
Eric Conquet
Maxime Perrotin

SDL Contest
Railway crossing specification

12 MAY 2002

SAM WORKSHOP

ii

Table of Contents

I. Introduction . 1

II. User requirements analysis . 2
1 System environment . 2
2 Strategies to control the crossing . 4

2.1 Priority to cars . 4
2.2 Priority to fast trains . 5
2.3 Priority to all trains . 5
2.4 Automatic priority . 5
2.5 Manual mode . 6

III. Specification and design . 7
1 Inside the structure . 8
2 The tracks . 9

2.1 Data and signals . 10
2.2 Red state . 10
2.3 Green state . 11

3 The controller . 11
3.1 Automatic mode . 12
3.2 Manual mode . 13

IV. Model verification . 14
1 Introduction . 14
2 Setting the simulator parameter . 14

2.1 Defining the system environment 14
2.2 Reducing the size of the state space 14

3 Simple interactive simulations . 15
3.1 Presentation of the examples 15
3.2 Scenario 1 . 16
3.3 Scenario 2 . 17
3.4 Scenario 3 . 18

4 Property checking . 19
4.1 Introduction . 19
4.2 Property 1 . 19
4.3 Property 2 . 20
4.4 Property 3 . 21
4.5 Property 4 . 21
4.6 Property 5 . 22
4.7 Property 6 . 22
4.8 Property 7 . 22
4.9 Property 8 . 23
4.10 Property 9 . 24

5 Conclusion on simulation . 24

V. Conclusion . 25

 1

I. Introduction
This report presents the specification in SDL and MSC of a railway crossing.
The system has been developed for the SDL Design Contest of the 3rd SAM
Workshop held in June 2002 in Aberystwyth, Wales.

The purpose of the system is to manage a railway crossing which can have
several tracks. Each track can be dedicated either to high speed trains, or to
normal speed ones. The crossing road can be closed with a gate, and a sensor
indicates if more than one car is waiting in front of it. Some sensors tell the
controller if a train is approaching or leaving the crossing and the controller
has to decide if it allows the train to pass or not.

The first part of the document presents the analysis of the user requirements
and the structure of the model. It also includes the assumptions we have made
on the architecture of the physical system, such as the location of the sensors
and signals.

Then, the second part presents the detailed SDL model specifying the complete
system.

Finally, the last part of the report presents the validation and verification of the
system, with formal proofs of properties and results of exhaustive simulations.

The SDL, MSC, and GOAL models were made using the ObjectGeode tool
from Telelogic.

 2

II. User requirements analysis

1 System environment

The system describes the interactions between the following actors :

< Trains/tracks. There are two kinds of trains : fast speed and normal
speed. Each track has two sensors : one that detects if a train is
approaching the railway crossing and one that detects that the train
has left. Each track also has a stopping signal that can be set in case
too many cars are waiting. This signal is a light that can be green if the
trains are allowed to pass, or red if not. It is not possible that the light
becomes red if there is a train between the two sensors. The system
shall be generic in the number of tracks (for fast and normal speed
trains).

< Gates. There is one gate on each side of the road. They are used to
prevent the cars from crossing the railway while some trains are
coming. Both gates are controlled with one signal, and take a constant
time to be closed.

< Car sensor. When more that one car is waiting in front of the gates, a
sensor sends a signal to the controller. The signal is sent again when
the cars have left. This sensor is used to control the traffic in case the
operator chose the priority to cars strategy.

< Railway crossing controller : the controller is the main part of the
system. It is in charge of managing both the gates for the cars and the
stopping signals for each track. The controller can work in automatic or
manual mode. In automatic mode, depending on the strategy chosen
by the operator, the controller can give the priority to the cars, to the
fast trains, or to all the trains. In manual mode, the operator activates
himself the gates and the stopping signal for the trains. However, the
system shall not allow any unsafe operation, like opening the gates for
the cars when a train is approaching the railway crossing.

Various signals are exchanged between the system and its environment :

• from the trains : train approaching, train leaving (both signals
for all kind of trains, normal speed and fast speed) ;

• car sensor information ;

• from the controller : open gates, close gates (both gates are
controlled at the same time), stopping signal ;

• from the operator : manual open, manual close, manual wait
(stopping signal), manual go, set priority.

 3

system Railroad

signal car_sensor;

signal train, Leaving;

signal open, close;

signal
 Manual_open,
 Manual_close,
 Manual_w ait,
 Manual_go,
 Set_Priority (Priority_ty);

Cars
car_sensor

Normal_TrainsTrain,
Leaving

Gates

open,
close

Fast_TrainsTrain,
Leaving

Manual_Control

Manual_open,
Manual_close,
Manual_wait,
Manual_go,
Set_Priority

Railroad_Control

The Railroad_Control block
contains the description of the
system controller and the
tracks which include the
stopping signal for the trains.
The system is generic in the
number of tracks.

Figure 2 - System structure

We can deduct from this preliminary analysis the structure of the system,
expressed in a formal way (Figure 2) :

Assumptions :

• The approaching train sensor is located before the light.

• Before the initialization of the system, the gates for the cars are
closed and the stopping signal is off. The trains are supposed to
be stopped by another light before the portion of railway
controlled by the system. This means that when the system is
activated, no train should be located between the two sensors.

 4

Figure 3- The railway crossing environment

The picture below (Figure 3) shows the actual configuration of the system.

The train sensors are designed in a way that there is not a single signal sent
when the trains pass over it but a sequence of signals, each one produced by a
wheel of the train. When the sensor stops sending signals after some time, it
means that the train has finished passing over it.

2 Strategies to control the crossing

We have seen in the previous section all the actors of the system and the
information they carry. We will now see how the operator can choose how it
should actually react. It is expected that the system implement different
strategies (at least three) for giving priority to the trains or to the cars in an
automatic mode. The operator can also choose a manual mode in which he
can control both the gates and the stopping signals himself, provided that his
actions are safe.

The different modes are therefore the following :

2.1 Priority to cars

In this mode, the car sensor is used to determine if more than one car is
waiting at the gates, and if so, the controller should stop forthcoming trains to
let the cars pass. A typical scenario of the expected behaviour expected in this
mode is shown below.

 5

Priority_to_cars

train

approaching_normal(one)
A normal speed

train is approaching.
The car sensor is

not activated.close
Close the gates.

go Let the train pass
w hen the gates

are closed.

set_priority(cars) The operator
sets the priority

level to cars.

car_sensor The car sensor
is activated.
w ait

Future trains
w ill stop

Note : the light
w ill become red
only w hen there
is no more train
bew een the
tw o sensors.

controller

controller

closed_timer (5.0)

normal_speed

track

red

green

Figure 4 - Typical scenario in “Priority to cars” mode

2.2 Priority to fast trains

Another strategy is to give priority only to fast trains over cars. In that mode,
normal speed trains are stopped if too many cars are waiting, but fast trains
can always go.

2.3 Priority to all trains

In this mode, all trains have priority over cars, even if too many of them are
waiting. It means that whatever the state of the system, if a train is
approaching, the gates must be closed to let it pass without having to stop.

2.4 Automatic priority

The priority strategies presented above have one major drawback : they are
fully dependant on the traffic. This means that, for example, if the operator has
chosen the priority to cars mode and there is a big car traffic jam around the
crossing, the car sensor may remain active very long and the trains could never
pass.

 6

Automatic_priority

set_priority(automatic_priority)

Automatic priority
chosen by the operator.

The priority is first given
to cars but automatically

changes to trains after
a certain time.

controller

controller

priority_timer'priority_level = 3
passing_priority = cars'

priority_timer'priority_level = 2'

priority_timer'priority_level = 1'

priority_timer
'priority_level = 0'

Priority level
has reached
a null value

after a certain
amount of time.

The priority
changes from
cars to trains.

priority_timer

.. And so on...
'priority_level = 3

passing_priority = all_trains'

Figure 5 - Automatic priority principle

For that reason, another priority strategy has been thought. In this “automatic
priority” mode, a priority level will start decreasing as soon as it has been set.
When the priority level reaches zero, the priority changes automatically. This
strategy allows both the trains and the cars to have one chance to pass (see
Figure 5).

2.5 Manual mode

Besides all the automatic modes, which give priority to the cars or to the trains,
the crossing has to be able to be controlled fully manually. However, some
unsafe situations must be rejected :

• Opening the gates when one or more trains are currently
between the two sensors ;

• Opening the gates when the stopping signal is not set on all the
tracks ;

• Removing the stopping signal when the gates are opened.

The manual mode is the mode reached at the system initialization. When the
system is activated, the gates for the cars are closed and no train is between
the two sensors of any track.

 7

Manual_mode

manual_open

The operator
can open the

gates

open

train
approaching_fast

A fast train may approach,
it will stop because the
stopping signal is set

(red light)

set_priority(fast_trains)

Then the operator
may give priority

to fast trains

close
The door is

automatically
closed. The
system has

left manual mode

go And the train
can go!

fast_speed

track

red

green

controller

controller

manually_stopped

At startup, the
controller works
in manual mode.

manually_opened

closed_timer (5.0)

Figure 6 - Manual mode

To exit the manual mode, the operator must choose a priority mode. To enter
the manual mode again, he has to use a manual control signal.

III. Specification and design
In the previous part, we have seen the structure of the system and its
interactions with its environment. The system basically receives information
from the trains sensors, the car sensor, and the operator in case of manual
management of the crossing. The user requirements related to the way this
information should be processed have also been presented. We have
presented different priority strategies that can be chosen while the system is
running. In this part, we present the implementation in SDL of these
requirements. The complete model is available as a separate file, and should
be used for step by step simulation to complete these explanations. This
document focuses on the most important parts of the specification that are
useful to understand how the needs are fulfilled.

 8

block Railroad_Control

signal w ait, go,
approaching_normal(count_ty),
approaching_fast(count_ty);

Gates

Cars

Normal_trains Fast_Trains

Manual_Control
Gates

open,
close

Cars

car_sensor

Ctrl_Normal

approaching_normal,
leaving

wait,
go

Ctrl_Fast

approaching_fast,
leaving

wait,
go

Normal_trains
Train, Leaving

Fast_trains
Train, Leaving

manual_control

Manual_open,
Manual_close,

Manual_wait,
Manual_go,
Set_Priority

Track

Fast_Track

Normal_Track

Controller
(1,1)

Normal(1):
Normal_Track

TRAIN

CTRL

Fast(1):
Fast_Track

TRAIN

CTRL

Figure 7 - The Railroad_Control block

1 Inside the structure

The general system structure is shown in Figure 2. If we zoom into this
“Railroad_Control” block we can see the heart of the system :

This communication view reveals several characteristics of the model :

• Fast tracks and normal tracks are taken into account, the distinction
being made with the “approaching” signal which may be
“approaching_normal” or “approaching_fast”. Processes type
“Fast_track” and “Normal_Track” inherits their behaviour from the
process type “Track” with the approaching signal as context
parameter ;

• The system is generic in the number of tracks : to add or remove some
tracks, simply change the number of instances of the corresponding
process ;

• The stopping signal is part of the tracks.

 9

process type Fast_Track inherits Track
<Approaching_fast>

2 The tracks

All the tracks inherit from the behaviour of the process type “Track” which is in
charge of two tasks :

a) Setting/removing the stopping signal for the trains when the
conditions to do it are fulfilled. The stopping signal is
represented by a state called “red” in the track behaviour, and
the state called “green” means that the trains that approach are
allowed to go ;

b) Managing the reception of the approaching and leaving signals
which come from the two sensors located on the track. This
means informing the controller when a train is coming or has
left the railway crossing section. To do this task, the track must
take into account the fact that each time a wheel of the train
passes over the sensor, it generates a signal to the system.
Therefore, it has to discard all the signals but one, which is
transmitted to the controller. In the case of a train approaching,
it is the signal generated when the first wheel of the train passes
over the sensor, and in the case of a train leaving, it is the
signal generated when the last wheel passes.

Note : Two processes inherit from the “Track” process : the “Normal_track”
and the “Fast_track” processes. The context parameter signal “approaching” is
different in these two processes :

The possible states of the process “Track” are the following :

State Description

Red Stopping signal is set

Green Stopping signal is not set

The logic of the process is to count how many trains are between the two
sensors. If there is one or more and if it receives an order to stop the trains
from the controller, then it will wait until all the trains have left before going to
the red state. In that case, since the stopping signal is not set immediately,
another train may approach and therefore pass. This information is then
transmitted to the controller so that it always know that some trains are on the
railway.

 10

2.1 Data and signals

The following table describes the signals and the important data that is related
to a track.

Name Type Description

train signal From the environment. Indicates that a wheel of
a train is currently on the “approaching” sensor.

leaving signal From the environment. Indicates that a wheel of
a train is currently on the “leaving” sensor.

leaving signal To the controller. Indicates that a train has left.

wait signal From the controller. Indicates that future trains
on that track should stop if no train is currently
between the two sensors.

wait variable Internal variable to store the order from the
controller to set the stopping signal when the last
train on the track has left.

go signal From the controller. Order to remove the
stopping signal.

new_train variable Internal variable to distinguish between a new
train approaching and a wheel of a train that
has already been detected on the sensor.

approaching_timer timer Timer to detect that all the wheels of a train have
passed over the approaching sensor.

leaving_timer timer Timer to detect that all the wheels of a train have
passed over the leaving sensor.

train_passing counter Variable that stores the number of trains currently
between the two sensors. This variable is used to
know whereas it is allowed to set the stopping
signal or not.

approaching
(movement)
approaching_fast,
approaching_normal

signal To the controller. Indicates that a train is
approaching the traffic light. Contains a
parameter to precise if the train is stopped or if it
is passing.

2.2 Red state

In the red state, it is possible that one train approaches. Then when it sees the
red light, it should stop. It is not needed to send a specific signal to the
environment to stop the train.

The “new_train” variable is used to determine if it is the first wheel of the train
that is over the sensor or not. If so, the signal “approaching” is sent to the
controller ; else, it is simply discarded until the timer “approaching_timer”
expires. This timer is set each time the “train” signal is received.

2.3 Green state

 11

The “green” state is a little bit more complex because of the transition to the
“red” state, which may not be immediate if some trains are located between
the two sensors. If the “wait” signal is received, it is first checked that no train is
currently between the sensors and in that case only it switches to the “red”
state.

The “leaving” signal is treated in a slightly different way as the “train” signal, in
the sense that the signal is sent only when the last wheel of the train has
passed over the sensor. After the last train has left, it is checked if the stopping
order has been received from the controller.

3 The controller

The controller is the main actor of the system. It is responsible for managing all
the traffic independently from the number of tracks. It has two main
functioning modes : automatic (with different strategies for the priority) and
manual (controlled by an external operator).

The states that represent this separation are shown below :

State Description

Wait_train Gates are opened, stopping signal is set. Waiting for a train.

Wait_cars Gates are closed, stopping signal is not set. At least one train is
currently between the two sensors.

Train_pass Gates are closed. Priority is set to cars or to fast trains. At least one
train is between the two sensors but the car sensor is active. The
stopping signal is set for the tracks where no train is present and
will be set everywhere else when all the trains have left the other
tracks.

Car_pass Gates are opened. Priority is set to cars or to fast trains. Stopping
signal is set on all the tracks and the car sensor is active.

Manually_stopped Manual control. All the traffic is stopped : gates are closed and
stopping signal is set on every tracks.

Manually_opened Manual control. Gates are opened and trains are stopped.

Manually_allowed Manual control. Gates are closed and trains can go.

Manually_closed Manual control. Gates are closed and stopping signal will be set
on all the tracks when the trains between the two sensors have left
(similar to “train_pass” state).

 12

process Controller
(1,1) Wait_Train,

Wait_Cars,
Train_Pass,
Car_Pass

set_priority
(passing_priority)

Change the
priority mode

(to cars, to fast
trains, or to all

trains)

passing_priority

In "automatic priority"
mode, activate a timer

to start decreasing
the priority level.

automatic_priority

SET
(NOW+Priority_time,

Priority_timer)

Priority_level
:= High_Priority

passing_priority
:= cars

ELSE

RESET
(priority_timer)

-

Priority_timer

In "automatic priority"
mode, decrease the

priority level each time
the timer expires.

SET
(NOW+Priority_time,

Priority_timer)

Priority_level

0

passing_priority:=
if passing_priority=cars

then all_trains
else cars fi

Change the
priority strategy

automatically

Priority_level :=
High_priority

ELSE

Priority_level :=
Priority_level-1

-

Figure 9 - Priority management in automatic mode

3.1 Automatic mode

The automatic mode implements the priority strategies presented in section
II.2. It comprises the SDL states “Wait_train”, “Wait_cars”, “Train_pass” and
“Car_pass”. In all of these states, it is possible for the operator to choose one
of the available strategies.

Figure 9 below shows how the “automatic priority” mode is managed in the
controller. As it was described in the MSC (Figure 5), when the automatic
priority is chosen, a timer is set and the priority is first given to cars. Then each
time the timer expires, the priority level decreases until it reaches a null value.
Then the priority is changed to trains and the timer is set again.

The behaviour that results from a specific priority is then described in each
state of the automatic mode. For example in state “Wait_cars”, if the priority is
set to cars and the car sensor becomes active, then the controller sends the
“wait” signal to all the tracks so that when the trains that are currently between
the two sensors have left, the stopping signal is set.

The state “Train_pass” is an unstable state. It is reached when priority is given
to the cars or to the fast trains (in this case, cars still have priority over normal
trains), and when some trains are between the two sensors whereas the car
sensor is active. It is unstable in the sense that it will switch to another state as
soon as the last train has left the railway to let the cars pass.

Before reaching this state, the controller has sent the “wait” signal to all the

 13

process Controller
(1,1)

Train_Pass

approaching_normal
(movement)

movement

WAITING

stopped :=
stopped + 1

MOVING

passing:=
passing+1

Train_Pass

Figure 10 - Movement detection

tracks. However, as it was seen before (see
II.2.3), the tracks with some trains between
the two sensors keep their light green. It is
therefore still possible in that state to have
some trains approaching and passing even
though the “wait” signal has been sent,
because the “wait” signal is not an
immediate order nor the stopping signal
itself.

To know if the train which is approaching is
stopped at the light or passing, the
controller analyses the parameter of the
signal approaching. It directly gives this
information (Figure 10).

3.2 Manual mode

The manual mode is first reached at the system activation, since at that time
the gates are closed and the stopping signal is set for all the tracks.

In the manual mode, two operations are possible : controlling manually the
crossing by activating the gates or the stopping signal, and setting a new
priority mode. In that case, depending on the state of the overall system, the
controller chooses what action to perform.

When controlling manually the gates and the stopping signal, the operator has
to know that if he tries unsafe action, they will not be taken into account by the
system. For instance, in the “manually_opened” state, it is not possible to send
the signal “manual_go” to the controller.

The manual mode comprises four states, and each state corresponds to one
particular configuration of the system, depending on the current state of the
gates and of the stopping signals.

 14

IV. Model verification

1 Introduction

Building a model and document it is, to our opinion, only half of the work. The
demonstration of correct behaviour has to be performed through simulation
sessions. We have used the ObjectGeode simulator in two different modes:
interactive and exhaustive. Interactive mode is interesting to show how the
model behaves when executing specific scenarios. But proving properties is
essential for real-time systems and is the realm of exhaustive simulation.

2 Setting the simulator parameter

2.1 Defining the system environment

The model has its own environment. In our case, the environment can send
signals indicating that a train is approaching or leaving, or more than one car
is waiting at the gate. Manual commands to control the gate or to set the
priority mode are also coming from the environment.

With the ObjectGeode simulator, a powerful feature can be used when it
would be hard to completely describe environment behaviour: the feed list.
Such a list is made of signals coming from the environment with possibly a set
of values.

In our model, the feed list is described by the following lines:

feed manual_control set_priority(*) to controller
feed manual_control manual_close
feed manual_control manual_go
feed manual_control manual_open
feed manual_control manual_wait
feed fast_trains leaving
feed fast_trains train
feed normal_trains leaving
feed normal_trains train
feed cars car_sensor

The first line means that any priority level can be set.

2.2 Reducing the size of the state space

Some tips to reduce the size of the state space in exhaustive simulation mode.

The major drawback of exhaustive simulation is the potential explosion of
states space. To reduce the size of the whole graph, different techniques can

 15

Figure 11 - GOAL observer to limit the state space

be used. One of the most efficient consist in resetting the process variables at
the end of each transition. Obviously, such an action must be limited to useless
variables, i.e. variables whose content has not to be kept. In our model, we
have simplified the state graph a lot by using the following goal observer:

Such a GOAL observer reset the sender variable of each process which has an
immediate effect: simulation time is divided by 7.

3 Simple interactive simulations

3.1 Presentation of the examples

To exercise the model, different simple simulations have been run :

1) Cars are present before system is initialised in a given priority mode ;

2) Trains are present before system is initialised and pass ;

3) Multiple trains are approaching on the same track and cars arrive in
train priority mode.

 16

3.2 Scenario 1

The generated MSC show that cars are taken into account even if they arrive
when the system has not be fully initialised.

At the end of the scenario, the gate is reopen and cars can pass.

Figure 12 - Scenario 1 generated MSC

 17

3.3 Scenario 2

In that case, the MSC shows that waiting trains are taken into account and
pass before the gate is reopen.

Two train signals are received before the priority mode is set to trains. They are
taken into account, the gate is closed and trains pass.

Figure 13 - Scenario 2 generated MSC

 18

multiple trains approaching

set_priority(all_trains)

approaching_fast(one)

close

go
go

approaching_fast(several)

leaving

leaving
w ait
w ait

open

train

train

train

leaving

leaving

leaving

train

train

leaving

leaving

inst_1_controller
PROCESS /

railroad/
railroad_control

/controller
(1)

closed_timer(5.0)

inst_1_fast

PROCESS /
railroad/

railroad_control
/fast(1)

maxw ait(6.0)

approaching_timer(8.0)

approaching_timer(8.0)

approaching_timer(8.0)

leaving_timer(10.0)

leaving_timer(10.0)

leaving_timer(10.0)

approaching_timer(8.0)

approaching_timer(8.0)

leaving_timer(10.0)

leaving_timer(10.0)

inst_1_normal

PROCESS /
railroad/

railroad_control
/normal(1)

Figure 14 - Scenario 3 generated MSC

3.4 Scenario 3

When multiple trains are approaching on the same track they are clearly
identified and the gate is open only when all trains have left the gate.

In that scenario, a first fast train approaches and triggers the approaching
signal three times before the leaving signal.

 19

Figure 15 - Property 1

4 Property checking

4.1 Introduction

The following properties have been checked :

P1: No leaving signal can occur if the door is open ;

P2: No go signal is sent if the door is open ;

P3: The gate cannot be opened if train are passing ;

P4: Trains do not wait more than time needed to close the gate in train
priority mode ;

P5: Fast trains do not wait more than time needed to close the gate in
fast train priority mode ;

P6: Cars do not wait forever in car priority mode ;

P7: In manual mode, the gate cannot be opened if a train is passing ;

P8: In manual mode, the gate cannot be opened if not all traffic lights
are red ;

P9: In manual mode, a traffic light cannot be set to green is the gate is
open.

4.2 Property 1

No leaving signal can occur if the door is open.

The property is described with the following MSC. Such a MSC means “ if the
gate is open, no leaving signal can occur”. The signal close is part of the MSC
since the property is violated only if the close signal occurs after the leaving

 20

signal.

Initial condition: The system is set in train priority mode. No manual action is
allowed since such an action could violate the property and is taken under
operator responsibility.

The results show that the property is declared true after 6s of computation time.

Number of states : 13890
Number of transitions : 34244
Maximum depth reached : 79
Maximum breadth reached : 508
duration : 0 mn 6 s
Number of exceptions : 0
Number of deadlocks : 0
Number of stop conditions : 0
Transitions coverage rate : 40.00 (45 transitions not covered)
States coverage rate : 63.16 (7 states not covered)
Basic blocks coverage rate : 31.25 (88 basic blocks not covered)
Number of errors : 0
Number of success : 0
 observer obs: 0 errors, 0 success
 observer nogobetweenopenandclose: 0 errors, 0 success
 observer property_1: 0 errors, 0 success

4.3 Property 2

No go signal is sent if the door is open,

The property is described with the following MSC. Such a MSC means “ if the
gate is open, the controller cannot send the go signal which sets a light to
green”. The signal close is part of the MSC since the property is violated only if
the go signal occurs between the open and close signals.

Figure 16 - Property 2

 21

Conditions : The system is set in train priority mode and manual actions are
authorised to change the priority mode.

This property has been verified with Property 1 under the train priority mode.

4.4 Property 3

The gate cannot be opened if train are passing.

The property is defined as a simple stop condition:

“Stop if output open and controller ! passing > 0” which means “Stop if the
controller sends an open signal when at least one train is passing”.

Conditions: The system is set in train priority mode and manual actions are
authorised to change the priority mode.

That property has been verified with P1 and P2. See the results given for P1.

4.5 Property 4

Trains do not wait more than time needed to close the gate in train priority
mode,

This property aims at verifying that the train priority mode really gives priority
to trains. In other words, it means that trains do not wait more than the time
needed to close the gate. The waiting time starts when the train passes over the
approaching sensor and ends when the lights is set to green by the controller.

The difficulty in verifying this property lays on the fact that timing properties
cannot be described easily with observers. In exhaustive mode, the time
variable (NOW) is not incremented since it would otherwise led to infinite
number of states. As a consequence, time can only be observed with timers.
Since observers (MSC or GOALS) cannot contain timers, additional timers have
to inserted in the model. In that case, the model is updated to include some
mechanisms only required for simulation purposes.

A timer has been added to the track process type. It is set when a train signal
occurs when the traffic light is red and is reset when a go is received. If a time
out occurs, the track process enters a deadlock state called “time_exceeded”.

 The property itself is described as a double condition:

“stop if fast!state = time_exceeded”

“Stop if normal!state = time_exceeded”

That property has been verified with P1, P2 and P3. See the results given for
P1.

 22

4.6 Property 5

Fast trains do not wait more than time needed to close the gate in fast train
priority mode,

This property is very similar to the previous one but only concerns fast trains.

As a consequence, the stop condition is limited to the state of the fast process.

The results shown that the property is verified. Some exceptions are generated
which are due to the presence of the deadlock state in the normal process.

Number of states : 64465
Number of transitions : 114794
Maximum depth reached : 87
Maximum breadth reached : 2077
duration : 0 mn 22 s

Number of exceptions : 281
Number of deadlocks : 0
Number of stop conditions : 0
Transitions coverage rate : 57.33 (32 transitions not covered)
States coverage rate : 78.95 (4 states not covered)
Basic blocks coverage rate : 50.00 (64 basic blocks not covered)
Number of errors : 0
Number of success : 0

4.7 Property 6

Cars do not wait forever in car priority mode

The property checker has proven that this property is not true due to the
modification C1 in the specification :

“It is not allowed to set the stopping signal for a track when a train is between
the two sensors”.

It is possible in an extreme situation that an unlimited number of trains follow
each other on a track so that the stopping signal is never set.

4.8 Property 7

In manual mode, the gate cannot be opened if a train is passing

That property is similar to P3 with only one difference: here we authorize the
manual mode. The model is set in train priority mode and manual actions,
excepting a change of the priority mode, are allowed.

Results show that the property is verified. Exceptions have the same cause as
above: some normal or fast processes may enter the time_exceeded state since

 23

no priority is managed in pure manual mode.

Number of states : 141870
Number of transitions : 301492
Maximum depth reached : 85
Maximum breadth reached : 4441
duration : 0 mn 58 s

Number of exceptions : 1340
Number of deadlocks : 0
Number of stop conditions : 0
Transitions coverage rate : 69.33 (23 transitions not covered)
States coverage rate : 89.47 (2 states not covered)
Basic blocks coverage rate : 51.56 (62 basic blocks not covered)
Number of errors : 0
Number of success : 0

4.9 Property 8

In manual mode, the gate cannot be opened if not all traffic lights are red,

That property can be described with the following assertions used as stop
conditions:

“Stop if output open and fast!state=green”.

“Stop if output open and normal!state=green”

The result show that the property can be violated as the “wait” and “open”
signals are sent by an unique transition. Although that situation violates the
property in the formal sense, it does not mean that the system is unsafe since
the wait signals have been sent. Exceptions are still present for the same
reason as above.

Number of states : 141864
Number of transitions : 301480
Maximum depth reached : 85
Maximum breadth reached : 4441
duration : 1 mn 0 s

Number of exceptions : 1340
Number of deadlocks : 0
Number of stop conditions : 4
Transitions coverage rate : 69.33 (23 transitions not covered)
States coverage rate : 89.47 (2 states not covered)
Basic blocks coverage rate : 51.56 (62 basic blocks not covered)
Number of errors : 0
Number of success : 0

 24

4.10 Property 9

In manual mode, a traffic light cannot be set to green is the gate is open.

This property is similar to P2 but this time manual operations are allowed.

The results show that property 9 is verified. Exceptions have the same cause as
above.

Number of states : 181874
Number of transitions : 383240
Maximum depth reached : 85
Maximum breadth reached : 5177
duration : 1 mn 17 s

Number of exceptions : 1940
Number of deadlocks : 0
Number of stop conditions : 0
Transitions coverage rate : 69.33 (23 transitions not covered)
States coverage rate : 89.47 (2 states not covered)
Basic blocks coverage rate : 51.56 (62 basic blocks not covered)
Number of errors : 0
Number of success : 0
 observer obs: 0 errors, 0 success
 observer nogobetweenopenandclose: 0 errors, 0 success

5 Conclusion on simulation

In this section, we have shown the use of the interactive and exhaustive
simulations modes to verify and validate the behaviour of our specification. The
main result is that the model fulfills all the key properties that the user
requirements analysis has put into focus.

As a conclusion, we can say that the model matches the user requirements and
exhibits a safe behaviour even in manual mode.

One interesting outcome of this simulation activity is that we have been able to
measure the complexity of the system. Although the model seems simple, the
number of states and possible transitions can go up to more than 3 millions.
This number can even be larger if more tracks are added. Nevertheless, with a
“divide and conquer” approach, an exhaustive simulation leading to proof of
properties is always feasible.

 25

V. Conclusion
The SDL modelling of the railway crossing was an interesting exercise. It
demonstrated that an apparently simple system can hide an internal complexity
which can only be revealed by means of simulation. With a standard design
approach, such a complexity would be revealed later during the coding and
testing phases. This is the power of the SDL modelling, which can validate a
specification and a design before writing any line of executable code. We
could resume this by opposing the “validate and code” approach to the “code
and bug-hunting” approach, which is unfortunately still used in most projects.

