Overview and Motivation

ASM Semantics of SDL: Concepts, Methods, Tools

Uwe Glasser
HNI Paderborn, Germany

glaesser@uni-paderborn.de

Abstract State Machines

Basic ASM Concepts
Multi—Agent Real-Time ASM

Abstract SDL. Machine

Overall Organization

Encoding of SDL Objects

Operations on Signals and Timers

ASM Tool Support

Conclusions

1-1

Formal Semantics of SDL

ITU-T Recommendation Z.100

(=~ 200 pp. without Annexes)

Formal model of SDL (Meta-1V, CSP):

- Annex F.2: Static properties of SDL (437 pp.)

- Annex F.3: Dynamic properties of SDL (183 pp.)

Other Approaches

- @SDL: process algebra semantics [Bergstra and Middleburg 96]

- Base SDL: Object-Z

[Lau and Prinz 95]

- SDL Time Nets: extended Petri Nets [Fischer and Dimitrov 95]

- FOCUS: stream processing functions [Broy 91], [Holz and Stglen 94]

Overview and Motivation

1-2

Formal Semantics of SDL

Disclaimer

Z.100, Annex F.1, p. 1:

“This annex constitutes a formal definition of SDL. If any properties
of an SDL concept defined in this document, contradicts the
properties defined in Z.100 and the concept is consistently defined in
Z.100, then the definition in Z.100 takes precedence and this formal

definition requires correction.”

Overview and Motivation

1-3

ASM Semantics of SDL

Our Approach: separate specification from wverification

e operational semantics

> embed a formal documentation into Z.100
> reflect the common understanding of SDL

> support alternative levels of abstraction

e approved meta-modelling concept

previous work:

ASM semantic of VHDL [Borger,Glasser,Miiller 95]

Overview and Motivation

1-4

Abstract State Machines

BASIC ASM CONCEPTS

States
Structures with domains and functions

Update
f(tl,...,tn)iz to, mn=>0 —

Update Sets

Ag(P) program P

Computations

Abstract State Machines

(£7(8, -

A\ -

L)

>4

"
location

“pure runs”

General Abstraction Principles

Clear & Concise Specifications: “ground models”

e abstract operational views

> hierachical descriptions
> incremental refinements

> behaviour separated from context

¢ information hiding & interface mechanisms

classification of ASM functions:
— static

— dynamic (controlled, monitored, shared ... global, private)

Abstract State Machines

3-1

General Abstraction Principles

Classification of ASM Functions

ASM Functions

dynamic static

shared derived

controlled monitored

interaction pseudo—-interaction

mixed indirectly indirectly indirectly
controlled monitored shared

Abstract State Machines

3-2

Multi-Agent Real-Time ASM

CONCURRENCY AND NONDETERMINISM

ASM Agents ASM Program

Self

Q . View b (S)

Global State S Modules

“partially ordered runs”

Multi-Agent Real-Time ASM

4-1

Multi-Agent Real-Time ASM

Global System Time

external (monitored) function:

now: TIME, TIME C R

Agents perform instantaneous actions in continuous time:

An agent which is enabled at time t to fire a rule R actually fires R not

later than t + € (for some infinitely small ¢).

Multi-Agent Real-Time ASM

4-2

Abstract SDL Machine

Interpretation Model (Basic SDL)

Abstract Interpreter

Process Timer Channel
Module Module Module

“Partial Many-Sorted Structures” over ¥ spr

Multi-Agent Real-Time ASM

Abstract SDL Machine

SDL

5-1

Encoding of SDL Objects

Static Reachability Constraints

Reachability Sets

Choice of receiver and path:

choose_reachability : PROCESS x SIGNAL x to-Arg x via-Arg
— PATH x RECEIVER

Abstract SDL Machine

5-2

Encoding of SDL Objects

Bidirectional Delaying Channel

channel(chp;)

Channel Agent

chp, queue(chp;)
. o0 o B
— O
queue(chp,) chp,

Abstract SDL Machine

chp ; € CH_PATH

//9@ o Mod(x)
// X e CHANNEN

\l/
v

Channel_Module

channel(chp,)

(channel operations)

5-3

Operations on Signals

Behaviour of Channels

DELIVERSIGNALS
= do forall chp: CH_PATH(chp) and channel(chp) = Self
if ReadyToDeliver(chp) then
queue(chp) := tail(queue(chp))
let st = head(queue(chp)), v = receivername(si) in
if r = env then
DELIVERTOENV(s?)
else
DELIVERTOPROCESS(si, 1)
where
ReadyToDeliver(chp)
= dsi: SIGINST(st) A si = head(queue(chp)) A\ = InTransit(st, chp)

Abstract SDL Machine 5-4

Operations on Signals

Behaviour of Channels (continued)

DELIVERTOPROCESS(SInst, PName)
= let PId = receiverid(SInst) in
if Pld = undef then
choose p: PID(p) and procname(p) = receivername(SInst)
buffer(p) := buffer(p)™ (SInst)
else
if PIDg,s(PId) then
buffer(P1d) := buffer(PId)™ (SInst)

Abstract SDL Machine

5-5

Operations on Timers

Expiration Time

expire : TIMERINST — TIME

Behaviour of Timers

Active(t) =

ActiveTime(t) V ActiveSignal(t)
ActiveTime(t) =

TIMERINST(t) N\ expire(t) # undef
ActiveSignal(t) =

TIMERINST(t) N3 s € SIGINST : t = timer(s) A s in buffer(owner(t))

Abstract SDL Machine

5-6

Operations on Timers

Abstract SDL Machine

5-7

Operations on Timers

TIMEROPERATION
= if MyAction(Self) then
if Action = set then
let time = fst(Arg) in
SETEXPIRATIONTIME(time)
DI1SCARDTIMERSIGNAL
else
if Active(Self) then
expire(Self) := undef

DISCARDTIMERSIGNAL

else
if Active Time(Self) A now > expire(Self) then
expire(Self) := undef

CREATETIMERSIGNAL

Abstract SDL Machine

5-7

Operations On Timers

Behaviour of Timers (continued)

SETEXPIRATIONTIME(T%me)
= if Twme = undef then
expire(Self) := now + duration(timername(Self))
elif Tvme < now then
expire(Self) := undef
CREATETIMERSIGNAL

else

expire(Self) := Time

Abstract SDL Machine

5-8

Conclusions

Observations

o SDL view and ASM view of distributed “real-time” systems coincude:

> notions of concurrency, reactivity and time are tightly related;

> common understanding of SDL can directly be formalized.

o ASM semantics of Basic SDL

> 1s particularly concise, readable and understandable;
> can easily be extended and modzfied,;

> bridging semantics for combining SDL with other languages.

Further References

http://www.uni-paderborn.de/cs/asm/

Conclusions

6-1

