
Tutorial on Message Sequence Charts (MSC'96)

Ekkart Rudolpha, Jens Grabowskib, and Peter Graubmannc

aTechnical University of Munich, Institute for Informatics, Arcisstrasse 21, D-80290

M�unchen, Germany, eMail: rudolphe@informatik.tu-muenchen.de

bInstitute for Telematics, University of L�ubeck, Ratzeburger Allee 160, D-23538

L�ubeck, Germany, eMail: jens@itm.mu-luebeck.de

cSiemens AG, ZFE T SE, Otto-Hahn-Ring 6, D-81739 M�unchen, Germany, eMail:

gr@zfe.siemens.de

Abstract

MSC is a trace language which in its graphical form admits a particularly

intuitive representation of system runs in distributed systems while focusing

on the message interchange between communicating entities and their envi-

ronment. For the �rst time the MSC recommendation Z.120 (MSC'92) was

approved at the ITU meeting Geneva 1992. A new revised MSC recommen-

dation Z.120 (MSC'96) was approved at the closing session of the last study

period in April 1996.

Whereas in MSC'92 main emphasis was put on the elaboration of basic

concepts and a corresponding formal semantics, in the new MSC version -

MSC'96 - structural language constructs, essentially composition and object

oriented concepts, play a dominant role. With these new concepts, the power

of MSC is enhanced considerably in order to overcome the traditional re-

striction to the speci�cation of only a few selected system runs. Within the

tutorial, the use of MSC is demonstrated by means of the ISDN supplementary

service 'Completion of Calls to Busy Subscriber (CCBS)'.

1 Introduction

Message Sequence Chart (MSC) has matured within a very short period of time to a

considerably powerful and expressive language. Before the approval of the �rst MSC

recommendation Z.120 in 1992, MSC was used merely as an informal, illustrative

language, e.g., in form of auxiliary diagrams within the SDL community [10]. In the

meantime, MSC has advanced to a formal and descriptive language, i.e., a formal

description technique (FDT). The edition of the �rst MSC recommendation in 1992

[22] has increased use and popularity of the MSC language beyond the expectation

1



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 2

of most people. Main reason for this success was that for the �rst time a systematic

tool support became possible for MSC due to its standardisation. Nevertheless,

the language constructs de�ned in MSC'92 [7, 20] appeared to be not su�cient to

describe comprehensively even parts of an information system. MSC therefore was

considered fruitful only in combination with other languages, dominantly SDL and

TTCN (e.g., [9]).

During the last ITU study period (1993 - 1996) the MSC language obtained a

great impulse by the development of a corresponding formal semantics based on

process algebra [17, 18, 24]. Though the idea of combining MSC with composition

mechanisms from process algebra goes back to the early days of MSC standardisation

[21] and was carried forward within the GEODE tool [5], a satisfactory formulation

was found only recently after the development of the formal MSC semantics. In some

respects MSC'96 [23] now looks like a graphical representation of process algebra

whereas MSC'92 was in
uenced very much by ideas coming from Petri Nets with its

composition mechanisms based on conditions [8, 11]. A closer look shows that the

condition based composition mechanisms from MSC'92 have not been dropped but

incorporated into process algebra based techniques in MSC'96. Surprisingly after

all, no other language construct in MSC'96 has been discussed more extensively

than the role of conditions. Even the �rst Internet meeting in the history of ITU

and a major part of a conference in Russia (St. Petersburg) have been dedicated to

this subject.

Thus eventually, MSC'96 has become a powerful synthesis of concepts taken

from process algebra, Petri Nets and, beyond that, from object oriented modelling.

Recently, also the object oriented community has shown increasing interest in the

MSC standard as a means for the formalisation of Use Cases. This is now even

under discussion within the "Uni�ed Method for Object Oriented Development"

[3]. Due to the new language concepts within MSC'96 - generalised ordering, inline

expression, reference, High Level MSC (HMSC) - the range of applicability of MSC

has increased considerably. The speci�cation of Use Cases [14], i.e., of main scenarios

together with all accompanying side cases, is one of the most promising candidates

for the application of MSC'96 [2, 16]. This way, the traditional restriction of MSC to

the speci�cation of only few selected scenarios, which was considered as the major

shortcoming of MSC'96, can be overcome. The treatment of the CCBS example

which has been chosen for this tutorial is carried through in this spirit.

2 Short description of the CCBS example

An Integrated Services Digital Network (ISDN) (e.g., [15]) is a fully digital network

that provides a large variety of data and telecommunications services. In its simplest

form, an ISDN is merely an enhancement to the telephone local loop that will allow

both voice and data to be carried over the same twisted pair. Supplementary services

provide additional capabilities to ISDN users, so they may exert greater control over

how the network handles their transmission paths. E.g., call forwarding, call waiting



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 3

are a few of the capabilities that are meant to be supplementary ISDN services.

For our purpose, the explanation of the MSC language, we selected another

supplementary service, namely 'Completion of Calls to Busy Subscriber' (CCBS).

For its description we rely on the European Telecommunication Standard (ETS)

No. 300 359-1 [6].

The CCBS service enables user A, encountering a busy destination B, to have

a call completed without having to make a new call attempt when destination B

becomes not busy. When user A requests the CCBS service, the network will monitor

for destination B becoming not busy. When this happens then the network will wait

a short period of time in order to allow the resources to be re-used by B originating

a new call. If this is not the case within a given time frame, then the network will

automatically recall user A. After user A accepts the CCBS recall, the network will

automatically generate a CCBS call to destination B.

3 Speci�cation of the CCBS example

3.1 HMSC `CCBS SERVICE'

The High-level MSC (HMSC) `CCBS SERVICE' (Figure 1) provides the speci�ca-

tion of the CCBS on the top level. The HMSC `CCBS SERVICE' starts in the

condition `CCBS Idle'. The CCBS request from User A (reference `REQUEST') is

either accepted and the CCBS activation (reference `ACTIVATION') is processed or

it is rejected (reference `REJECT') and the HMSC returns to the initial `CCBS Idle'

state. After a successful request the system arrives in the state `CCBS Activated'.

The subsequent reference `MONITORING' refers itself to an HMSC which speci�es

the monitoring of user B and user A. When both user A and user B are found to

be not busy the recall is started by sending a recall indication to user A and the

system reaches the state `CCBS Free'. If user A accepts the recall then the CCBS

service is completed (reference `INVOCATION') and the system changes into state

`CCBS Init'. If user A does not reply in time to the recall the CCBS service is can-

celed (reference `CANCEL') and the system returns to the initial `CCBS Idle' state.

In case the CCBS recall is successfully completed the resources can be released (ref-

erence `RELEASE'). The CCBS supplementary service may be disrupted by user A

in all intermediate states (reference `DEACTIVATION') causing the system to return

into the initial `CCBS Idle' state.

The HMSC `CCBS SERVICE' shows already a good part of the main language

constructs de�ned for use in an HMSC. HMSCs provide a means to graphically

de�ne how a set of MSCs can be combined. An HMSC is a directed graph where

each node is either:

� a start symbol :

Note: There is exactly one start symbol in each HMSC.

� an end symbol :



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 4

� an MSC reference:

� a condition:

� a connection point :

� a parallel frame:

The use of a parallel frame will be discussed in Section 4.1.

CCBS_Free

ACTIVATION

REJECTDEACTIVATION REQUEST

CCBS_Activated

CCBS_Idle

CCBS_Requested

MONITORING CANCEL

INVOCATION

CCBS_Init

RELEASE

msc CCBS_SERVICE

Figure 1

The HMSC `CCBS SERVICE' starts with the start symbol graphically represented

by a downward pointing triangle. It is connected by an HMSC line-symbol with the



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 5

condition `CCBS Idle'. All conditions on the HMSC level are considered to be global.

They may be seen as indicating global system states. At the same time, they can be

used to guard the composition of MSCs described by HMSCs. Whereas in MSC'92

the composition was based completely on the merging of �nal and initial conditions,

in MSC'96 the composition of MSCs is de�ned by means of HMSCs. The conditions

in MSC'96 play a restrictive role de�ned by a set of static semantics rules in Z.120.

To illustrate these rules, let us consider the MSC reference `REQUEST' which fol-

lows the condition `CCBS Idle'. Each MSC reference points to another MSC which

de�nes the meaning of the reference, i.e., the reference construct in the HMSC can

be seen as a placeholder for an MSC diagram. Thus, the reference `REQUEST'

refers to the MSC `REQUEST' which can be found in Section 3.2. This MSC starts

with the initial condition `CCBS Idle'. The static semantics rules for MSC'96 now

state that a HMSC-condition immediately preceding a MSC reference has to agree

with the (global) initial condition of the MSC reference (if present) according to

name identi�cation. The restrictive role of conditions in MSC'96 leaves su�cient

freedom to the system designer since the speci�cation of initial and �nal conditions

in MSC references, but also the speci�cation of HMSC conditions preceding or fol-

lowing a MSC reference, is optional. This way, the HMSC composition mechanism

o�ers great 
exibility but also supports composition in the spirit of MSC'92 (except

that MSC'96 composition rules ignore non-global conditions, i.e., conditions which

refer to a true subset of the instances contained in the MSC). The 
exible use of

conditions in MSC'96 is demonstrated within HMSC `MONITORING'. In HMSC

`CCBS SERVICE' a special generalisation of MSC'92 conditions is used: conditions

may contain a name-list. The static rules governing the composition of MSCs now

state that the name-list attached to an HMSC condition must be a subset of the

name-list of the adjacent initial or �nal condition of an MSC reference. E.g., the

reference `DEACTIVATION' refers to an MSC (de�ned in Section 3.6.4) with the

condition name list `CCBS Requested', `CCBS Activated', `CCBS Free' thus allowing

a composition at several places of the HMSC. The connection points (cf. the branch-

ing point after the condition `CCBS Requested' as an example) are introduced merely

for convenience in order to improve the layout. They have no semantical meaning.

The HMSC `CCBS SERVICE' does not contain any end symbol since it is cyclic.

Contrary to plain MSCs (see Figure 2), instances and messages are not shown

within an HMSC. This way, HMSCs can focus completely on the composition as-

pects. A more intuitive (non-standard) name for HMSCs is road map which gives a

very good characterisation how HMSCs are used in practice.

HMSCs, like normal road maps, may easily become quite complex if no further

structuring mechanism is employed. Fortunately, HMSCs are hierarchical in the

sense that a reference in an MSC may again refer to an HMSC. Within the reference

`MONITORING' this re�nement mechanism is employed. This demonstrates that

MSC'96 in general supports top down design nicely (apart from a few shortcomings

discussed below).



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 6

CCBS_Requested

msc REQUEST

User_A Network_A Network_B

Request_ReqInd

check queue
and service
subscription

Request
FACILITY

(Request_Inv)

check
compatability

CCBS_Idle

Figure 2

msc REQUEST;

inst User A, Network A, Network B;

User A: instance;

Network A: instance;

Network B: instance;

all: condition CCBS Idle;

User A: in Request from env;

out FACILITY (Request Inv);

Network A: in FACILITY (Request Inv);

out Request ReqInd;

Network B: in Request ReqInd;

action check queue and service subscription;

action check compatibility;

all: condition CCBS Requested;

User A: endinstance;

Network A: endinstance;

Network B: endinstance;

endmsc;

Figure 3 : MSC/PR representation of Figure 2

3.2 MSC `REQUEST'

When the network encounters a busy destination B it retains the call information

for the CCBS supplementary service for a certain period. During this time, user A

can activate the CCBS supplementary service. The request for the CCBS service is

described in Figure 2.

MSC `REQUEST' is an example for a basic MSC containing only language con-



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 7

msc

User_A Network_A Network_B

CCBS_Requested

REJECT

Reject

CCBS_Not_Activated (Reject)

FACILITY

CCBS_Idle

Figure 4

structs which have been already included in MSC'92, namely environment (frame

around the diagram), instance (vertical line with horizontal bars on top and bot-

tom), message (arrow), action (rectangle) and condition (hexagon) [20].

Both conditions `CCBS Idle' and `CCBS Requested' are global : they refer to all

instances contained in the MSC. In MSC'96 global is always interpreted on the level

of the MSC document since the composition rules (HMSC static semantics rules)

do not discern the instances. Thus, all of them are attached to the global condition.

This di�ers from the composition rules stated in MSC'92 where conditions are always

discriminated by the set of instances to which they are attached.

In case of MSC `REQUEST' also the textual representation MSC/PR has been

provided whereby the event oriented form which is new in MSC'96 has been em-

ployed. The MSC/PR contained in MSC'92 lists message sending and receiving

events in association with an instance (instance oriented form). During the last

ITU study period, a better readable notation was requested, in particular in cases

where MSC/PR is not only used internally by tools, but also edited by humans. Ac-

cordingly, a new event oriented textual representation was elaborated where events

are listed in form of a possible execution trace and not ordered with respect to

instances. The event oriented textual syntax is closer to the graphical grammar

than the instance oriented textual syntax. This has the advantage that details of

the graphical representation are expressible more easily. In MSC'96, both the in-

stance oriented and the event oriented syntax form are combined within one textual

representation.

3.3 MSC `REJECT'

The CCBS request may be rejected in case no compatible terminal exists at destina-

tion B. Another reason for a rejection is if the maximum number of requests against

destination B already is queued. The rejection procedure is shown in Figure 4.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 8

queue
add to

msc ACTIVATION

User_A Network_A Network_B

CCBS_Requested

CCBS_Activated
FACILITY

(Request_RR)

Request_RespConf

T-CCBS2 duration shall
be between 15
and 45 minutes

CCBS_Activated

Figure 5

3.4 MSC `ACTIVATION'

Figure 5 describes the acceptance of the CCBS service request. In this case the

network registers the CCBS request (add request to queue) and the user is informed

that the request was successful and the CCBS service now is activated. Furthermore

the CCBS service duration timer T-CCBS2 is started.

MSC `ACTIVATION' contains the setting of a timer T-CCBS2. The new timer

symbols are considerably more intuitive than the graphical symbols used in MSC'92.

Contrary to MSC'92, the individual timer constructs of MSC'96, i.e., timer set, timer

reset, and timeout, may be split between di�erent MSCs.

The setting of a timer is represented graphically by an hour glass symbol con-

nected with the instance axis by a (bended) line symbol (see Figure 5). The timer

reset is represented by a cross symbol (�), again connected with the instance axis

by a line symbol (cf. Figure 10). Time-out is described by a (bended) arrow which

is connected to the hour glass symbol (see Figure 8 and 12).

3.5 HMSC `Monitoring'

The reference `MONITORING' in Figure 1 again refers to an HMSC which is shown in

Figure 6. The HMSC starts with the condition `CCBS Activated'. The status check

of user B (reference `CHECK STATUS B') leads either to the result that B is free

(reference `REPLY B FREE') or that B is busy (reference `REPLY B BUSY'). If B is

busy the HMSC `MONITORING' returns to the initial condition `CCBS Activated'

and the `CHECK STATUS B' procedure is repeated. After a successful status reply

(reference `REPLY B FREE'), the network repeats the status check for user B after a

certain time interval (supervised by the destination B idle guard timer). This wait-

ing period enables user B to initiate a call before any CCBS request is processed.

Subsequently, the system gets into state `CCBS Await Status', which means waiting



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 9

User_A_Free

CCBS_Free

recallREPLY_A_FREE

CHECK_STATUS_B

CCBS_ActivatedUser_B_Busy

msc MONITORING

SUSPENSION
monitoring
of user A

REPLY_B_BUSY

CCBS_Await_Status

REPLY_B_FREE

Status_Check_A

User_A_Busy

REPLY_A_BUSYREPLY_B_STILL_FREE

Figure 6

for another status reply from user B. In case, after expiration of the guard timer

this second status request �nds user B busy again (reference `REPLY B BUSY'), the

HMSC monitoring starts again from the beginning. However, if this second status

request recognises B as free again (reference `REPLY B STILL FREE') the monitor-

ing of user A is started and the system gets into the state `Status Check A'. If user A

is found to be free (reference `REPLY A FREE') the CCBS recall of user A is initi-

ated. Accordingly, the system state changes into `CCBS Free' which means waiting

for a reply from user A. In case of user A being busy (reference `REPLY A BUSY')

the CCBS recall is suspended until user A is found to be free again (reference `SUS-

PENSION') and the HMSC `MONITORING' starts anew from the beginning.

The HMSC `MONITORING' contains an end symbol (triangle). Note, that the

HMSC contains adjacent conditions, namely `User B Busy' and `CCBS Activated',

and, `User A Free' and `CCBS Free'. Such adjacent conditions may be introduced



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 10

to provide some additional information about the system state, e.g., if user B is in

the state `User B Busy' the HMSC returns to the initial condition `CCBS Activated'.

We have also some cases where the composition is not guarded by conditions, since

MSC `CHECK STATUS B' has no �nal and `REPLY B BUSY' no initial condition.

Also do references `REPLY B FREE' and `REPLY B STILL FREE' not contain initial

conditions. In MSC'92 such a composition was not allowed which forced users to

employ conditions in a very strict manner.

The present MSC'96 supports the delayed choice outside of MSC references

in HMSCs. Alternatives de�ned within a referenced MSC cannot be continued

di�erently outside of the reference. Consequently, the MSC has to be split at

the point where the decision is made. This refers particularly to the status re-

quest procedure for the users B and A in the MSCs `CHECK STATUS B' and `RE-

PLY B STILL FREE'. In both cases the split has to be made after sending the status

request message. Accordingly, we have to distinguish between busy and free as

status replies. This explains the modelling in HMSC `MONITORING' where `RE-

PLY B FREE', `REPLY B BUSY', `REPLY A FREE' and `REPLY A BUSY' appear

as references to separate MSCs, i.e., they refer to Figure 8, 11, 10, and 12 respec-

tively. In practice, exception handling becomes quite clumsy if all decisions have to

be made outside of the references. In general, it leads to fairly small MSC pieces

often containing one or two messages only. Therefore, this de�ciency should be

removed as soon as possible by an appropriate composition mechanism.

3.5.1 MSCs referred to by HMSC `MONITORING'

HMSC `MONITORING' (Figure 6) provides an overall view of the monitoring pro-

cedure for the users A and B. It refers to the concrete message exchange de�ned

in the Figures 7, 8, 9, 10, 11, 12, and 13. These MSCs are now presented in more

detail.

User B is monitored until it is not busy. As speci�ed in MSC `CHECK STATUS B'

(Figure 7), that means a status request is sent by network B to a status request

process. Within the subsequent �nal state `CCBS Await Status', network B is waiting

for a status reply.

If user B turns out to be free the network B starts the destination B idle guard

timer T-CCBS4. This timer enables destination B to initiate a new call before the

pending CCBS request is processed.

The corresponding MSC `REPLY B FREE' (Figure 8) contains a local condition

`User B Free' attached to instance `Network B' only. This condition is used to indicate

a local state. In addition, this MSC contains a timer expiration construct for T-

CCBS4, i.e, a combination of timer setting and time-out (the latter is represented

by an arrow pointing to the instance).

When the destination B guard timer T-CCBS4 expires and B is still not busy,

network A is informed (cf. MSC `REPLY B STILL FREE', Figure 9). Subsequently,

user A is monitored by sending a status request to user A. The status check timer

T-CCBS1 is set supervising the maximum response time for user A. MSC `RE-



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 11

basic call

reserve
B-channel

from

to status
request
process

CCBS_Activated

CHECK_STATUS_Bmsc

Network_B

Start_CCBS_Processing

(Request)

STATUS

Figure 7

REPLY_B_FREEmsc

Network_B

T-CCBS4

CCBS_Await_Status

(request)

STATUSto status
request process

(confirm_free)

STATUS

User_B_Free

from status
request process

Figure 8

PLY B STILL FREE' shows the example of an intermediate (i.e., neither initial nor

�nal) condition: `User B Free' which is non-global but also non-local, i.e., attached

to more than one instance.

If user A is found not busy (cf. MSC `REPLY A FREE', Figure 10) user A is

recalled with an indication that it is a CCBS recall. At the same time the CCBS

recall timer TCCBS-3 is started. MSC `REPLY A FREE' shows a timer reset for

the status check timer T-CSSB1 which is graphically represented by a cross symbol

connected to the instance by a line symbol.

If the destination guard timerT-CCBS4 (which was set in MSC `REPLY B FREE')

expires and user B is found busy again (cf. MSC `REPLY B BUSY', Figure 11), pro-

cessing of the destination B-CCBS stops. The network monitors again destination

B, i.e., the monitoring procedure continues with MSC `CHECK STATUS B'.

If user A is found busy at the time of a recall then it is noti�ed and the CCBS

request is suspended. The corresponding MSC `REPLY A BUSY' is shown in Fig. 12.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 12

User_A Network_A Network_B

Remote_User_Free
FACILITY

(StatusRequest_Inv)

msc REPLY_B_STILL_FREE

T-CCBS1

(confirm_free)

STATUSfrom status
request process

Status_Check_A

User_B_Free

Figure 9

User_A Network_A

FACILITY

(StatusRequest_free)

Status_Check_A

msc REPLY_A_FREE

User_A_Free

Remote_User_Free

FACILITY

(RemoteUserFree)

T-CCBS3

T-CCBS1

Figure 10

B-channel
reservation

Release

msc REPLY_B_BUSY

Network_B

STATUS

(confirm_busy)

from status
request process

User_B_Busy

Figure 11



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 13

reservation

alt T-CCBS1

in queue
request

B-channel

suspend

release

Network_A Network_B

T-CCBS1

Suspend

(StatusRequest_busy)

FACILITY

(BFree_Inv)

FACILITY

User_A

msc REPLY_A_BUSY

User_A_Busy

Check_Status_A

Figure 12

The MSC contains an inline operator expression referring to alternative composition.

Graphically, the inline expression is described by a rectangle with dashed horizontal

lines as separators. The operator keyword is placed in the left upper corner.

Inline operator expressions in MSC'96 allow the �ve operator keywords alt, par,

loop, opt, exc which denote alternative composition, parallel composition, itera-

tion, optional region and exception, respectively. MSC references may contain cor-

responding textual operator expressions which in addition include the sequential

operator using the keyword seq.

As shown in MSC `SUSPENSION' (Figure 13), user A being found busy, is mon-

itored until it becomes free. Then, user A's CCBS request shall become not sus-

pended and the monitoring procedure shall start again.

MSC `SUSPENSION' shows a nested inline expression. The alternative inline

expression is embedded in an inline expression containing a loop operator. The loop

operator denotes iteration whereby the range may be speci�ed in parentheses. In

MSC `SUSPENSION', the range <0,inf> denotes that the loop will be executed a

�nite, but unbound number of times, zero times execution included.

3.5.2 Alternative modellings of MSC `REPLY A BUSY'

The MSCs `REPLY A BUSY', `REPLY A BUSY ALT1' and `REPLY A BUSY ALT2'

(Figures 12, 14, 15) describe alternatives for modelling the special situation where

user A is busy. All three contain an inline operator expression referring to alternative

composition.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 14

T-CCBS1

(StatusRequest_busy)

alt

FACILITY

T-CCBS1loop<0,inf>

FACILITY

(StatusRequest_Inv)

(StatusRequest_free)

FACILITY

msc SUSPENSION

T-CCBS1

T-CCBS1

T-CCBS1

Network_A Network_BUser_A

B-channel_released

(StatusRequest_Inv)

FACILITY

CCBS_Activated

User_A_Busy

RESUME_ReqInd

Figure 13

reservation
B-channel

alt

in queue

T-CCBS1

request
suspend

release

Network_A Network_BUser_A

Status_Check_A

g1(StatusRequest_busy)

FACILITY

g1

msc REPLY_A_BUSY_ALT1

(BFree_Inv)

FACILITY
Suspend_ReqInv

User_A_Busy

FACILITY

(StatusRequest_busy)

FACILITY T-CCBS1

Figure 14



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 15

B-channel
release

request

reservation

suspend

alt

in queue

Network_A Network_BUser_A

Status_Check_A

(StatusRequest_busy)

FACILITY

g1 (StatusRequest_busy)

FACILITY T-CCBS1

T-CCBS1

msc REPLY_A_BUSY_ALT2

(BFree_Inv)

FACILITY
Suspend

User_A_Busy

Figure 15

In Figure 14 and 15 messages may enter an inline expression via gates. E.g., in

MSC `REPLY A BUSY ALT1' the message `FACILITY(StatusRequest busy)' is enter-

ing the inline expression via gate `g1'.

Gates are used to de�ne connection points for messages and order relations with

respect to the interior and exterior of MSC references and inline expressions. Gates

on inline expressions are merely transit points on the frame of the inline expression.

If the gate is not continued outside the frame, the following implicit rules apply:

1. If there are other gates with the same name of the same inline expression, the

continuation given for one of the gates holds for all.

2. If there are no other gates with the same name and no continuation exists, an

implicit continuation to the next enclosing frame (either MSC frame or inline

expression frame) is assumed.

A message gate name can be de�ned explicitly by a name associated with the gate

on the frame or implicitly by the direction of the message through the gate and the

message name.

The three MSCs describe slightly di�erent situations: in all three cases either

the timer T-CCBS1 waiting for an answer from user A expires (alternative 1) or the

status busy-message `FACILITY(StatusRequest busy)' arrives (alternative 2).

In MSC `REPLY A BUSY ALT1' the status busy-message is lost in case of the

�rst alternative (graphically represented by a black hole). A lost message in this case

may also mean that it is discarded after the timer has expired. A more appropriate



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 16

CCBS_Init

msc INVOCATION

User_A Network_A Network_B

CCBS_Free

Recall
SETUP

(Call_Inv)

Call

(Call_Inv)

T-CCBS3

Figure 16

representation would be to attach the black hole to the instance which is not allowed,

however, in the present MSC'96.

In MSC `REPLY A BUSY ALT2' the status busy-message is sent in both cases but

if the �rst alternative, i.e., the expiring of the timer holds, the message cannot enter

the inline expression since there is no corresponding gate. This kind of modelling is

not excluded in MSC'96 but should be used with care. The static semantics rules

in Z.120 are likely to be changed to rule out those situations.

In MSC `REPLY A BUSY' the status busy-message is neither sent nor consumed

in case of alternative 1. Note, that in this case the inline expression is attached to

two instances `User A' and `Network A'.

3.6 MSCs `INVOCATION', `RELEASE', `CANCEL', and

`DEACTIVATION'

Let us return to the CCBS example. The HMSC `MONITORING' describes part of

the overall CCBS service behaviour speci�ed in the HMSC `CCBS SERVICE' (Fig-

ure 1). We already explained the HMSC `MONITORING', the MSCs `REQUEST',

`REJECT', and `ACTIVATION' which all are referred to in `CCBS SERVICE'. In

this section we describe the remaining MSCs, namely `INVOCATION', `RELEASE',

`CANCEL', and `DEACTIVATION'.

3.6.1 MSC `INVOCATION'

If user A accepts the recall before the CCBS recall timer expires (cf. MSC `INVO-

CATION', Figure 16) the network initiates the CCBS call to destination B.

3.6.2 MSC `RELEASE'

If the CCBS queue has been processed then processing is complete, the resources

reserved for the CCBS supplementary service can be released (Figure 17), and the



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 17

queue
request from

release

Release_CCBS_ID

reservation

remove

B-channel

msc RELEASE

User_A Network_A Network_B

CCBS_Init

CCBS_Idle

CANCEL_ReqInd

Figure 17

CCBS service returns into its initial state `CCBS Idle' (see also Figure 1).

Within MSC `RELEASE', an MSC reference `RELEASE CCBS ID' is speci�ed.

The corresponding MSC is shown in Figure 18. The MSC `RELEASE CCBS ID'

contains an inline expression with an opt operator. opt is an unary operator with

one operand only. The opt operator denotes an alternative where the second operand

is the empty MSC. In case of MSC `RELEASE CCBS ID' the sending of the message

`CANCEL ReqInd' is depending on a deactivation caused by user A. This is mod-

elled in this tutorial by means of an optional region with a comment which strictly

speaking demands a guard, instead. However, since guards need formal data de�ni-

tions and therefore have not been included in MSC'96 we have chosen this kind of

modelling.

3.6.3 MSC `CANCEL'

If user A rejects the CCBS recall or the T-CSBS3 recall timer expires then the

CCBS is deactivated. This is shown in Figure 19. The employment of the reference

`RELEASE CCBS ID' is an example for the reuse of MSCs by means of this language

construct.

3.6.4 MSC `DEACTIVATION'

In most situations (cf. Figure 1) the user can deactivate the CCBS service by sending

a deactivation request. Upon successful deactivation, the corresponding CCBS re-

quest is discarded and user A is informed that the deactivation was successful. The

corresponding MSC `DEACTIVATION' is shown in Figure 20. Within this MSC, the

MSC `RELEASE CCBS ID' is referred to once again.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 18

deactivation 
is caused by
user A

option valid if

release
CCBS
reference

RELEASE_CCBS_IDmsc

reference
CCBS

CCBS_Deactivation_Requested

T-CCBS3

T-CCBS2

release

User_A Network_A

FACILITY

(Deactivate_RR)

opt

CANCEL_ReqInd

Figure 18

FACILITY

T-CCBS3

(Deactivate_RR)

Release_CCBS_ID

msc CANCEL

User_A Network_A Network_B

CCBS_Free

alt

Deactivate_request
FACILITY

(Deactivate_Inv)

Deactivate_confirm

CANCEL_ReqInd

CCBS_Idle

Figure 19



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 19

Release_CCBS_ID

msc DEACTIVATION

User_A Network_A Network_B

FACILITY

CCBS_Requested, CCBS_Activated, CCBS_Free

CCBS_Idle

(Deactivate_Inv)

Deactivate_Conf

Deactivate_Req

remove from

B-channel

queue,
release

CANCEL_ReqInd

Figure 20

4 Further constructs of the MSC language

The CCBS speci�cation in Section 3 is guided by the European Telecommunication

Standard 300 359-1 [6]. Therefore, our example speci�cation is restricted to the

CCBS speci�c events. We stuck to this example in order to obtain an MSC speci�-

cation transparent and compact enough for a tutorial presentation. In addition, this

speci�cation suits quite well to illustrate one of the intentions of MSC'96, namely

to provide a complete speci�cation of certain system features. How far this goal has

been reached will be discussed in the conclusion.

However, this CCBS example is not su�cient to explain all existing MSC lan-

guage constructs. In this section, the remaining ones are described. The MSC

examples, given here, and the corresponding descriptions again refer to the CCBS

service but this time, they do not display standardised behaviour.

4.1 HMSC `TIME SUPERVISION'

The idle guard timer (T-CSBS4) enables network B to initiate a call before any

CCBS request is processed. In the HMSC `TIME SUPERVISION' (Figure 21), a

connection setup of user B is speci�ed in parallel with the time supervision and

status check by Network B.

The HMSC `TIME SUPERVISION' contains a parallel frame embodying two

small HMSC pieces which according to the semantics of this construct are exe-

cuted in parallel (free merge). The small HMSC pieces refer to the MSCs `TIMER'

and `CONNECTION SETUP' provided in Figure 22 and Figure 23.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 20

CONNECTION_SETUP TIMER

msc TIME_SUPERVISION

Figure 21

TIMER

T-CCBS4

User_B_Free

msc

Network_B User_B

CCBS_Idle

Deactivate_Conf

Deactivate_Req

Figure 22

User_B

off_hook

msc CONNECTION_SETUP

answer

ack

digit

connection

seizure_int

Figure 23



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 21

BUSY_AGAINmsc

Network_B User_B

T-CCBS4

off_hookUser_B_Free

answer

ack

digit

seizure_int

connection

status_request

status_busy

Figure 24

4.2 MSC `BUSY AGAIN'

If a connection setup procedure has been initiated before the status request is per-

formed by Network B then the result is `status busy'. MSC `BUSY AGAIN' (Figure

24) provides an example for the modelling by means of generalised orderings graphi-

cally represented by means of connections between the message events. In this case,

the connections are represented by line symbols with a staircase like shape. The

connections are contained within a coregion in an instance in column form. The

following partial ordering `<' is de�ned within MSC `BUSY AGAIN':

in o� hook < in digit < out seizure int < in ack < in answer < out connection

in o� hook < in status request < out status busy

Going beyond MSC'96, a double vertical line taken over from object oriented Mes-

sage Trace Diagrams (OMSC) [3, 4] shall denote a protected region which must not

be interleaved by other events.

4.3 MSC `BUSY AFTER FREE'

User B is not prevented from starting a setup after it has been found not busy

(cf. MSC `BUSY AFTER FREE', Figure 25). If destination B is again busy when

the network attempts to make the CCBS call, then a special procedure has to be

started which has been left out in the HMSC `CCBS SERVICE' (Figure 1).

4.4 MSC `ABSTRACTION'

On an early stage of requirement speci�cation one often abstracts from the internal

message exchange while specifying the external behaviour only. On this level of

abstraction, synchronisation constructs are demanded similarly to Time Sequence

Diagrams [13] which impose a time ordering between events attached to di�erent



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 22

Network_B User_B

User_B_Free

msc BUSY_AFTER_FREE

T-CCBS4

status_request

status_free

digit

off_hook

connection

answer

ack

seizure_int

Figure 25

CCBS_Init

msc ABSTRACTION

CCBS_user CCBS_destination

CCBS_Free

CCBS_recall CCBS_call

Figure 26

instances.1 This kind of generalised ordering in MSC'96 is de�ned by means of

connections graphically represented by a line symbol with an arrow symbol in its

middle. Thus, in MSC `ABSTRACTION' (Figure 26) de�nes the ordering:

in CCBS recall < out CCBS call

5 Conclusion and outlook

The modelling of the CCBS example by means of MSC'96 demonstrates the great

suitability of the new language constructs for this purpose. In particular, HMSCs

have shown to provide an overview about the functionality of such a protocol in a

convincingly intuitive and transparent manner. This is quite important in practice

because in SDL such a representation obviously is missing. Similarly to 'plain'

1Time Sequence Diagrams are frequently used for the speci�cation of OSI services.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 23

MSCs, HMSCs may supplement SDL speci�cations in many respects. Another very

attractive feature of HMSCs is their hierarchical structuring, i.e., the possibility

to re�ne HMSCs by other HMSCs which has been demonstrated within the CCBS

example by the HMSC `MONITORING' (Figure 6).

An obvious de�ciency of HMSCs in MSC'96 is the lack of an appropriate ex-

ception handling within references. A choice made within a reference is not visible

outside of the reference. As a consequence, all choices have to be made outside and

that may lead to the de�nition of many small MSC(- pieces). Obviously one needs

a means for guarding alternatives. There was already a proposal to use conditions

again for guarding choices. For some reasons, this idea was not accepted within

MSC'96. Certainly, formal data descriptions and corresponding parametrisation of

references will be requested for this purpose during the next study period.

On the level of plain MSCs, inline operator expressions and MSC references

have proven to provide an excellent means for a compact representation and for

reusability. The inclusion of quite general gate concepts for inline expressions and

references has contributed considerably to the power and expressiveness of MSC'96

[12].

The same concepts, however, may lead to the speci�cation which are rather

di�cult to interpret. They may even contain deadlocks. This is a new situation,

compared with MSC'92, where only deadlock-free MSCs could be speci�ed. Cer-

tainly, the further elaboration of a corresponding formal semantics will promote the

clari�cation of these language parts considerably. Nevertheless, in particular the

gate concept combined with operator expressions and generalised ordering relations

will remain a research topic for the next ITU- study period. In a sense, the inclusion

of such far reaching concepts into the new standard may appear quite courageous.

However, one has to keep in mind that standardisation is a highly interactive proce-

dure which continuously needs feedback from users and tool makers. It also depends

strongly on the e�ort provided by some few experts who again are depending on the

support by their home organisations. This obviously implies that new parts of the

language are not always completely settled, but still remain under development.

Whilst in MSC'96 very advanced concepts have been included which certainly

need further elaboration, some important concepts have been left out because they

seemed to be not su�ciently mature. The most prominent of these missing concepts

are - apart from the above mentioned exception handling concepts - interruption and

disruption operators and parallel composition concepts for HMSCs which include

synchronisation mechanisms [19].

This wish list, of course, can be extended. The inclusion of formal data concepts

has been mentioned already. A special language construct for the speci�cation

of synchronous communication mechanisms has still not been provided. In the

context of object oriented modelling such a construct, essentially describing a remote

procedure call presents the central communication mechanism.2 There is of course a

great demand for the inclusion of non-functional properties in MSC, most urgently

2However, a number of variants comes to mind immediately.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 24

for performance evaluations [1]. All of these open items have been included in

the working program for the next ITU- study period. An addendum to MSC'96

is planned for 1998 before the edition of the next MSC recommendation in 2000

(MSC'2000).

Compared with the extremely short time in which MSC'96 actually was pro-

duced, the result appears altogether to be surprisingly convincing and stable. The

removal of de�ciencies [16] but also the development of further language concepts like

the incorporation of formal data concepts within MSC needs an intense input from

users, tool makers and academic researchers. In this respect, the FORTE/PSTV'96

conference is the �rst opportunity to spread themessage ofMessage Sequence Charts

(MSC'96) to a broader community.

References

[1] R. Alur, G.J. Holzmann, D. Peled. An Analyzer for Message Sequence Charts. In:

Proceedings of the 2nd International Workshop on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS95), Passau, March 1996.

[2] M. Andersson, J. Bergstrand. Formalizing Use Cases with Message Sequence Charts.

Master Thesis, Lund Institute of Technology, 1995.

[3] G. Booch, J. Rumbaugh. Uni�ed Method for Object-Oriented Development. Rational,

1996.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. A System of Pat-

terns. John Wiley & Sons, Chichester, 1996.

[5] V. Encontre, E. Delboule, P. Gavaud, P. Leblanc, A. Boussalem. Combining Ser-

vices, Message Sequence Charts And SDL: Formalism, Method and Tools. In: SDL'91

Evolving Methods (O. Faergemand and R. Reed, editors). North-Holland, 1991.

[6] ETS 300 359-1. Integrated Services Digital Network (ISDN); Completion of Calls to

Busy Subscriber (CCBS) supplementary service; Digital Subscriber Signalling System

No. one (DSS1) protocol; Part 1: Protocol speci�cation. European Telecommunica-

tions Standards Institute (ETSI), Sophia Antipolis, France, Nov. 1995.

[7] J. Grabowski, P. Graubmann, E. Rudolph. The Standardization of Message Sequence

Charts. In: Proceedings of the IEEE Software Engineering Standards Symposium

1993. Sept. 1993.

[8] J. Grabowski, P. Graubmann, and E. Rudolph. Towards an SDL-Design-Methodology

Using Sequence Chart Segments. In: SDL'91 Evolving Methods (O. Faergemand and

R. Reed, editors). North-Holland, 1991.

[9] J. Grabowski, D. Hogrefe, R. Nahm. Test Case Generation with Test Purpose Speci�-

cation by MSCs. In: SDL'93 - Using Objects (O. Faergemand and A. Sarma, editors).

North-Holland, Oct. 1993.



Tutorial of the FORTE/PSTV'96 conference in Kaiserslautern, Germany, Oct. 1996 25

[10] J. Grabowski, E. Rudolph. Putting Extended Sequence Charts to Practice. In: SDL'89

- The Language at Work (O. Faergemand and M. M. Marques, editors). North-

Holland, Oct. 1989.

[11] P. Graubmann, E. Rudolph, J. Grabowski. Towards a Petri Net Based Semantics

De�nition for Message Sequence Charts. In: SDL'93 - Using Objects (O. Faergemand

and A. Sarma, editors). North-Holland, Oct. 1993.

[12] O. Haugen. Using MSC-92 e�ectively. In: SDL'95 - Proceedings of the 7.th SDL

Forum in Oslo, Norway (R. Braek and A. Sarma, editors). North-Holland, Sep. 1995.

[13] ISO/IEC JTC 1/SC 21. Information Technology - OSI Service Conventions. Revised

Text of CD 10731, ISO/IEC JTC 1/SC21 N 6341, January 1991.

[14] I. Jacobson. Object-Oriented Software Engineering { A Use Case Driven Approach.

Addison-Wesley, 1992.

[15] G.C. Kessler. ISDN (second edition). McGraw-Hill Inc., New York, 1993.

[16] S. Loidl. Interpretation und Werkzeugunterst�utzung von Message Sequence Charts

(MSC'96) (in German). Diploma thesis (in preparation), Technical University of

Munich (Germany), November 1996.

[17] S. Mauw, M.A. Reniers. An algebraic semantics of Basic Message Sequence Charts.

Computer Journal No. 37, 1994.

[18] S. Mauw. The formalization of Message Sequence Charts In: Computer Networks

and ISDN Systems - SDL and MSC (Guest editor: O. Haugen). Volume 28 (1996),

Number 12, June 1996.

[19] E. Rudolph, P. Graubmann, J Grabowski. Message Sequence Chart: Composition

Techniques versus OO-Techniques - 'Tema con Variazioni'. In: SDL'95 - Proceedings

of the 7.th SDL Forum in Oslo, Norway (R. Braek and A. Sarma, editors). North-

Holland, Sep. 1995.

[20] E. Rudolph, P. Graubmann, J. Grabowski. Tutorial on Message Sequence Charts. In:

Computer Networks and ISDN Systems - SDL and MSC (Guest editor: O. Haugen).

Volume 28 (1996), Number 12, June 1996.

[21] Z.100 I (1993). SDL Methodology Guidelines. Appendix I to Z.100. ITU-T, Geneva,

July 1993.

[22] Z.120 (1993). Message Sequence Chart (MSC). ITU-T, Geneva, Sep. 1994.

[23] Z.120 (1996). Message Sequence Chart (MSC). ITU-T, Geneva, April. 1996.

[24] Z.120 B (1995).Message Sequence Chart Algebraic Semantics. ITU-T, Geneva, 1995.


