Monitoring techniques in practice:

Experiences and lessons learned

Ana Cavalli – Institut Mines-Telecom/Telecom Sudparis Wissam Mallouli- Montimage

SAM, Saint Malo 2016

Motivation

- Show the evolution of active testing to monitoring (passive testing) techniques
- Explain the differences and complementarity of these techniques
- Show monitoring in practice
- > Present an industrial monitoring tool: MMT

Testing

- Testing: The process of executing software with the intent of finding and correcting faults
- Conformance testing: The process of checking if the implementation under test conforms the specification
 - Two techniques: active and passive testing (monitoring)
 - This presentation will focus mostly on monitoring, but there are many common objectives and challenges with active testing

What is active testing?

- ➤ Usually called Model Based Testing (MBT)
- > It is assumed that the tester controls the implementation
 - Control means: after sending an input and after receiving an output, the tester knows what is the next input to be send
- > The tester can guide the implementation towards specific states
- > Automatic test generation methods can be defined
- Usually a test case is a set of input sequences

What is monitoring (passive testing)?

- ➤ Monitoring consists in analysing the traces recorded from the IUT and trying to find a fault by comparing these traces with either the complete specification or by verifying some specifics requirements (or properties) during normal runtime
- No interferences with the IUT

Limitations of active testing

- Non applicable when no direct access to the implementation under test
- Semi- controllable interfaces (component testing)
- Interferences on the behaviour of the implementation

Limitations for components testing

- > Test in context, embedded testing:
 - Tests focused on some components of the system, to avoid redundant tests
 - Interfaces semi-controllables
 - In some cases it is not possible to apply active testing

Environment

Why monitoring?

- Conformance testing is essentially focused on verifying the conformity of a given implementation to its specification
 - It is based on the ability of a tester that stimulates the implementation under test and checks the correction of the answers provided by the implementation
- Closely related to the controllability of the IUT
 - In some cases this activity becomes difficult, in particular:
 - o If the tester has not a direct interface with the implementation
 - Or when the implementation is built from components that have to run in their environment and cannot be shutdown or interrupted (for long time) in order to test them

Controllability and observability issues in monitoring

> Controllability

No controllability issue because no interaction with the implementation under test

Observability

- It is assumed that to perform monitoring it is necessary to observe the messages exchanges between modules.
- Monitoring is a Grey Box testing technique

Fault detection using monitoring

- It is possible to detect output faults
- It is possible to detect transfer faults under some hypothesis: to initialise the IUT in order to be sure that the implementation is in the initial state and then perform monitoring

Monitoring vs Active Testing

- © Full test generation automation
- **8** Needs a model
- May modify (crash) the IUT behavior

- No interferences with the IUT
- No models needed
- © Full monitoring automation
- **8** Grey box testing

Monitoring techniques

What is network monitoring?

- Process of observing or inspecting the network at different points
- With the objective of :
 - Drawing operation baselines
 - Produce reports
 - Notify on abnormal operation
 - Provide input to network management

- Can be used to :
 - Understand the behavior of the network
 - Detect faults and abnormal operation
 - Network planning & resource optimization
 - Network security (Intrusion & Attack Detection)
 - Performance, quality (QoS, QoE) & SLA monitoring
- Based on traffic measurements
 - Gather traffic measures (e.g., performance indicators)
 - Analyze and correlate the measures in order to make a diagnosis

Complexity of network measurements

- > Size, complexity and diversity of the networks
 - Understanding cause-effect relationships is difficult
- ➤ Measurement is not an objective!
 - Meaningless without careful analysis
 - Analysis depends on the monitoring objective
 - Need to define :

O What, where, how to measure?

Determining What to Measure

- Before any measurements can take place one must determine what to measure
- Definition of metrics is closely related to the monitoring objective
- ➤ There are many commonly used network performance metrics
 - CAIDA Metrics Working Group (<u>www.caida.org</u>)
 - IETF's IP Performance Metrics (IPPM) Working Group

Determining What to Measure

- > Example: Performance metrics can be classified into :
 - Network metrics
 - Latency
 - Throughput
 - o Arrival rate
 - Link utilization, bandwidth
 - o Loss rate
 - Application metrics
 - o Response time
 - Connection setup time
 - Availability
 - User quality metrics (depends on the application)
 - Mean opinion score (VoIP)
 - Quality of experience (Video through estimation)

Determining *How* to Measure

> Active measurements

- Send test traffic into the network
 - o Generate test packets periodically or on-demand
 - Assess the responses and provide a verdict

- Popular tools for performance
 - o Ping: RTT and loss
 - o Traceroute: path and RTT

Issues:

- Impose extra traffic on network and distort its behavior in the process
- May impact the behavior of the network (self interfering)

Determining *How* to Measure

- > Passive measurements
 - Observing network traffic at the measurement point(s)
 - Packet capture (wireshark)
 - Flow-based measurement tools (routers)
 - SNMP tools (mostly used)
 - Perform analysis for various purposes
- Used to perform various traffic usage/characterization analysis/intrusion detection
- > Problems
 - o LOTS of data!
 - Privacy issues
 - Performance issues (wire speed packet capture and analysis)

Determining Where to Measure

- ➤ Single point measurements
 - Provide partial view of the network

Determining Where to Measure

- > End-to-end measurements
 - Provide a view on the performance between the the end points

Determining Where to Measure

- ➤ Multi point measurements
 - Provide a view on the performance in the different "monitored" segments of the network

What is DPI?

- ➤ Technology consisting of digging deep into the packet header and payload to "inspect" encapsulated content
 - Content may be spread over many packets

Why DPI?

Network Visibility

- Understand how bandwidth is utilized
 - What is the application mix
 - o Who is using what, where and when?

Traffic Management (Application Control)

- Block undesired traffic (spam, worms, etc.)
- Prioritize and shape traffic (limit P2P, QoS, QoE)
- Advanced policy enforcement
- Zero Facebook, OTT services, per application policy rules

Network management

- Advanced billing (abandoning the unlimited data plans)
- New pricing may appear soon (user defined preferred applications for free, fees applies for the rest of applications)

Security

- Understand network attacks
- Core component in next generation firewalls

Classification Techniques: The challenge

- > High number of applications and protocols
 - Same Application Different Implementations/versions
 - o Bittorrent has more than 30 different client implementations
 - o IM or VoIP don't use similar protocols
 - Evolving Architectures
 - o Client/server, Cashes, P2P, Client's network surroundings: Firewall/NAT, Proxy
 - Various Clients: PC, Smartphone, Gaming Console
- > Frequent Updates
 - Can vary from every year to every month
 - Typically will affect protocol format
- Use of Encryption (Obfuscation)
 - Primarily designed for counter measuring operator's throttling and monitoring efforts (eMule, Bittorrent)
 - In some cases protect proprietary implementation (Skype)
- Need to differentiate use
 - "Good" (legit streaming, SW updates) vs. "Bad" (pirated file sharing) P2P
- ➤ Need to recognize application subtleties for proper actions
 - Example: MSN IM block VoIP & Streaming, allow Chat

10/10/2016

Classification Techniques

➤ Port based

➤ Pattern matching

>Statistical

Analysis by Pattern Matching

10/10/2016

Behavior and statistical analysis

- ➤ Many protocols have statistical and behavioral "signatures" that are not related to the data contents:
 - Packet size
 - Inter-arrival delay
 - Specific exchange that can be assimilated to a state machine
- > The detection requires a number of packets
- > Example
 - Very close inter-arrival delays with low deviation from the average (VoIP)
- Extremely effective analysis when application uses encryption or obfuscation
 - Or simply when access to the payload is not possible
 - Classification in the dark

Security monitoring with DPI: Abstract description

> The concept:

- Detect the occurrence of events on the network
 - Input provided by DPI
 - o Event can be: packet arrival, HTTP POST request, etc.
- Inspect and analyze the succession of events to detect properties
 - Property: Succession of events that are linked with "time" and "logical" constraints
 - ⁻ If we detect event "A", then we MUST detect event "B" before 10 seconds

> The idea:

 Monitor the network looking for the occurrence of properties.

Properties Expressivity

- Considering security monitoring, properties can be used to express:
 - A Security rule describes the expected behavior of the application or protocol under-test.
 - The non-respect of the Security property indicates an abnormal behavior.
 - Set of properties specifying constraints on the message exchange
 - i.e. the access to a specific service must always be preceded by an authentication phase
 - An Attack describes a malicious behavior whether it is an attack model, a vulnerability or a misbehavior.
 - The non respect of the Security property indicates the detection of an abnormal behavior that might indicate the occurrence of an attack.
 - Set of properties referring to a vulnerability or to an attack
 - A big number of requests from the same user in a limited period can be considered as a behavioral attack

MONTIMAGE Monitoring Tool (MMT)

Montimage Monitoring Tool

- ➤ Modular monitoring solution that allows to detect behavior, security, performance incidents based on a set of properties (written in XML)
 - License for academia (for research)
 - Easy to extend Provide documentation + support
 - Brochure

How MMT sees monitoring?

- Events based Monitoring
 - Online or offline
 - Non-obtrusive
- Different objectives
 - Understand
 - o Behaviour
 - Security
 - o Performance
- Help in decision making
 - Resources planning
 - o Counter-measures

- When to monitor
 - During the testing phase
 - During application/system operation
- How to monitor
 - o Local
 - o Distributed
 - o Centralized
 - Hierarchical
 - P2P

MMT DPI

Interface de reporting

Raw data

Network

System

Application

Interface de capture

MMT

Third party probe

Sonde MMT

MMT-DPI

MMT-Security

MMT-Behaviour

MMT-QoS/QoE

MMT-Reassembly

MMT-Cloud

MMT-Firewall

MMT-LB

MMT Operator

MMT-Admin

MMT-Visualisation

MMT-Correlation

MMT-aaS

MMT-BAM Java connector

MMT DPI

Raw data

Network

System

Application

MMT

Third party

probe

Sonde MMT **MMT-DPI** MMT-Security Interface de capture **MMT-Behaviour** MMT-QoS/QoE MMT-Reassembly **MMT-Cloud** MMT-Firewall MMT-LB

☐ Decoding library for protocols and applications Classification Signature Logical model **Statistics** etc. Extraction of metadata Protocol fields Session information ☐ Plugin based architecture ☐ 630 protocols and applications supported ☐ Easy to extend to new protocols and application

■ Any structured data

☐ Plugin generator

Interface de

MMT-Security

Raw data

Network

System

Application

MMT

Third party

probe

Sonde MMT **MMT-DPI MMT-Security** Interface de capture **MMT-Behaviour** MMT-QoS/QoE **MMT-Reassembly MMT-Cloud** MMT-Firewall MMT-LB

☐ Security analysis engine

- Security rules
- Attacks signatures
- Evasion signatures
- Events Correlation
- ☐ Possibility to add new properties (external files)

Interface de repor

- Very easy if the property only relies on metadata that are already extracted by MMT-DPI
- More or less complex if you need to add specific treatments (embedded functions)

MMT-Properties

MMT-Behavior

Raw data

Network System

Application

MMT

Third party probe

Sonde MMT

MMT-DPI

MMT-Security

MMT-Behaviour

MMT-QoS/QoE

MMT-Reassembly

MMT-Cloud

MMT-Firewall

MMT-LB

☐ Behavior analysis based on historical data

- Users' profile Changes (13 profiles)
- Protocol/application usage changes (global or per IP)
- Analysis relies on external rules
 - Define reference period
 - Include or not weekends
 - Etc.

Interface de reporti

MMT-QoS/QoE

Raw data

Network

System

Application

MMT

Third party

probe

Sonde MMT MMT-DPI MMT-Security Interface de capture **MMT-Behaviour** MMT-QoS/QoE Interface **MMT-Reassembly MMT-Cloud** MMT-Firewall MMT-LB

☐ Analysis of technical KPIs

- Example: packet loss rate, Jitter, retransmission rate etc.
- MPEG-DASH: Video Bitrate
- Estimation of network impact on final video quality
 - RTP based video
 - Streaming (OTT services)
 - mpeg-dash, flv etc.
- ☐ Estimation of QoE
 - Multi-criteria decision system based on fuzz logic
 - Other techniques based on machine learning techniques

MMT-Cloud

Raw data

Network

System

Application

MMT

Third party

probe

Sonde MMT **MMT-DPI MMT-Security** nterface de reporting Interface de capture **MMT-Behaviour** MMT-QoS/QoE **MMT-Reassembly MMT-Cloud** MMT-Firewall MMT-LB

MMT Operator

MMT-Admin

- ☐ Ongoing work
- ☐ Analysis of hypervisor logs
 - Openstack
 - Status of VMs/Containers
 - Detection of security flaws

MMT-Correlation & Visualisation

Raw data

Network

System Application Interface de capture

MMT

Third party probe

 □ Near real time visualisation (1s) and historical reports related to different MMT probes results

☐ Possibility of adding new reports

☐ JS, HTML5, CSS

IVIIVI I - Reassembly

Interface de

☐ Correlation of events from different probes

☐ Based on EFSM

☐ Javascript

MMT Operator

MMT-Admin

MMT-Visualisation

MMT-Correlation

MMT-aaS

MMT-BAM Java connector

Conclusion

- MMT has been used in many European projects (H2020, ITEA, CELTIC)
- MMT has been used in many national projects
- MMT is used by industrials (Thales, Orange, Ericsson, Softeam, ...)
- Universities (Telecom Paris Sud, University Paris Sud, Troyes University, ...)

THANK YOU!!

Address

39 rue Bobillot, 75013, Paris, France

Phone

Phone: +33 (0) 1 77 19 68 99

Email

contact@montimage.com

This work presented here has been financed by the H2020 CLARUS project

http://www.clarussecure.eu/

