Prototyping SDL Extensions

Andreas Blunk and Joachim Fischer

Department of Computer Science,
Humboldt University Berlin, Germany

o Approach Overview
e Contribution

o Approach Details

o Application to SDL

e Summary

}

Overview

Import Extension Definition

Base Language

module stdx_foreach_test {

void fi(list 1) {

Iterator it = l.iterator();

while (it.hasNext()) {

}

Object item = it.next();
print item as string;

A

e An approach for extending a base language by
more specific concepts

= Textual editor (modeling)

e Supports iterative development
o Automatically provides tools at each stage
4= foreach-test.dyg &3 4= foreach.dbx .
introduce concept
(more concise,
comprehensible)

~
~
N

~
~

%

1

1

1

~ 1
1

1

discover

modeling pattern

Use Extension

- Runtime efficient next-event simulator
(model analysis)

o Allows to evaluate design and suitability of a
new concept

o can be directly used in models

o evaluate the performance of a system modeled

e Simple example: pattern for iterating over list
data structure

 Prototyping useable for small concepts (for-

each), aim for Domain-specific Languages
(DSLs)

Contribution

e We understand SDL as a DSL

- Specific concepts for modeling structural and functional aspects of
communication systems

- General concepts regarding the domain itself

- If domain gets more specific, e.g. real-time systems, more specific
concepts may be needed

- Examples of proposed SDL extensions: SDL-RT Semaphores,
Process Priorities, Real-Time Tasks (without integrated tool support)

e Goal

- Apply the approach to SDL as an archetype

- Get confidence for possible successful applications to other DSLs

Approach

o Approach is targeted towards

- DSLs which are used for model analysis by next-event simulation
(simulation languages for certain domains)

e Discrete-Event Base Language (DBL)
- OO language + process-oriented event specification primitives (ESP)

o ESP: active/passive objects, consumption of model time,
blocking wait & reactivate as part of an active object life cycle

Execution: DBL —(map-to)—> DBL Core (C++ & Simulation library)

DBL Core: novel context switch approach in C++ with low execution time
[SpringSim14], close to Assembler

Runtime efficiency: important requirement for simulation studies

o Implementation: DMX - Discrete-Event Modeling Framework
with Extensibility

Approach

S OGS N O QWG

o« Implemented Parts |] e] s

& 84 primtin-test.dbx i1 =0 gs printindbx & = -
3 module stdx_printin_test { #import “../dbl’
- Textual syntax [SAM Innsbruck]: ot metes Saport °. /st

. . rint "hello\n";
BN F'llke ObJeCt grammar } ' module stdx_println {

} extension Println extends dbl SimpleStotement {
start Println;
Println -> “printin" PrintlnOutputs *;"

Execution Semantics [Forum Montréal]: PrintlrOutputs -» outputs-11stCEwpression) P

PrintLrOutputsOptional -> ;

Mapping to DBL generates code as text = @ il | e e e

No consales 1o display at this time smnnt'\’s {

expond “print U,

- Nested extensions A

foreach (Expression output in outputs) {
if (Mfirst) expond “, ";
else first - false;

- Extension in extension —
}

if (1first) expond ", ";

- Extension in extension definition e

expand “; "

Executable DBL to Java/Sim mapping

e Open Parts

- Technical: executable DBL to C++ DBL Core
mapping

- Conceptual challenges ...

Application to SDL

system T;

semaphore SEM, kind=BINARY, policy=FIFO, initial=FULL;

e Subset SDL_

process ST;
. . . . dcl int 12<0;
- Definitions of system, process, signal, variable, timer,
impl nd transitions (signal, timer, non start;
simple states and tra sjco s (signal, timer, none), boke SEM with NOWAIT:
tasks output, set/reset timer take SEM with NO_WAIT,
on 0K {
- DBL concepts reused: variable, statement (task), oo o, eC ke SO
expression (values, timers) H
on ERROR {
- task { trace("take SEM ERROR™); }
Minor issues (details in paper) give SEM;
}

e (SDL-RT) Semaphores

take SEM with timeout=19;
take SEM FOREVER;

- Semaphore Definition + Take & Give Actions give SEM;
stop;
- Issue: Concepts cannot be defined modular endprocess ST;
endsystem;

« SDL_ + Semaphores defined in one big extension
o Actually, Semaphores are an extension of certain concepts of the SDL_ extension
o Take/Give extend SDL Task
o Semaphore Definition extends Entity Definition
« Requires expression means for further extensibility of extensions

 Syntax is simple, but semantics are difficult

Application to SDL-RT Semaphores

« Benefits of the extension-based definition
o Modeling assistance for added concepts
« Semantics can be defined by using event specification primitives
e Runtime efficient next-event simulations

o Issue regarding another important application of SDL

o Code generation to platform-specific concepts,
e.g. real time operating systems

e SDL/Semaphores —(map-to)—> DBL —(map-to)—> C++/Sim

o Parallel processes
— (executed)—:> Sequentially as pseudo-parallel processes

e DBL —(map-to)—> C++/Threads may be feasible

8

e Approach for prototyping new language
concepts

o Extension-basis allows to reuse general concepts

e Application to SDL subset and SDL-RT
Semaphores

o Supports the initial design phase by providing
low cost tools

e Concepts can be directly used in models

o Evaluate the performance of a system modeled

9

