properties

our system

basic system

competitor system

wanted system

optional properties

mandatory properties
Property Modelling 11 - 9 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Some Property Languages
Relating to market of product

TIMe11
Some Property Languages

Property languages are like other languages, they are best when they are used to describe
what they are designed for. However, it is sometimes the case that the languages can be
used for a wider spectrum of purposes than they were originally designed for.

Combes et al. [41] have shown how MSC can be used to express statements of liveness
and safety which normally are described by temporal logic.

When evaluating languages we shall focus on three aspects of a language:

Figure 11-6: .Property Languages

Open figure

Firstly we must consider whether statements of the language can be understood by
humans (in particular those needing to understand it). We call this transparency. Still
simple languages are of little help if it is impossible to express those aspects which are
crucial for the success of the system. We need the language to be expressive such that
the important aspects of the system can be described accurately. Finally we want the
descriptions to be precise such that no ambiguities can occur. This is best achieved by
the existence of a formal semantics base such that descriptions can be verified against a
model (e.g. defined in some other language). These dimensions are shown in Figure 11-
6 (p.11-10).

Completeness is also an issue. Does the property description describe the total set of sit-
uations? Property descriptions will normally serve its purpose quite well even though
they may not be complete. We are used to MSC documents which normally describe
only a small portion of the possible scenarios, and invariants which describe only for-
mulaes on a subset of the variables. Still there is no specific benefit to be reaped from
being incomplete when completeness can be achieved. But it may not be trivial to assess
whether a given set of formulaes form a consistent and complete model

The question of completeness also relate to the “universe of discourse”. If we have used
MSC to express properties, then aspects of humidity or physical security are not within
its realm. Not even in the constructive object model of SDL would such properties be
described. Still we would claim that the SDL model is complete, meaning that it

Formal base

Property
Language

The world

transparency

expressiveness

verifiability
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 10

Some Property Languages
Prose 11TIMe
describes all possible behaviors of the system projected onto its universe of discourse.
On the other hand, an MSC document will normally not be claimed to describe all pos-
sible behaviors even if we project onto the universe of discourse. MSC normally
describes a set of some possible behaviors, while SDL in principle describes the set of
all possible behaviors.

Prose

Textual prose, possibly accompanied by informal illustrations, is always an important
means to describe a system. Prose has its strongholds when the specification should be
readable among many different kinds of people: managers, engineers and marketing
personel.

To use prose may also be motivated by the lack of proper tools for a more formal
description, or simply the lack of a proper language.

Prose is also heavily used as comments inside the other more formal descriptions.

Service lists

Since our methodology may be said to be service oriented (see Service orientation
(p.11-26)), it is important to identify the services as early as possible. The services may
be classified for different purposes, e.g. for sales (some functions are related in deliver-
ables) or for property tracing.

The identified concepts in the dictionary and in the conceptual model shall be used in
the formulation of the functions.

Function specifications contains:

• Function name

• Textual explanation

• Relation to object model and how relations and attributes are involved

• Relation to other property models

• Possible constraints on combination with other services.

Industry standard languages

MSC

MSC (Message Sequence Charts) highlights interaction between instances based on
messages. MSC is most effective when the interaction sequences of messages between
the acting objects (or roles) is of major importance. See our tutorials of MSC-92 and
MSC-96.

MSC has no data concepts and therefore values of variables can only be expressed in
comments and informal text.
Property Modelling 11 - 11 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Some Property Languages
Industry standard languages

TIMe11

With MSC-92 it is evident that the MSC document cannot be complete. It is reasonable
to interpret the MSCs as a well selected set of possible (or impossible) cases. See also
our MSC-92 methodology and our MSC-96 methodology.

With MSC-96 the situation is largely changed. With the introduction of more versatile
composition mechanisms and MSC expressions, it is possible to become more complete
and to express more precisely properties which are often described by temporal logic.

We could model our liveness property “Whenever you put a card into the Access Con-
trol system you will get your card and a response back eventually” by the meta-msc
construct shown in Figure 11-7 "Liveness in MSC" (p.11-12).

Figure 11-7: Liveness in MSC

Open figure

Meta-MSC (Meta-MSC (p.11-42)) is an elaboration (by us) of MSC-96 where liveness
and safety propeties may be expressed relative to another MSC-96 document. In Figure
11-7 (p.11-12) we have introduced the liveness operator live which takes three argu-
ments and the wildcard message any. The live operator is defined such that whenever
the first argument is matched (here CardIn input to AccessControl), then the second
argument will happen (here: the CardOut will be output and some response given)
before the pattern of the third argument happens (here: another CardIn is input). The
response is decorated with any meaning that either “OK” or “NOK” is to replace “any
response”.

Still with the advent of MSC-96, MSC does not express time and capacity constraints.
The events of an MSC are only ordered ordinally along each instance axis. Any real time
requirements can merely be expressed through comments or through the use of pseudo-
timers. This may not be satisfactory.

Process algebra

Whether the property description can be said to be complete is not only a matter of hav-
ing enough pieces of description. Sometimes it is also a matter of levels of detail.

meta-msc Liveness

CardIn

AccessControl

CardOut
any response{OK,NOK}

live

CardIn
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 12

Some Property Languages
Industry standard languages 11TIMe
For the Access control system, the description of the system as such in relation with its
surroundings (context) may be complete, but still it does not suffice in order to be able
to create the system. Then we have to decide what should be inside the Access Control
system.

Our SDL/MSC method is a technique where the approach to detail is guided mainly by
decomposing the objects (instances). With MSC-96 it is possible to approach details in
a more process-oriented way. By process-oriented we mean that processes are divided
into sub-processes independent of the instances being decomposed.

Farther in this direction are the languages which describe systems as composed of pro-
cesses. The most popular one in universities and among the more theoretically inclined,
is CCS [139]. In the same tradition we find the more industry-oriented language LOTOS
[18] which formerly was considered a competitor to SDL.

There are examples of mixtures of SDL and LOTOS where LOTOS has been used as a
property language accompanying an object description in SDL. LOTOS was used to
specify the interface behavior on the channels more precisely than SDL structure dia-
grams do.

A LOTOS example (p.11-13) taken from the standard shows the specification of a sim-
ple duplex buffer.

Figure 11-8: LOTOS example

Open figure

SDL as a property language

Can SDL be used as a property language? We have presented SDL as the main language
for object description. There is no rule against using the same languages for different
purposes, but there is no reason to produce two identical descriptions and call one of
them the property description.

A state-oriented process view is often practical, also on coarse levels where the object
model in SDL shows blocks and their decomposition. Our desire would be also to have
a view where states and their transitions were shown. SDL substructures were originally
designed to include both a state oriented view and a block in block view. It turns out,
however, that technical problems with the concept often prevent the feature from being
actually used.

process new_simple_duplex_buffer [in_a, in_b, out_a, out_b]:=
one_time_buffer[in_a, out_a] ||| one_time_buffer[in_b, out_b]
where
process one_time_buffer[inpt, outp] :=
inpt;outp; stop
endproc
endproc
Property Modelling 11 - 13 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Some Property Languages
Industry standard languages

TIMe11

Even though the internal state of a process (system) may not be observed from the out-
side the internal state may still be important for the understanding of the process. The
internal state is often an implicit cause of the observable behavior

Figure 11-9: .SDL as property language

Open figure

We see in Figure 11-9 (p.11-14) that the whole Access control system can be sketched
from a single user’s point of view as a simple process. In this diagram we have taken the
liberty to simplify the typing of four digits into one single PIN(n) signal. Furthermore
we notice that the internal state is important for the understanding of what happens if a
PIN is entered. This is the situation when a new person approaches the Access Point: he
cannot know whether another person has just pulled his card through and entered no PIN
just to mess up the next user. The internal state is not indicated anywhere and the new
user would have to know the whole signal history of the system (process) to know what
reactions the system will have on his entering his card or a PIN.

In the diagram in Figure 11-9 (p.11-14) we have not been entirely formal as we have not
gone into detail about the ‘check’ operation of the decision. Data declarations of c and
nr are also omitted.

After the design phase, where the final SDL description of the Access Control system
has been established, it is interesting to see whether the properties derived from the
designed system correspond to the properties described in Figure 11-9 (p.11-14).

WaitCid

Cid(c) PIN

OK

WaitPIN WaitCid

PIN(nr)

‘check
(c,nr)’

NOK

no entry

enter

WaitCid WaitCid

process AccessControl
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 14

Some Property Languages
Industry standard languages 11TIMe
The reader may also notice that Figure 11-9 (p.11-14) may be understood as a “role dia-
gram” where the role is the Access Control providing access rights. The diagram shows
all possible behaviors of the user applying this service. The reader is referred to Sum-
mary of property modelling methodology (p.11-44) for a more thorough introduction to
role modelling.

Harel StateCharts

The attractiveness of a state-oriented view makes Harel’s StateCharts[76] a reasonable
candidate for system description.

With a sound formal basis and a graphical notation, StateCharts are used both in univer-
sities and in industry.

The principle of decomposition distinguishes StateCharts from SDL (see SDL tutorial).
In StateCharts the states are decomposed, such that a system at one time is in a stack of
states (or a tree of states when a parallel decomposition is involved). In SDL we have
something slightly similar when using procedures, as the procedure stack describes a
stack of states.

Again we show the properties of the Access Control System

Figure 11-10: .Statecharts

Open figure

In Figure 11-10 (p.11-15) we see that the means for decomposition is the state in states
and not as SDL where we decompose structurally block in block. The decomposition of
a PIN into four digits is simple. Furthermore we manage very easily to model that the
typing of a PIN may be interrupted by a timeout when the user has spent too much time.

AccessControl

WaitCid

WaitPIN

Cid(c)
digit(d)

WaitDig4WaitDig1

digit(d)

timeout

digit(d)
digit(d)

WaitDig2 WaitDig3
Property Modelling 11 - 15 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Some Property Languages
Languages based on logic

TIMe11

Languages based on logic

Predicate logic

When using predicate logic as the base for descriptions the property model is a set of
predicates. The objects of the universe of discourse are variables (identifiers, instances)
of the model. The predicates are often aligned with imperative (object-)descriptions by
a braid with textual descriptions. This is the case with Hoare style invariants (see Figure
11-11 (p.11-16)) , and with VDM (Vienna Development Method) [113].

In the tradition of Hoare (See Figure 11-11 (p.11-16))[92] , pre- and post-conditions rep-
resent property descriptions interleaved with a programming language that represents
the object description.

In Hoare-logic we have predicate logic combined with the programming language. The
idea is the following:

Figure 11-11: Hoare logic

Open figure

For some odd reason we know that after the program statement “x:=x+4”, the invariant
is that {x=8}. Then we can compute backwards by substituting in the postcondition “x”
(which is the left hand side of the assignment) by “x+4” (which is the right hand side)
to obtain the pre-condition {x+4=8} which is the same as {x=4}. The reader may check
that there is no surprise that if {x=4} before the assignment, it will become {x=8}
afterwards.

Other languages like Z [90] will use the predicate logic paradigm in a more independent
way meaning that the predicates represent the whole description. In Z the “schemas”
often represent states or a transition between states.

x := x + 4;

{x+4=8}

{x=8}

program text

post-condition

pre-condition
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 16

Some Property Languages
Languages based on logic 11TIMe
Figure 11-12: Example of Z

Open figure

The idea of Figure 11-12 (p.11-17) is to indicate how a Z description looks. The top part
is a declaration of variables, while the bottom part defines predicates on these variables.
We have tried to indicate that the Access Control system can be seen as a function acsyst
which takes a sequence of signals (either digits or integers) and returns a sequence of
validation returns (OK, NOK or ERR). We indicate (not all formal) that the input
sequence consisting of one integer (the card identification) and four digits will result in
one validation output, and the remainder of the input sequence will be processed simi-
larily. The second line of the predicate indicates that digits preceeding the card will be
discarded (ignored) by the Access Control system.

In our methodology we recommend describing invariants of states associated with the
state symbol in SDL (See rule).

Temporal logic (CTL)

Two types of properties are normally highlighted as important to describe and to prove.

• Liveness: something good will eventually happen;

• Safety: something bad will never happen.

We notice that these kinds of properties are not merely dependent upon the values of
variables at some point in time. Such properties talk about situations which should come
in the future or which should never come in the future. The property descriptions them-
selves must address time or ordering in time. This is where temporal logic comes in.

In the Access Control system a safety property is that the door is never unlocked unless
the card is valid. A liveness property is that whenever you have entered a card, you will
eventually get a response and the card back.

From these examples we see that while the safety property above is right in the heart of
the functionality of the Access Control system, the liveness property is interesting, but
hardly sufficient for the satisfaction of customers. This is because safety is the business
of the Access control system.

d1,d2,d3,d4,d: Digit
cid: Integer
sigs: seq (Digit U Integer)
acsyst: seq (Digit U Integer)->{OK,NOK,ERR}
valid: {OK,NOK,ERR}

acsyst([cid,d1,d2,d3,d4,sigs])=[valid,acsyst(sigs)]
acsyst([d1,cid,sigs])=acsyst([cid,sigs])

AC
Property Modelling 11 - 17 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Some Property Languages
Languages based on logic

TIMe11

As an example of a temporal logic specification we shall use the language CTL (Com-
putation Tree Logic)[38]. We could equally well have chosen TLA (Temporal Logic of
Actions)[130], but CTL was chosen due to the existance of effective algorithms which
determine the truth of CTL formulaes.

The language uses a small set of concepts:

• Any atomic proposition p is a CTL formula,

• If f1 and f2 are CTL formulaes, then so are , , , , ,
and .

• means “not f1”,

• means “f1 and f2”,

• means “for all states following the current state, f1 holds”,

• means “for some state following the current one, f1 will hold”,

• means “for all paths of states1 from the current state, f1 will hold until f2
holds”,

• means “for some path of states from the current state, f1 will hold until f2
holds”.

These special constructs can be explained in relation with a transition system, or a com-
putation tree of states. For any state it is possible to assess the truth value of atomic
propositions (see Predicate logic (p.11-16)). The truth values of the more composite
constructs are derived from this basic notion and they are all interpreted relative to the
current state:

If we rephrase our safety requirement above slightly into addressing states instead of
events we get: The door should never be open when the last card was invalid. In CTL
this could be:

Figure 11-13: Example of CTL

Open figure

The formula is read: “For the Access Control system (seen as a transition system named
AC), relative to the state “init” (which we have labelled the initial state of the system),
one will not find that some path will end in a state where both cardinvalid and dooropen
are true (two variables which we have assumed present in the state characterizing the
Access Control system).

If we had had a realization of the transition system AC, there are algorithms which are
reasonable efficient that checks the correctness of the CTL formula relative to the tran-
sition system [72].

1. “Path of states” means “sequence of system states in time succession”

f1¬ f1 f2∧ Xf1 EXf1 f1Uf2[]
E f1Uf2[]

f1¬

f1 f2∧

Xf1

EXf1

f1Uf2[]

E f1Uf2[]

EX cardinvalid dooropen∧()¬AC, init
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 18

Some Property Languages
Languages based on logic 11TIMe
Focus

Focus is an approach of the Technical University of Munich where Professor Manfred
Broy and his chair has performed research on formal methods for reactive and real time
systems for a number of years [29].

Their basic model sees a component as a set of functions that associate output histories
with input histories. The histories are infinite streams of signals and time ticks. That
every component is modelled not as a single function, but a set of functions makes it

possible to describe unbounded nondeterminism1.

The Focus notation is based strictly on mathematical logic and powerful inference rules
have been devised. Focus components are compositional such that analysis of a com-
posed system can be derived in steps from analysis of its constituents.

Focus is aimed at describing systems which have a mixture of the following
characteristics:

• data transformation;

• data storage and retrieval;

• data transmission;

• synchronization between active objects.

They recognize the fact (as we do) that modern systems very often have all these char-
acteristics combined with strict real time requirements.

• embedded systems (cars, airplanes, manufacturing);

• man-machine interaction handlers;

• components in distributed software.

In order to cope with such diverse requirements, the Focus notation has three modi:

1. Time independent (ti) specifications;

2. Time dependent (td) specifications;

3. Synchronous (sy) specifications.

Their basic theory is based on one form of the pulse driven functions which are shown
to comprise the three modi above. The three modi are different forms suited for different
purposes.

Orthogonal to the choice of modi, there is the choice of specification style:

1. Free, direct transitional style;

2. Assumption/Commitment style;

3. State oriented style.

1. Unbounded nondeterminism means that the number of nondeterministic choices cannot be determined in
advance. This is the case if you want to specify that a loop will terminate, but you do not know any limit to
how many iterations it will run. This can neither be described in SDL nor in MSC-96.
Property Modelling 11 - 19 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Some Property Languages
Languages based on logic

TIMe11

The two latter are styles have fragments of methodology associated. The state oriented
style bears close relationships with SDL specifications (see SDL as a property language
(p.11-13)) while the assumption/commitment style is a generalization of the pre-condi-
tion/post-condition style of the Hoare logic (p.11-16).

We shall describe our Access Point Controller process in Focus. To distinguish it from
SDL (See AccessPoint in SDL), we will give a specification in the assumption/commit-
ment style.

Figure 11-14: Structure of AccessPoint Controller

Open figure

From Figure 11-14 (p.11-20) we have that the Access Point Controller takes a code sig-
nal and forwards it to the Authorizer, from where it receives a validation result (ok, nok
or err) which it forwards to the Panel. To make the example simple, we have omitted
the controlled door.

Focus1 begin

-- The preamble of a time dependent specification defining the signals on the chan-
nels just like in the SDL-like illustration Structure of AccessPoint Controller (p.11-
20)
-- td above the equality sign shows that our specification is time dependent.

assumption

-- There is more code input than validation input at any given point r in time.
-- The bar over the channel identifiers indicate that only signals and not time ticks
are considered.

-- The number of code signals out is the same as validation signals in indicating that
each code out triggers eventually a validation result in

commitment

1. This notation used here is an adaptation of an early form of the Focus notation. Its final notation varies from
this.

[code] [code]

[(val)] [(val)]

AccessPoint
Controller

c2

c1

b2

a2

APC c2 code{ } a2 val(){ } b2∇ code{ } c1 val(){ }
td

o o=
,,,≡

r N∈() #c2 r #a2 r≥()∀

#b2 #a2=
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 20

Some Property Languages
Summary property languages 11TIMe
-- Every code coming in will eventually go out unchanged. We could make it even
stronger by demanding that it should never go more than x ticks in real time from
the code signal was consumed until it was output. This would be written.

 meaning that the output at time (r+x) is always a prefix of the

input at time (r)

-- Similarily the validation input (from the Authorizer) will be output. This can also
be strengthened by real time constraints.

end LSC

We may notice that the requirements on time which we have categorized as non-func-
tional (see Relating to whether the properties define functionality (p.11-7)) are
integrated with the functional ones in a way which makes the categorization of response
times as non-functional dubious. The choice of basic theory and of notation has an
impact on what properties are functional and which are not.

The compositionality of the Focus specification can be seen if we specify each compo-
nent of the system, and also specify overall system requirements. By the theories behind
Focus it will be possible to prove that the system decomposed into components is a
refinement of the overall system requirements. Once this has been shown on the topmost
level, each of the components may be refined in isolation without upsetting the top level
refinement result.

The strong point of Focus is its ability to cope with very diverse components within the
same system. Its solid theoretical base makes it suitable as a common semantical frame-
work for modern distributed and diversified systems.

The weak point of Focus is its mathematical notation which makes the specifications
less transparent than desirable.

Summary property languages

b2 c2=

r b2 r x+ c2 r⊆()∀

c1 a2=

Table 11-1: Property language comparison

property Prose MSC Focus SDL

liveness, safety fair faira good fairb

overview good good fair good

interaction poor goodc fair faird

time requirement fair poore good poorf

performance fair poor fair poor
Property Modelling 11 - 21 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Some Property Languages
Alignment

TIMe11
Alignment

The property descriptions describe specific aspects of the model, on different aggrega-
tion levels and on different abstraction levels. An important issue is to be able to assess
that the different descriptions of the same model actually talk about the same model.

In some cases this is a simple task, while in other cases it is not so simple. The most dif-
ficult situation is when the alignment appears to be simple, but in fact is more intricate.

Here is a simple example, which still turns out to pose some problems:

transparency good good poor good

expressiveness fair fairg good good

formalization poorh good good good

a. MSC must be supplemented by more information to cover temporal
logic.

b. SDL may provide a complete specification, but temporal properties
are not transparently highlighted.

c. MSC is especially good for describing interaction where message
sending is important.

d. SDL focuses on describing signalling locally, therefore the sequence
of signals may be more difficult to grasp.

e. MSCs may be annotated to accommodate for some timing require-
ments. Real time is not a part of MSC.

f. SDL is, like MSC, not good at describing absolute time.
g. MSC is not so expressive when it comes to other aspects than mes-

sage sequences
h. The lack of formality is the main problem with prose. A related prob-

lem is that prose is often ambiguous and therefore easily misunder-
stood.

Table 11-1: Property language comparison

property Prose MSC Focus SDL
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 22

Some Property Languages
Alignment 11TIMe
Figure 11-15: Aligning prose, MSC and state diagram

Open figure

In Figure 11-15 (p.11-23) we have little problems with recognizing that the three differ-
ent descriptions all describe the same situation in the Access Control system. Still the
three perspectives do not cover each other completely.

The prose says very little about the exact sequencing of the messages, and little about
the requirements which the user must fulfill (such as opening the door himself and clos-
ing it afterwards) before the system is again ready for another card.

The MSC says little about the fact that there is a User, and it has no indication of the
states which the system passes through. Furthermore, the (visual) response to the user is
omitted.

The state-oriented diagram is the most complete one, but still it is still not formal enough
to be used for automatic code generation.

The informal alignment is basically given by identical identifiers. We have highlighted
card as one such identifier.

When we want to align the three descriptions more formally we run into questions such
as:

• Where are the states (of the state diagram) in the other descriptions?

• Where is the Panel (mentioned in the MSC) in the others?

The Access Control system
receives the user’s card,
and responds by either OK
or NOK. The user may en-
ter only if the response is
OK, otherwise the card is
just returned

Idle Valid?

Opened Unlocked

card in/
check

NOK/

OK

open door/
lock

close

card out

alt

card in

check

nok

okunlock

card out

msc AC

Panel

PROSE

MSC

STATE DIAGRAM

card out

/unlock
Property Modelling 11 - 23 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

Some Property Languages
Formal basis

TIMe11

• Where is the AccessControl system (mentioned in the prose) in the others?

Such differences may not be important, as it is obvious that each perspective will have
its own “aids for the thought”. The state-diagram uses states as a major means for
expression, while MSCs need instances which produce and consume messages. A pro-
cess algebra description (and other notations based on logic) often uses auxiliary
functions.

In our methodology, where the object model is a complete SDL specification and impor-
tant properties are expressed by MSC, there is a fairly straight forward alignment
mapping (see MSC-92 Methodology).

Types of alignment

The idea of alignment is that the object description and the property description together
form a combined description. The combination of descriptions can be done in more than
one way:

• Textual braid (see Figure 11-11 "Hoare logic" (p.11-16))

• Separate descriptions of the same defined situation (see Figure 11-15 "Aligning
prose, MSC and state diagram" (p.11-23))

• Different descriptions within the same overall system (see combined descriptions)

Formal basis

As pointed out in Some Property Languages (p.11-10) an important dimension of a
description language is whether it has a precise semantics. From the summary Table 11-
1 "Property language comparison" (p.11-21) we see that verifiability corrolates nega-
tively with transparency for those languages which are specifically strong on either
dimension. Languages which are strong on formalisms such as Focus (p.11-19), Tem-
poral logic (CTL) (p.11-17) or Predicate logic (p.11-16) score badly on transparency.
On the other hand languages which score facvorably on transparency such as Prose
(p.11-11) (and other informal notations not mentioned in our chapter here) have little to
offer on verifiability.

We realize that our complex systems are best described by a number of languages, due
to their different strongholds or due to historical reasons. Then it becomes increasingly
important to be able to handle them within the same precise conceptual framework
which preferably also should support chances to perform formal reasoning.

Alignment between the descriptions can be seen as adjusting the binoculars such that
both eyes focus on the same thing. Still we cannot be sure that both descriptions describe
the same situation. The specified structures or behaviors may not be consistent.

What we need is a common basis on which to build our semantics of the different
descriptions. The semantics of CTL (Temporal logic (CTL) (p.11-17)) is given relative
to a labelled transition system. This means that given a transition system, it is possible
to determine the consistency of a CTL description relative to this labelled transition
system.
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 24

Some Property Languages
Formal basis 11TIMe
In the same manner, MSC can be given an interpretation relative to an SDL system and
thereby the consistency between an MSC and an SDL can more easily be determined.

In Geode1 the extended MSC and the SDL both have interpretations as labelled transi-
tion systems and thus their consistency can be established.

By defining MSC and SDL relative to a formal basis of labelled transition systems, the
tool vendors have formally a proof obligation that their interpretation is equivalent to the
formal definitions. For SDL the official formal definition is given in MetaIV (a variant
of VDM), and for MSC it is given in a process algebra framework.

Here we would like to give an informal procedure for how a common formal basis can
be utilized for consistency checking:

1. Translate each description into the common formal notation.

2. Apply the alignment mapping to make the set of common identifiers as comprehen-
sive as possible.

3. Filter out all aspects which are not covered by the alignment mapping.

4. Compare the resulting descriptions (formulaes).

Often it is not effective to translate the whole descriptions before comparing. Compari-
son can be done in parallel with the translation, the application of the alignment mapping
and the filtering.

This is the case with commercial SDL/MSC validators. After the alignment of states to
position in MSC has been done, the parallel execution of the SDL and the MSC takes
place. Since there are several possible execution paths the execution involves back-
tracks. Still since what the validator is normally looking for is the existance of a
specified trace (described by MSC), a result may occur earlier than if the full descrip-
tions had been translated to some labelled transition system.

For more on formal reasoning and consistency examination, the reader is referred to the
theme on Verification and Validation.

1. Verilog (1994). GEODE Simulator. Basic Concepts. Reference Manual - GEODE Simulator . Toulouse,
France, Verilog. 1-36.
Property Modelling 11 - 25 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The SISU Property Modelling Technique
Service orientation

TIMe11
The SISU Property Modelling Technique

As shown in Some Property Languages (p.11-10) there are many languages and each has
a different purpose. This methodology also needs to be able to express the different
property aspects, but we want to keep to a fairly small set of notations.

Our basic formal notation for property modelling is MSC-96. For MSC to be able to
describe liveness and safety properties, there is a need to extend MSC in the direction of
quantifiers. We propose an MSC extension which we call Meta-MSC (p.11-42) which
is inspired by Temporal logic (CTL) (p.11-17).

Our technique is based on a scheme which can be applied to any level of detail, but dif-
ferent levels of detail have different characteristics and different criteria for
completeness.

On the domain level, there are two points which characterize our property modelling
technique:

• Service orientation (p.11-26)

• Role orientation (p.11-27)

Service orientation

For the kind of systems which the SISU methodology is suited to design, it seems prac-
tical to consider that the behavior of the systems can be seen as a menu of a set of
services which the system provides to its users.

A service is a unit of behavior which the user recognizes to be provided by the system.
The first approach to a system analysis is often to list the services by using simple prose
as described in Prose (p.11-11). The next step will be to formalize these services by
using formal languages, e.g. MSC.

To make more precise what we mean by a service we shall list some of the properties
held by services. Services are charcterized by the following:

• A service is a pattern of behavior involving one (or more) service provider(s) and at
least one user.

• Services may be interleaved in time.

• Important aspects of a specification of a system (or service provider) is achieved
when its services are satisfactory described.

• A system can be characterized by a set of services. Each service may again use
subservices.
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 26

The SISU Property Modelling Technique
Role orientation 11TIMe
Role orientation

In the end our system will consist of active objects which provide the services. When an
object provides a service, it plays a role. An active object may play a number of different
roles, and more than one object may have the capacity to play the role. It is also the case
that a role may perform in a number of services.

Figure 11-16: Role, service and object

Open figure

In the domain analysis we describe the services with roles as the acting entities. This
gives better flexibility when the concrete design of a system is to take place.

A role is a behavioral pattern which describes how one acting object performs a set of
related services. Normally when describing role diagrams (e.g. in MSC) only messages
involving the focused actor will be shown. On the other hand it is normally assumed that
all messages involving the focused actor concerning this specific service will be shown.
The different alternative courses of behavior should be described.

In the method OORAM [162] the active objects are built from roles. This technique is
called synthesis and it amounts to defining the active objects as a union of a set of roles.

The relations between different roles can be shown by an object model. The role behav-
ior is described by some property modelling language (cf. Some Property Languages
(p.11-10)) such as typically MSC (Figure 11-17 "Roles expressed by MSC-96" (p.11-
28)) or SDL (Figure 11-9 ".SDL as property language" (p.11-14)).

In domain analysis the relations between services and roles are of primary concern,
while during the design the relations between the roles and their performing objects
become the focus. We will refer to these associations between roles and their performers
as casting.

During design we recognize a special kind of role which can be constructively used dur-
ing the design and in connection with validation. When the objects have been identified
and the communication lines established, it is possible to isolate roles describing the
projections of the object behavior onto each communication line. Such roles are called
interface roles or interface projections.

Service Role

Object

performs in

involves

plays can be
played by
Property Modelling 11 - 27 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The SISU Property Modelling Technique
Role orientation

TIMe11

These kinds of roles can be used constructively, since whenever an interface role is
known on one end of a binary communication line, the interface role of the other end is
the inverse and can therefore be constructed. Depending on what is initially known, the
interface roles can be used to produce the behavior description of an object or to ensure
its consistency.

During validation the projections can be used to check for certain consistency rules
which assures that general design criteria are met. (See rule for Risk index).

When services are binary (one service provider and one service requester) and only one
communication line is used, interface roles and service roles overlap.

In Figure 11-17 (p.11-28) we show how the User will behave relative to an Access Con-
trol system. In SDL the corresponding Access Control system may act like in Figure 11-
9 ".SDL as property language" (p.11-14) (where the cases of PIN not needed is not
covered).

Figure 11-17: Roles expressed by MSC-96

Open figure

msc UserActions User

Start

“Insert your card”

card insert

alt

“Take card, open door”
remove card push door

“Take card, access denied”
remove card

“Enter personal code”
PIN

alt
“Take card, access denied”

remove card

“Take card, open door”
remove card push door

Start
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 28

The SISU Property Modelling Technique
The dialectics of refinement 11TIMe
The company strategy

It is very important for the success of the descriptions that there is a clear understanding
of why the descriptions are made, and for whom they are made.

Awareness of these questions makes the production of property descriptions more
focused and thereby better. More about how the company strategy can be specified can
be found in our MSC-92 methodology.

The dialectics of refinement

We will present our basic principle of property refinement in this section. The starting
point is that we have a description of some entitity. This entity can from a property point
of view be seen as a piece of behavior. We do not here take a stand on exactly how the
entity is described, but we may assume that both informal prose and more structured
MSCs are used.

Our task here is then to describe the road ahead from such a description, which also rep-
resents a state of understanding in the development team.

We face two different needs which interact:

• The need for more precise description (p.11-30);

• The need for more detailed descriptions (p.11-30).

It is important here to realize that these needs indeed are different, and that their fulfill-
ment requires different means, and that they are interlinked. Following a brief
introduction there is an example Example: Access Control: Change PIN (p.11-31)
where the concepts are applied in developing a service in our Access Control system.
From each concept a specific reference is given to the appropriate section in the example

Figure 11-18: .The Whole, The Precise and The Details

Open figure

The Whole The Precise

The Details

make more detailed make more detailed

make more precise The Precise Details

make more precise
Property Modelling 11 - 29 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The SISU Property Modelling Technique
The dialectics of refinement

TIMe11

The need for more precise description

In property modelling making the property descriptions more precise may involve a
number of different approaches:

1. To formalize, meaning that we move from descriptions in prose to descriptions in a
formal language (MSC (p.11-11), Focus (p.11-19), Temporal logic (CTL) (p.11-17)
etc.). See example in Formalize (p.11-31).

2. To narrow, meaning that we add more properties such that our description is less
underspecified. See example in Narrow (p.11-32).

3. To supplement, meaning that we add properties of other aspects than what we did
before. This could mean adding time-dependent properties explicitly in addition to
the plain MSC description. See example in Supplement (p.11-33)

The need for more detailed descriptions

Even though it may be the ideal to describe a situation without going into much detail,
it is repeatedly shown that sometimes the understanding of the details are necessary for
the understanding of the whole.

If we assume that our whole entitity is represented by an MSC, we can easily distinguish
a set of means to make the description more detailed:

1. To decompose the instances, meaning to see how the intances of the whole looks
inside. Which instances do they consist of, and how do these instances interact to
make up the already known whole? See example in Decompose (p.11-35).

2. To break down the protocols, meaning that what on the upper level looks like one
message or one behavioral pattern (e.g. an MSC), on the next level is a protocol of
interaction. See example in Break down (p.11-36).

3. To reveal, meaning that more of the total scene is considered, more messages, more
instances. See example in Reveal (p.11-37).

We see that several of these approaches to precision and detail can be used simulta-
neously, but we should be aware of which mechanisms we actually use.

During the process of making more precise and more detailed descriptions, the under-
standing improves and the improved understanding should feed back to the original
starting point making the description of the Whole more accurate.

Description distillery

The process of reaping the experience on the upper level from work on lower levels and
from making the description more precise, we choose to call “tdisilling”. It amounts to
making the description cleaner, more pure, and more valuable. In this process, an impor-
tant task is to define the accurate bounds of the Whole.
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 30

The SISU Property Modelling Technique
Example: Access Control: Change PIN 11TIMe
Compositionality preparation

A central idea of our methodology is to be able to apply the same overall techniques also
on the next level of detail. Then we have to make sure that the distinction between the
levels is reasonably clear. Why this is important is that we want to assess – informally
or formally – that the levels of detail define a refinement relation.

Example: Access Control: Change PIN

The distillery approach should be more easily grasped when we go through parts of our
Access Control example in some detail to explain what we mean by each of the individ-
ual approaches. We shall try to apply only one individual approach at the time while in
practice a development step may use more than one approach.

The example starting point

We shall start in the domain model of Access Control systems. We have a Domain State-
ment from which we extract:

- Users shall be able to change their secret code

This is the service that we shall develop in this section. It is obvious that the simple line
above of the domain statement may give rise to a number of interpretations and a num-
ber of possible implementations.

Make more precise

It is reasonable to start by trying to make the statement more precise, and we have three
approaches: formalize, narrow and supplement. It is not obvious which of these
approaches will give the best progress.

Formalize Trying to formalize will often make the designers discover more about the prose state-
ment than they first thought was in it. On this level of understanding, it may not be the
best strategy to take MSC and make message sequences because then we get into a very
constructive way of thinking before we have pondered about what we really mean by
our prose statement. Rather a more declarative approach in the style of Hoare logic Fig-
ure 11-11 "Hoare logic" (p.11-16) could prove fruitful. First we consider how the
situation before and after the service could be described formally.

In this case we have a notion of a Personal Identification Number (PIN) associated with
a Card identification (Cid). The database (DB) consists of a set of such pairs such that
Cids are unique. The service changes one such pair such that the PIN has been changed.
Property Modelling 11 - 31 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The SISU Property Modelling Technique
Example: Access Control: Change PIN

TIMe11

Figure 11-19: PIN change in Hoare style

Open figure

The formula in Figure 11-19 (p.11-32) should be understood like this: The first line
defines the database DB as a subset of the set of pairs (c,p) of a Cid and a PIN such that
no two pairs in DB share the same Cid. The second formula gives a precondition
(assumption) which only says that the pair (c,p) is in DB, and the postcondition (com-
mitment) says that after the ChangePIN operation has been applied, there is another pair
(c,q) in DB such that the new PIN q is not equal to the old PIN p.

There are of course other basic models, such as describing the Cid,PIN association as a
function from Cid to PIN.

In this case our aim was to show how little the domain statement actually said. Many
interpretations are possible. For instance the statement and the formalization says noth-
ing about whether the User is to choose his new PIN himself or if the system selects it
for him! This leads us to our next approach.

Narrow When the prose (or formalization) gives rise to too many interpretations, we must add
more properties so that the number of valid interpretations decreases.

In our example a valid interpretation is that the User gives a command to change PIN
and a new PIN is delivered from the system. There is no requirement that the User shall
have the possibility to choose his new PIN.

Furthermore we have not specified any requirement that the ownership of the card is to
be validated before a new PIN is accepted.

By adding these new requirements we narrow the set of valid interpretations without
formalizing.

Figure 11-20: PIN change narrowed

Open figure

Let DB c p(,) Cid PIN×∈ c1 p1(,) DB∈ c2 p2(,) DB∈∧ c1 c2=()¬⇒(){ }⊆

c p(,) DB∈{ }
ChangePIN

c q(,) DB∈ q p=()¬∧{ }

Service PIN Change

- Users shall be able to change their personal identification

- The User shall be able to choose his new PIN

- The Card shall be validated by the old PIN before a new PIN can
be given. The new PIN shall subsequently also be validated.
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 32

The SISU Property Modelling Technique
Example: Access Control: Change PIN 11TIMe
We notice that our initial formal model is not rich enough to formalize the narrowed
informal specification in Figure 11-20 (p.11-32). In order to formalize this, it is neces-
sary to introduce a User concept in the formal model. One way could be to include more
values as given in the precondition designating the User giving old and new PIN.

The last requirement, however, is not merely a requirement on the situation before or
after the service, but a requirement on how the service should be performed. The pre-
and postcondition style is not well suited to express such requirements since the service
itself is considered a black box and its results are all that matter. MSC, on the other hand,
is especially tailored to express such execution sequences.

Figure 11-21: MSC User changing PINwith success

Open figure

We may now validate whether the formalization of Figure 11-21 (p.11-33) satisfies Fig-
ure 11-20 (p.11-32). We easily see that this is not the case!

Firstly the formalization does not validate the new PIN again. Secondly the formaliza-
tion covers only successful runs.

Supplement While narrowing restricted the set of valid interpretations, supplementing increases the
scope of the specification. New and important aspects are considered which were not an
issue earlier.

Typically, when the formalization is done in MSC, the MSC does not quite cover all the
situations covered by the informal specification. There is a need to supplement with
exceptional and erroneous cases and more normal cases.

PINChangingUser

ChangePIN

EnterOldPIN

MSC PIN_Change_OK

OldPIN

EnterNewPIN

NewPIN

OK
Property Modelling 11 - 33 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The SISU Property Modelling Technique
Example: Access Control: Change PIN

TIMe11

In our example we need to specify what happens if the Old PIN is not properly typed in,
and moreover that the New PIN should also be validated and what happens if it is not
handled properly.

Figure 11-22: Change PIN (MSC-96)

Open figure

In Figure 11-23 (p.11-36) we have used MSC-96 with MSC references and exceptional
operators. We have used substitution to show that to validate the new PIN, one can use
the same sequence structure as when validating the old PIN.

Other aspects which could possibly supplement our MSC are time and capacity aspects.
Are there any requirments on how fast the system should respond to the User commands
and data? Such requirements could be attached here by comments in the MSC or through
more textual prose.

Requirements to the response times of the User may be specified through the use of tim-
ers, but that seems more adequate as a matter of specifying the actual protocols in more
detail.

For this service it would be valuable to specify some idea of how frequent the service is
intended to be used. We believe that changing the PIN is a service which will occur very
infrequently compared with the main service which is the access of the zones. In Break
down (p.11-36) the reader can see how this supplement affects the functional specifica-
tion of the service.

User PIN Changing

msc PIN_Change

OldPINOK

Idle

exc OldPIN_NOK

GiveNewPIN

ValidateOldPIN
subst GiveOldPIN by GiveNewPIN

exc NewPIN_NOK

ChangePIN

ValidateOldPIN
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 34

The SISU Property Modelling Technique
Example: Access Control: Change PIN 11TIMe
Supplementing and narrowing can sometimes be difficult to distinguish, but in practice
it is not important that the designer knows whether he has applied one or the other. The
goal of both approaches is to make the descriptioin more precise such that misinterpre-
tations cannot occur.

Make more detailed

We have in Make more precise (p.11-31) reached a formal description Figure 11-23
"Change PIN message" (p.11-36) which covers the informal and narrowed description
Figure 11-20 "PIN change narrowed" (p.11-32). A reasonably smart tool would be able
to simulate (execute) that description e.g. by implementing all MSC references as the
empty MSC, but tracing the MSC reference occurrence. The informal descriptions do
not give much clues to how the pending MSCs shall be described or implemented. This
means that, regarding the top level requirments almost any implementation of these
MSCs will actually be valid interpretations of the service.

Furthermore it is quite obvious that at some point we must express something more
about what the message “ChangePIN” actually boils down to.

One of our instances in the MSC is the “PIN Changing”. This is not an object of the
object model, but a functional role (See Role orientation (p.11-27)). Behind this name
there is hidden any structure of interacting objects. At some point in the development it
is necessary to associate the functional role with an object of the object model. This is
called casting. In principle the functional roles can be seen as projected objects such that
they may be decomposed into components. This will, however, increase the complexity
of the casting.

Decompose Our first approach in making the description more detailed is to decompose the
instances. We have up to now two instances in our description: the User and the PIN
Changing. The User may of course be decomposed into Hand, Eye, Foot (to kick the
door), but this is hardly very fruitful.

The PIN Changing role may possibly be decomposed. As we find in many situations it
may be practical to separate out one component which takes care of the interface and
one part which does the functionality. Regarding PIN Changing, we may have one com-
ponent for the User Interface (called PINChangeIF) and one component which performs
the validation of the PINs (called the Validator). It is reasonable to believe that the Val-
idator role is similar to something needed in the User Access service which should be
supported by reuse.

We notice here that we are not dependent upon having a formal description of the spec-
ification to perform decomposition. Decomposition can be done on informal as well as
formal descriptions.

Using MSC-96 we have two choices in the methodology for handling decomposition:

1. Remake the MSC Figure 11-23 "Change PIN message" (p.11-36) such that the com-
ponents take the place of the former PIN Changing. The original MSC will become
historical.
Property Modelling 11 - 35 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The SISU Property Modelling Technique
Example: Access Control: Change PIN

TIMe11

2. Apply MSC decomposed on PIN Changing within ChangePIN. This must be done

with some care since decomposition is orthogonal to MSC references, but consis-
tency should be maintained.

The MSC-96 tutorial gives a more thorough procedure for how decomposition should
be handled.

Break down There are concepts in Figure 11-23 "Change PIN message" (p.11-36) which are basic,
but which still may need some elaboration. The signal ChangePIN introduces the ser-
vice, but what is this signal? Is it the pushing of a special key on the panel? That would
mean an increased production cost of the panels due to a service which is probably rather
infrequent.

Another alternative is to use a special key for entering a specific mode for all services
which is not the main service (namely the accessing of the zones).This is a possibility
and it would require that ChangePIN boils down to a human interface protocol.

Figure 11-23: Change PIN message

Open figure

It may in addition be the case that there are only a set of special terminals which can be
used for such administrative services. That would be input for the object synthesis activ-
ity where services are associated with objects.

Formally MSC-96 cannot refer an MSC from a message name. When we have broken
down the ChangePIN message by the MSC ChangePIN as in Figure 11-23 "Change PIN
message" (p.11-36), we must return to all MSCs using the message ChangePIN and per-
form modifications. See the MSC-96 tutorial for examples.

When it comes to breaking down the behavioral patterns, MSC-96 offers good support.
In Figure 11-23 "Change PIN message" (p.11-36) there are several MSC references
which need definitions. As noted earlier almost any definition would do. Here we show
one possible implementation of ValidateOldPIN.

User PIN Changing

msc ChangePIN

special

indicate service

changePIN
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 36

The SISU Property Modelling Technique
Example: Access Control: Change PIN 11TIMe
Figure 11-24: Validate Old PIN

Open figure

Still we have not broken down the MSC references to GiveOldPIN. The reader should
also note that in MSC-96 it is not possible to specify why a specific alternative occurs.
In our example where Figure 11-24 "Validate Old PIN" (p.11-37) implements Valida-
teOldPIN in Figure 11-23 "Change PIN message" (p.11-36) it is avalid bahavior that the
message OldPIN_NOK is sent even when the loop in ValidateOldPIN has been exe-
cuted less than three times.

Reveal When we are considering the situations in more detail there may be aspects which we
have omitted or forgotten which now become more interesting. In our case we seem to
have forgotten that the access is dependent upon two independent pieces, the card and
the personal PIN. In our MSCs we have highlighted the PIN, but forgotten about the
card.

Possibly we have thought that all services start by entering the card and that the card is
returned after each service has been completed. This would mean that the card is han-
dled on a higher level than each individual service. In general we do not advise this
strategy since our service-oriented approach considers the services to be a flat set on the
top level. But, assume for now that this approach has been chosen. Then one interesting
aspect with the card and the cardreader is whether the cardreader is capable of keeping
the card if the validation fails. This is interesting because then there cannot be an auto-
matic return of the card after the service!

Alternatively the entering of the card must be part of the breaking down of the message
ChangePIN, and the return of the card must be part of the breaking down of the final OK
or NOK messages.

The distinction between revealing and breaking down is similar to the distinction
between supplementing and narrowing. Revealing means to discover new elements,
enter new aspects, which was what supplementing also did. The difference is that reve-
lation introduces new instances and objects, not merely new information. On the other
hand breaking down actually limits the scope as an infinite number of other configura-
tions are excluded. This is the same as narrowing, but with respect to the details of some
entitiy. Just as the distinction between supplementing and narrowing could be difficult,
the distinction between revelation and breaking down can also be difficult or a question
of definition.

User PIN Changing

msc ValidateOldPIN

GiveOldPIN

loop
<0,3> TryAgain

GiveOldPIN
Property Modelling 11 - 37 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The SISU Property Modelling Technique
Strategies for property modelling

TIMe11

Distillery

In distilleries the pure substance is separated from the waste. In software engineering the
problem is that the purified results are mixed with old and wasteful designs. We say that
we apply top-down design or stepwise refinement or something similar, but when it
comes down to providing the steps and the layers, our descriptions do not always live
up to the expectations.

During our progress with our example service “Change PIN” we have also gained
understanding. We discovered that our original specification was too vague and could
lead to implementations which were clearly undesirable.

We were able to reach a fairly complete, and fairly precise description of the whole
which did not go into great detail. (Figure 11-19 "PIN change in Hoare style" (p.11-32),
Figure 11-23 "Change PIN message" (p.11-36)). This precise, but not so detailed
description serves well as a communication medium with non-professionals and as an
introduction to newcomers to the project group. Furthermore it is precise enough (for-
mal enough) to serve as base for simulation and verification. This description is the
“distilled whole”, a description which has been purified through a process of making the
initial description more precise. That process may also have benefitted from the process
of detailing as it may include details which on first thought appeared to be irrelevant on
this level anyway.

The software engineers should not consider the precise detailed description as the only
valuable result, even though it marks the next step toward realization. It is important that
also the precise detailed description is verified to be an implementation of the distilled
whole.

See MSC-96 Tutorial for examples.

Strategies for property modelling

Strategy for Domain Property Modelling

1. Identify separate services which should be offered in the domain.

2. For each service, provide a prose description.

3. For each service, define which roles provide the service.

4. For each service, make the description more precise by:

- Formalizing (1): Transform those aspects which may into a formal language. The
behavior should preferably be described in MSC or SDL. See language specific
methodology for details (MSC-92, MSC-96, SDL).

- Formalizing (2): Those aspects which do not lend themselves easily to descrip-
tions in MSC or SDL should be described in semi-formal prose (See Specifying
performance (p.11-40) and Formalizing Liveness and Safety (p.11-41)) and struc-
tured comments.

- Narrowing: Find out what questions were not addressed in the prose version and
make decisions on these matters. (See Narrow (p.11-32))
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 38

The SISU Property Modelling Technique
The art of Formalizing 11TIMe
- Supplement: Make sure that the precise description covers all those cases which
the prose covers. (See Supplement (p.11-33))

5. Associate every role with objects of the object model (alignment through casting).

Strategy for Design Property Modelling

1. Take every service of the corresponding domain model and make sure that all roles
are played by objects in the design structure. Remake all domain property descrip-
tions so that they refer to the design software structure which is preferably in SDL.

2. Make the descriptions more detailed by:

- Decomposition: Transform the descriptions such that they apply to the substruc-
tures of the objects and not only to the objects themselves. (See Decompose (p.11-
35))

- Breaking down: Break down the messages and higher level protocols such that
their internal structure becomes known. (See Break down (p.11-36))

- Revealing: Reveal new instances and messages which prove to be interesting
when a more detailed view is to be described. (See Reveal (p.11-37))

3. Having reached a precise and detailed description, make sure that it is covered by the
precise, but more abstract corresponding domain description.

4. Make sure to retain the structured comments and associated semi-formal prose of the
domain descriptions in the corresponding design descriptions.

5. Use the design MSC property model as base for producing SDL process skeletons (
Construction of SDL Skeletons from MSC (p.11-47)). The automatic production of
skeletons can be used for discovering inconsistencies in the MSC property model.
The produced skeletons should then be compared with the design object model and
a complete design SDL model should be produced.

The art of Formalizing

The process of formalizing an informal description is of utter importance for the success
of the engineering project. In this section we shall give some guidance to how formaliz-
ing can be achieved based on the classification of properties presented earlier in this
chapter.

Strategies for formalizing

1. Try to separate the procedural aspects from the results of the services.

2. Specify for each service what assumptions are made about the situation or the behav-
ior of the environment before the service is invoked.

3. Produce a Hoare-style specification of the service, which describes pre- and post-
conditions. This requires that there is a fairly formal model of the results available.
(See examples in Figure 11-19 "PIN change in Hoare style" (p.11-32) and Figure 11-
12 "Example of Z" (p.11-17))
Property Modelling 11 - 39 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The SISU Property Modelling Technique
The art of Formalizing

TIMe11

4. Specify performance assumptions and requirements related to the service. Perfor-

mance consists of aspects of capacity, timing and duration.

5. The procedural aspects should be modelled in MSC (See example Figure 11-23
"Change PIN message" (p.11-36)) (or SDL).

Specifying performance

The assumptions and requirements of performance are often used in determining which
detailed functional properties the service should have. Therefore it is important to agree
upon these properties early in the engineering process. Here we provide the engineer
with a template for making the specification of performance somewhat more precise
without using a formal language as such.

Invokation
frequency

• Service X normally counts for Y % of the User service invokations.

• Service X is invoked indirectly from services A,B,C,... which together make up
approximately Z % of the User service invokations.

• Service X is critical (not critical) for the overall functioning of the system.

The above results may be arranged in a simple bar chart where each service has one bar
and where the color of the bar depicts whether it is critical or not to the overall
functioning.

Figure 11-25: Bar Chart for Direct Invokation Fequency

Open figure

In Figure 11-25 (p.11-40) we show a possible example for our Access Control system
showing the small invokation frequencey of PIN Change relative to User Access.

Response • Service X should never take more than Y seconds.

• On the average service X should take Z seconds.

U
se

r
ac

ce
ss

PI
N

 C
ha

ng
e

N
ew

 U
se

r

B
lo

ck
in

g

Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 40

The SISU Property Modelling Technique
The art of Formalizing 11TIMe
If the service includes interaction with other participants (either User or technical part-
ners), their response times should be set to zero. Specification of their response times
are assumptions which can be described like the following:

• During service X at point P, the environment will respond within Q seconds. The
point P is defined within an MSC by a structured comment.

Other non-
functional

While invokation frequency and response times are mostly service based, reliability,
security and physical properties are normally properties of a whole system

• The MTBF1 of the whole system S should be more than T. A Failure of the system S
is defined as D.

Typically a failure can be defined as “The system S must be booted” or “the system S is
unable to respond to service X within R seconds”.

• The security of the system should be such that services A, B, C should never be sub-
ject to unauthorized completion and these services are secured by E. Services U,V,W
have moderate protection and are secured by F.

The security is here described service-wise. Protection means are typically:

- User password

- User physical key (such as a magnetic card)

- Physical protection (such as a locked room for specific terminals)

Physical constraints include such aspects as temperature, humidity etc.

• The system will function in the following temperature range: U,V.

• The system should not be subject to humidity higher than H.

• The system may (may not) function when subject to direct sunlight.

• The system may (may not) be subject to excessive shaking or bumping. (This prop-
erty may be further elaborated if the system is intended for use in harsh environments
such as on sea, under ground or with great mobility)

Formalizing Liveness and Safety

Temporal properties, traditionally called liveness and safety properties, are functional
properties which cannot easily be described by MSC as such. We will advise the engi-
neer to select from two slightly different approaches:

1. Structured prose inspired by CTL (Temporal logic (CTL) (p.11-17)).

2. MSC with added interpretation (Figure 11-7 "Liveness in MSC" (p.11-12)).

Prose CTL Below we present a set of template statements inspired by CTL which may be combined
with logical connectives like and and or.

• Whenever the system S comes in state T, P will always be true afterwards.

1. Mean Time Between Failures
Property Modelling 11 - 41 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The SISU Property Modelling Technique
The art of Formalizing

TIMe11

For our Access Control system we could formulate: “Whenever the system Access Con-
trol has come in the initial state, afterwards it will always hold that for every Local
Station, if a display shows “No access”, then the door is closed.”

• Whenever the system S comes in state T, Q will never be true afterwards.

The latter statement is identical to the first statement provided that Q=not P.

• Whenever the system S comes in state T, R might hold sometime afterwards.

• Whenever the system S comes in state T, P will hold until V holds.

We shall interpret the above statement such that V eventually will hold, and before it
holds P will hold in all states following the state T.

In our Access Control system we may apply the above template: “Whenever the Local
Station comes in a state where the door is open, the cardreaders will be empty until the
door is again closed”. We have here that S=Local Station, T=door is open, P=cardread-
ers will be empty, V=door is closed. This statement assumes that the cardreader is
enabled only when a card will be handled.

• Whenever the system S comes in state T, it might happen that P will hold until V
holds.

By this we interpret that there is a path of states following T such that in the start of the
path P holds, but eventually V will hold.

As we see, the CTL-inspired way of describing temporal statements is declarative. It
concentrates on what can be said about the situations. Our second approach concentrates
on which behavioral sequences we would like to exclude or include. The two approaches
can be made equal if the model of the state includes the history of inputs and outputs of
the system (See also Focus (p.11-19)).

Meta-MSC Inspired by Focus (p.11-19) and Temporal logic (CTL) (p.11-17) we specify Liveness
and Safety descriptions in an elaboration of MSC-96 called Meta-MSC.

Figure 11-26: Liveness in Meta-MSC

Open figure

Here we specify an expression with three operands. The idea is that whenever the
Assumption holds, the Commitment will always happen before the Conclusion happens.

Our basic model is that there is an MSC document which describes the system com-
pletely. Alternatively we may assume that this MSC document could be produced by
executing an object model (in SDL e.g.). The Meta-MSC diagrams are associated with
this complete system of MSCs. The semantics of the MSC document is a set of simple

live Assumption

Commitment

Conclusion
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 42

The SISU Property Modelling Technique
The art of Formalizing 11TIMe
traces of actions. First select the subset of simple traces which starts with traces of
Assumption. Corresponding to every trace in Assumption there is a subset of traces in
the MSC document. Every such subset should match all traces in the commitment
restricted by the conclusion.

To make the Meta-MSC more versatile we introduce a wildcard notation. A special
MSC reference has the name any (possibly appended a set of MSC names) which means
that the MSC reference may refer any sequence legal at this point in the MSC document
traces.

We also introduce a notation for a wildcard message: “any name {message set}” where
the message set is optional. Finally there is a wildcard instance notation as well: “any
name {instance set}”. The names of the wildcard notation are only meant to be explan-
atory text. For an example see Figure 11-7 "Liveness in MSC" (p.11-12).

We also introduce a safety construct, which is identical in syntax to the liveness con-
struct, but the operator is called safe. The interpretation is that whenever the assumption
is true, the commitment should never happen until the conclusion happens.

More specifically, for the set of simple sequences covered by the basic MSC document
which are matched by the assumption, their continuations should not be covered by the
commitment of the safe-construct up to the conclusion.

Figure 11-27: Safety in Meta-MSC

Open figure

The example in Figure 11-27 "Safety in Meta-MSC" (p.11-43) shows the safety property
that after a NOK response the door shall not be possible to open before another positive
response (OK) has been received.

Matching of the sequences are done by matching global conditions and event sequences.
Whenever a global condition is initial condition to a live- or safe-construct in Meta-
MSC, it is necessary that the matching MSC sequences have that condition as initial
condition. If the Meta-MSC has no initial condition, this matches any condition (or no
condition). See MSC-96 Tutorial for further treatment of conditions.

If there is a desire to use standard MSC-96 tools to edit the Meta-MSC document then
this can easily be simulated by the following simple means:

meta-msc Safety

NOK

AccessControl

PushDoor
Door Open

safe

OK
Property Modelling 11 - 43 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

The SISU Property Modelling Technique
Summary of property modelling methodology

TIMe11

• Use msc instead of meta-msc as keyword for the headings.

• Use seq-operator and add a comment about the fact that it is actually either a live- or
a safe-construct.

• Use “any_” as a prefix to wildcard message- and instance names. Define the “any”
MSC as empty.

To combine Meta-MSC constructs, the seq-operator corresponds to logical and, while
the alt-operator correspond to logical or.

While an automatic validator fairly easily may find out whether a given MSC is possible
from a given execution state, finding our about the truth of a Meta-MSC construct is
much more complex. In general it requires an exhaustive simulation since it addresses
all sequences matching the assumption.

Summary of property modelling methodology

Let us now summarize what submodels a property model may consist of in the SISU
methodology:

Figure 11-28: Submodels of Property Modelling

Open figure

These are all described properties. We may also derive properties which e.g. could com-
prise structural roles used in validation and for documentation purposes.

The property models should be mostly service oriented.

MSC document which
contains possible
scenarios

Meta-MSC docu-
ment related to the
other MSC
document

Structured Prose describing non-functional
properties, performance and temporal properties
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 44

On the constructive use of MSC
The purely property-oriented approach 11TIMe
On the constructive use of MSC

Our methodology advocates a combined approach where property modelling and object
modelling proceed hand-in-hand achieving the optimum progress of common under-
standing and system development.

There are a few basic techniques to apply when the different descriptions are combined.

The purely property-oriented approach

The purely property-oriented approach is characterized by the idea that the property
descriptions will be complete enough and that the imperative implementation-oriented
object descriptions can be almost automatically derived from the property descriptions
through what we may call skeleton construction.

We have sketched the purely property-oriented approach to modelling in Figure 11-29
(p.11-45).

Figure 11-29: Skeleton construction

Open figure

Given that we use MSC as our main property modelling language, the property descrip-
tions cannot become entirely sufficient for the production of implementation code, but
we may produce skeletons which may be extended to complete object descriptions quite
easily.

The problem with the purely property-oriented approach is that the technique of produc-
ing skeletons are normally not so easily repeated during the development and
maintenance phases since the skeletons have been supplemented by object-oriented
descriptions and it may not be obvious where the supplements fit in with a newly gen-
erated skeleton.

property
descr.

object
descr.

obj. descr.: mere-
ly instance identi-
fication

skeleton construction

obj. descr.: add
detailed behavior
and data.
Property Modelling 11 - 45 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

On the constructive use of MSC
The purely object-oriented approach

TIMe11

The purely object-oriented approach

The purely object-oriented approach is characterized by the emphasis on the object
modelling. The property descriptions are considered important, but minor in relation to
the total development. The role of the property descriptions is to serve as “check-lists”
that the object descriptions should adhere to. The property model is “model checked”
against the object model. The model checking will involve automatic means as well as
human intervention.

We have sketched the purely objectr-oriented approach to modelling in Figure 11-30
(p.11-46).

Figure 11-30: Object orientation

Open figure

The result of the property evaluation may be that the object model is changed and
improved.

An important specialization of the purely object-oriented approach is the evaluative
approach where the property description is a set of general properties which are com-
mon to a large domain of systems. They appear as guidelines for how the system should
be specified. The model checking amounts to checking that the guidelines are followed
in the object model. The evaluation results in warnings of possible problems.

property
descr.

object
descr.

prop. descr.:
sketchy and few

model checking to assert consistency be-
tween properties and object description

obj. descr.: cor-
rect and im-
prove.
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 46

On the constructive use of MSC
The combined approach 11TIMe
The combined approach

Figure 11-31: Combined method

Open figure

The combined approach depicted in Figure 11-31 (p.11-47) tries to reap the benefits of
both the property-oriented and the object-oriented approches. While local property
descriptions (like MSC) serve well as basis for skeleton construction, more global prop-
erty models (e.g. with temporal logic) perform better as input to the model checking
activity.

The combined approach also combine well with projected approaches like role model-
ling (see also Summary of property modelling methodology (p.11-44))

Construction of SDL Skeletons from MSC

Here we present a simple, but effective way to produce an object model skeleton (in
SDL) from property descriptions (in MSC). The technique will be illustrated by a simple
example.

local
property
descr.

object
descr.

obj. descr.: role
model
prop descr.: ser-
vice descriptions

skeleton construction

obj. descr.: add de-
tailed behavior and
data. Continue ob-
ject modelling

global
property
descr.

model checking and evaluation

synthesis

obj. descr.: design
object model. Iden-
tify objects.
prop descr.: ser-
vice descriptions
Property Modelling 11 - 47 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

On the constructive use of MSC
Construction of SDL Skeletons from MSC

TIMe11

Resolve aliasing of instances

If role modelling or other projection oriented techniques have been applied, the synthe-
sis of roles should be performed. This means that the instance aliases (their roles) should
be identified and the MSC diagrams changed such that the aliases (role names) become
subordinate to the instance names (e.g. as comments).

Group different MSCs

This activity could also be called: make MSC-96 diagrams which represent the different
central behavioral patterns. In the example we consider only simple sequencing and
alternatives.

Identify omitted parts

Sketchy property descriptions often have parts that are omitted. A normal assumption
for skeleton construction is that no important control information is omitted. Our point
here is that a minimum effort is to make the omissions explicit. Omitted parts can be
included in the MSCs as comments or actions.

Add (local) conditions

Adding (local) conditions will make the construction more effective and omitted parts
may be circumvented.

Produce SDL transitions from MSC instance axis segments

From one instance axis of the grouped MSC, we may produce an SDL process which
will produce that MSC (given that all the other instances behave properly).

Table 11-2: MSC to SDL translation (sdl(x))

R MSC constructs: X SDL counterparts: sdl(X)

0 sdl(Initial condition
(name1)•X)

Start • State(name1)•
sdl1[name1](X)

1 sdl1[name1](input • {out-
put}* • Condition (name2)
• X)

input • {output}* •State
(name2) • sdl1[name2](X)

2 sdl2[name1](input •X) State(newname) • input •
sdl2[newname](X)

3 sdl1[name1](set • X) seta • State(name1)• sdl(X)

4 sdl2[name1](timeout • X) State(newname) • input of
timer • sdl2[newname](X)

5 sdl2[name1](reset • X) reset • sdl2[name1](X)
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 48

On the constructive use of MSC
Construction of SDL Skeletons from MSC 11TIMe
Legend for Table 11-2 (p.11-48):

The rules are numbered. Each rule takes an MSC construct and transforms it into the cor-
responding SDL. The MSC constructs differ in their prefixes. Every argument has an
unknown tail X (and sometimes Y) which normally appears also in the SDL such that
the definition is recursive. The dot operator “•” means sequencing, curly brackets and a
star “{xxx}*” means that xxx is repeated 0 or more times, “alt(v,u)” represents the
MSC-96 alternative expression. Otherwise names of constructs have been used such as
Condition, State, input, output and decision.

6 sdl1[name1](alt (input1•X,
input2•Y))

State(newname) • (
((input1•
sdl2[newname](X), (
input2• sdl2[newname](Y))

7 sdl2[name1]
(alt(output1•X,
output2•Y))

Decision(any)
• (sdl2[name1] (output1•X),
sdl2[name1](output2•Y))

8 sdl1[name1](output • X) outputb • State(name1)•
sdl1[name1](X)

9 sdl2[name1](output • X) output • sdl2[name1](X)

10 sdl2[name1]
(alt(Condi-
tion(name2)•X),
Condition(name3)•Y)

Decision(name2,name3)c•
(sdl2[name1](X),
sdl2[name1](Y))

11 sdl1[name1](proccall • X) proccall1d • State(name1)•
sdl1[name1]
(input•proccall2•X)

12 sdl2[name1](proccall • X) proccall • sdl2[name1](X)

13 sdl2[name1](Condi-
tion(name2) • X)

State(name2) •
sdl1[name2](X)

a. The ‘set’ must be placed before every occurence of State name1.
b. The ‘output’ must be placed before every occurrence of State name 1.
c. The decision is on a variable ranging over the condition names found

in alternatives directly following the alternatives’ start.
d. Proccall is the sequence of Proccall1•input•Proccall2. There are no

inputs in Proccall1.

Table 11-2: MSC to SDL translation (sdl(x))

R MSC constructs: X SDL counterparts: sdl(X)
Property Modelling 11 - 49 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

On the constructive use of MSC
A worked out example

TIMe11

Resolve indeterminacy on transitions

The straight forward algorithm will often result in a process where transitions are not
uniquely determined, i.e. the pair (state, input) is not sufficient. The indeterminacy will
be resolved either by an SDL decision or by joining anonymous states. Anonymous
states are those which have received their name through the translation of Table 11-2
(p.11-48) through rules 2 or 4.

The idea is of course that there is an underlying SDLprocess which has only one transi-
tion where the algorithm indicates several. We must “unify” the alternatives. We will
give an informal algorithm which unifies two alternatives. The procedure may be
repeated if there are more than two alternatives originally.

We will compare the two alternatives from the input and produce a combined version

A worked out example

We take as our starting point the MSCs of the MSC-92 methodology. Their combination
is given by the road map of Figure 11-32 (p.11-51).

Table 11-3: Transition fragment unification (unify(X,Y))

R
Transition 1

X
Transition 2

Y
Unified transition

unify(X,Y)

I v • X v • Y v • unify(X,Y)a

a. The v represents a common preamble of the two transitions. That there is
a common preamble of at least the input is the assumption of this unifi-
cation.

II task 1 • X task 2• Y (task 1,task 2b)
• unify(X,Y)

b. The two tasks (which originate from informal MSC actions and therefore
merely contains informal text) should be informally joined.

III output1 •X output2 • Y decision(any) •
(output1 •X,
output2 •Y)

IV State1 • input1• X State2 •input2•Y State•
(input1•X,
input2•Y)c

c. State1 and State2 are both “anonymous” and therefore unified to one
anonymous name. If one of the states has a given name (coming from a
condition in MSC), the unification results in that name.

V set •
State1•input1•X

State2 • input2 •Y set• unify
(State1• input1•X,
State2• input2•
reset• Y)
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 50

On the constructive use of MSC
A worked out example 11TIMe
Figure 11-32: AC System Overview

Open figure

The individual simple MSCs are given by Figure 11-33 "User accepted" (p.11-51) and
Figure 11-34 "User rejected" (p.11-52), with the continuations Figure 11-35 "Unlocked
reset" (p.11-52), Figure 11-36 "Unlocked timeout" (p.11-53) and Figure 11-37
"Unlocked unclosed" (p.11-53)

Figure 11-33: User accepted

Open figure

 User Accepted

Idle

Unlocked Reset Unlocked_Timeout

Door unlocked

Unlocked_unclosed

User Rejected

msc ACsystemOverview

User AC System

Code

OK

msc User_accepted

UnlockCard out

Idle

Door unlocked
Property Modelling 11 - 51 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

On the constructive use of MSC
A worked out example

TIMe11

Figure 11-34: User rejected

Open figure

Figure 11-35: Unlocked reset

Open figure

User AC System

Code

NOK

msc User_rejected

Card out

Idle

Idle

User AC System

msc Unlocked_reset

door

Opened
Push door

Door unlocked

Idle

Closed

Lock
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 52

On the constructive use of MSC
A worked out example 11TIMe
Figure 11-36: Unlocked timeout

Open figure

Figure 11-37: Unlocked unclosed

Open figure

By using the rules given in Table 11-2 "MSC to SDL translation (sdl(x))" (p.11-48) we
reach the SDL graph Figure 11-39 "SDL process AC system" (p.11-55) which we see
has two occurences of ambiguous transitions (Idle/Code) and (Door Unlocked/
Opened). These occurences must be resolved by the rules of Table 11-3 "Transition frag-
ment unification (unify(X,Y))" (p.11-50).. The result of the unifications are given in
Figure 11-38 "Unified SDL process AC system" (p.11-54).

door

Lock

User AC System

msc Unlocked_timeout

Door unlocked

Idle

User AC System

msc Unlocked_unclosed

door

Opened
Push door

Door unlocked

Idle

Alarm

door

Error
Property Modelling 11 - 53 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

On the constructive use of MSC
A worked out example

TIMe11

Figure 11-38: Unified SDL process AC system

Open figure

any

process ACSystem

Idle

Code

CardOut

OK NOK

IdleDoor unlocked

set
(door)

Openeddoor

reset (door)

set (door)

DoorOpen

Lock

Idle

door

Alarm,Error

Idle

closed

Lock

Idle

reset (door)
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 54

On the constructive use of MSC
A worked out example 11TIMe
Figure 11-39: SDL process AC system

Open figure

Figure 11-40: We may go through this transformation in more detail:

1. To resolve the two transitions (Idle/Code), we first apply rule I where the common
preamble is (input(Code) • output(CardOut)).

2. We are now left with unifying (input(OK),set(door), State(Door unlocked)) and
(input(NOK), State(Idle)). The difference lies in different output and we apply Rule
III introducing a decision. This condludes the unification of these transitions.

process ACSystem

Idle

Code Code

CardOutCardOut

OK NOK

IdleDoor unlocked

set
(door)

Opened Openeddoor

reset
(door)

reset
(door)

set
(door)

X Y

Lock

Idle

door

Alarm,Error

Idle

closed

Lock

Idle
Property Modelling 11 - 55 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

On the constructive use of MSC
A worked out example

TIMe11

3. Then we want to unify the two transitions given by (Door unlocked, Opened). The

common preamble is (input(Opened), reset(door)) and we apply Rule I.

4. We are then left with unification of (set(door), state(X), input(door), out-
put(alarm,error), State(Idle)) and (state(Y), input(closed), output(lock), state(Idle)).
We apply Rule V and subsequently Rule IV. This concludes our transformation.

We notice some points during and after the production of the SDL process from the
MSC.

• Since MSC does not have any formal data concept, the only construction we get when
data is involved is the decision containing “any”. In our case, the resolution of the
(Idle/Code) ambiguity results in a decision on “any”. In SDL, however, we know that
this can be done formally by using data. When we elaborate the skeleton we will
introduce a parameter on Code which we will involve in the decision.

• We also notice (more in the SDL than in the MSC perhaps) that when the timeout
appears after the door is opened, the alarm triggers, but the state to which the system
returns is the Idle state. This is an error in the specification since the door is still open
and the system should not accept more cards until the door is closed. This acquired
insight should be brought back to the MSC description.

What have we achieved when we have completed the SDL process skeleton?

1. We have gained understanding and improved the MSC document accordingly;

2. We have produced an SDL process graph which is executable and can be used for
simulation (in this case: early prototyping);

3. We have a combined description (MSC/SDL) which is internally consistent and con-
tains two different perspectives. The description is complete on its level of detail;

4. We have acquired bits and pieces of information which may be practical to apply in
the more detailed descriptions to come in the system development.
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 56

List of figures
A worked out example 11TIMe
List of figures

Property model supplementing object model . 4

Required and provided properties . 6

The origin of the properties . 7

Functional and non-functional properties . 7

Market oriented properties . 9

.Property Languages . 11

Liveness in MSC . 13

LOTOS example . 14

.SDL as property language. 14

.Statecharts . 16

Hoare logic. 17

Example of Z . 17

Example of CTL . 19

Structure of AccessPoint Controller . 20

Aligning prose, MSC and state diagram . 23

Role, service and object . 27

Roles expressed by MSC-96 . 28

.The Whole, The Precise and The Details . 29

PIN change in Hoare style . 31

PIN change narrowed. 32

MSC User changing PINwith success . 33

Change PIN (MSC-96) . 34

Change PIN message . 36

Validate Old PIN . 36

Bar Chart for Direct Invokation Fequency . 40

Liveness in Meta-MSC . 42

Safety in Meta-MSC . 43

Submodels of Property Modelling . 44

Skeleton construction. 45

Object orientation. 46

Combined method . 46

AC System Overview . 50
Property Modelling 11 - 57 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of figures
A worked out example

TIMe11

User accepted . 51

User rejected . 51

Unlocked reset . 52

Unlocked timeout. 52

Unlocked unclosed. 53

Unified SDL process AC system . 53

SDL process AC system . 54

We may go through this transformation in more detail: . 55
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 58

List of definitions
A worked out example 11TIMe
List of definitions

Casting . 59
Declarative . 59
Distillery . 59
Expressiveness . 59
Imperative . 60
Interface Role. 60
Liveness Property. 60
Property . 60
Role . 60
Safety Property. 61
Service . 61
Transparency . 61
Verify . 61

Casting

Casting is the process of associating roles with their acting objects.

The origin of the word is in theatres where roles are played by actors and they comprise
the cast of a performance.

Declarative

An declarative description is a description which focuses on how things are rather than
how they are achieved.

From Webster:

declarative: making a declaration : DECLARATORY

See also imperative.

Distillery

Distillery is originally where hard liquor is being made. To distill means to separate
some substance from some other substance. It may also mean to purify.

Here we use description distillery to mean the process of purifying the description
through separating the precise whole from its constituents.

Expressiveness

means that the language can describe the important aspects of the system.
Property Modelling 11 - 59 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
A worked out example

TIMe11

From Webster:

expressive: 3: full of expression : SIGNIFICANT

Imperative

An imperative description is a description of the sequence of actions in a procedural and
command-like manner.

From Webster:

imperative: 1. Expressing a command or plea; peremptory. 2. Having the power or
authority to command or control.

See also declarative.

Interface Role

is a projection of an object behavior onto an interface (a communication line).

From Webster:

Interface: 1. A surface forming a common boundary between adjacent regions. 2. a. A
point at which independent systems or diverse groups interact.

Liveness Property

Informally a liveness property expresses that something (good) will eventually happen.

Property

a characteristic trait or quality

(American Heritage Dictionary)

Role

is a behavioral pattern which describes how one acting object performs a set of related
services.

From Webster:

• 1a: a character assigned or assumed

• 1b: a part played by an actor or singer

• 2: Function

Roles are used to describe properties, and are related to object designs by projection.
Roles are used to link properties and objects. Projections are used for synthesis of new
objects and for documenting existing objects.
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 60

List of definitions
A worked out example 11TIMe
Safety Property

Informally a safety property expresses that something (bad) will never happen.

Service

is a unit of behavior which characterizes what a system (or component) provides for the
user. A service is normally given a name. Services may be interleaved in time.

From Webster:

4b: useful labor that does not produce a tangible commodity - usu. used in pl. {charge
for professional ~s}

Transparency

means that the descriptions can be easily understood without excessive training and
study.

From Webster:

Transparent: 4. Easily understood or detected; obvious: transparent lies.

Verify

means to ascertain that a property is true also in the running system (or relative to
another description)

From Webster:

1: to confirm or substantiate in law by oath 2: to establish the truth, accuracy, or reality
of something
Property Modelling 11 - 61 TIMe Electronic Textbook v 4.0 © SINTEF - Modified: 1999-07-16

List of definitions
A worked out example

TIMe11
Property Modelling TIMe Electronic Textbook v 4.0 © SINTEF Modified: 1999-07-1611 - 62

	Introduction
	What is Property Modelling?
	Property descriptions cover specific aspects
	Property descriptions may overlap and underlap
	Property descriptions are often declarative rather than imperative
	Property descriptions supplement object descriptions
	Figure 11-1: Property model supplementing object model

	Dimensions of the property concept
	Relating to the existence of the system
	Figure 11-2: Required and provided properties

	Relating to the origin of the properties
	Figure 11-3: The origin of the properties

	Relating to whether the properties define functionality
	Figure 11-4: Functional and non-functional properties
	Functional properties
	Non-functional properties

	Relating to market of product
	Figure 11-5: Market oriented properties

	Some Property Languages
	Figure 11-6: .Property Languages
	Prose
	Service lists

	Industry standard languages
	MSC
	Figure 11-7: Liveness in MSC
	Process algebra
	Figure 11-8: LOTOS example
	SDL as a property language
	Figure 11-9: .SDL as property language
	Harel StateCharts
	Figure 11-10: .Statecharts

	Languages based on logic
	Predicate logic
	Figure 11-11: Hoare logic
	Figure 11-12: Example of Z
	Temporal logic (CTL)
	Figure 11-13: Example of CTL
	Focus
	Figure 11-14: Structure of AccessPoint Controller

	Summary property languages
	Table 11-1: Property language comparison

	Alignment
	Figure 11-15: Aligning prose, MSC and state diagram
	Types of alignment

	Formal basis

	The SISU Property Modelling Technique
	Service orientation
	Role orientation
	Figure 11-16: Role, service and object
	Figure 11-17: Roles expressed by MSC-96

	The dialectics of refinement
	Figure 11-18: .The Whole, The Precise and The Details
	The need for more precise description
	The need for more detailed descriptions
	Description distillery
	Compositionality preparation

	Example: Access Control: Change PIN
	The example starting point
	Make more precise
	Figure 11-19: PIN change in Hoare style
	Figure 11-20: PIN change narrowed
	Figure 11-21: MSC User changing PINwith success
	Figure 11-22: Change PIN (MSC-96)
	Make more detailed
	Figure 11-23: Change PIN message
	Figure 11-24: Validate Old PIN
	Distillery

	Strategies for property modelling
	Strategy for Domain Property Modelling
	Strategy for Design Property Modelling

	The art of Formalizing
	Strategies for formalizing
	Specifying performance
	Figure 11-25: Bar Chart for Direct Invokation Fequency
	Formalizing Liveness and Safety
	Figure 11-26: Liveness in Meta-MSC
	Figure 11-27: Safety in Meta-MSC

	Summary of property modelling methodology
	Figure 11-28: Submodels of Property Modelling

	On the constructive use of MSC
	The purely property-oriented approach
	Figure 11-29: Skeleton construction

	The purely object-oriented approach
	Figure 11-30: Object orientation

	The combined approach
	Figure 11-31: Combined method

	Construction of SDL Skeletons from MSC
	Resolve aliasing of instances
	Group different MSCs
	Identify omitted parts
	Add (local) conditions
	Produce SDL transitions from MSC instance axis segments
	Table 11-2: MSC to SDL translation (sdl(x))
	Legend for Table 11-2 (p.11-48):
	Resolve indeterminacy on transitions
	Table 11-3: Transition fragment unification (unify(X,Y))

	A worked out example
	Figure 11-32: AC System Overview
	Figure 11-33: User accepted
	Figure 11-34: User rejected
	Figure 11-35: Unlocked reset
	Figure 11-36: Unlocked timeout
	Figure 11-37: Unlocked unclosed
	Figure 11-38: Unified SDL process AC system
	Figure 11-39: SDL process AC system
	Figure 11-40: We may go through this transformation in more detail:

	List of figures
	List of definitions
	Casting
	Declarative
	Distillery
	Expressiveness
	Imperative
	Interface Role
	Liveness Property
	Property
	Role
	Safety Property
	Service
	Transparency
	Verify

