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Abstract
For Timed Message Sequence Charts we define a novel semantics in terms of Constraint Diagrams [3], a graphic
notation for real-time properties stated in the Duration Calculus [10]. For the subset of untimed Basic Message
Sequence Charts we prove consistency of the new semantics with the standard process algebra semantics due
to Mauw and Reniers [6]. Based on this semantic study we comment on concepts and formalization of Timed
Message Sequence Charts.
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1 INTRODUCTION

Graphical notations are important for the communication between application experts and computer science ex-
perts. That’s why Petri nets, state charts or SDL diagrams are so popular in engineering applications. These well
understood notations all serve to display state transition models of reactive systems.

Less well understood is how more abstract bahavioural requirements can be described graphically. For the
application area of telecommunication Message Sequence Charts (MSCs) developed in the context of SDL have
become a standard. While MSCs originally displayed only typical individual communication traces of reactive
systems, various extensions of this basic idea are currently under development. The extensions deal with features
like inline expressions, co-regions, and real-time. There is a danger that with all these extensions the intuitive
appeal and clarity of the original MSCs gets lost. This can be seen for example in the increasingly sophisticated
process algebra semantics of MSCs and its extensions.

Therefore it is interesting to look also into other approaches of graphic formalization of behavioural require-
ments. One such approach is based on the concept of timing diagram informally used in hardware design. Starting
from this concept Schlér and Damm have developed the notion of a symbolic timing diagram to express tempo-
ral logic properties of reactive systems [9]. These diagrams have been applied in several industrial projects as
requirement specifications for StateMate designs.

Also derived from timing diagrams and motivated by the work of [9] are Constraint Diagrams (CDs) [3]. They
have been designed to specify real-time requirements of systems by relating the time dependencies of different
time dependent observables. Their formal semantics is based on the Duration Calculus [10, 5], a real-time logic
and calculus based on interval temporal logic [8]. Thus CDs can be seen as a graphic notation for a subset of
Duration Calculus.

In this paper we present a new semantics for Timed MSCs using CDs (Section 4). The definition is not trivial
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because the views of MSCs and CDs on systems are different: whereas MSCs have a communication-oriented
view CDs have a state-oriented view. Our semantics will bridge this gap by exploiting the duality between com-
munications (events) and states and by introducing a suitable time dependent observable recording the commu-
nication traces. We demonstrate that for Basic MSCs our CD semantics looks very much alike the original MSC
but for MSCs with more advanced features more complex auxiliary CDs are needed.

Our semantics is of course just a definition. How does it relate to the already existing process algebra semantics
for Basic MSCs [6] ? In Section 5 we show a consistency result of the new semantics w.r.t. the original semantics.

We believe that this semantic study sheds new light on MSCs and comment in the conclusions on current
proposals for extending MSCs.

2  TIMED MESSAGE SEQUENCE CHARTS

Message Sequence Charts (MSCs) describe the asynchronous communication between components of concurrent
systems and with an environment. Therefore it uses a set of so-called instances representing the single compo-
nents. Graphically, an instance is a vertical line where events occurring during the execution are ordered. An
MSC thus provides an event-oriented view on the behaviour of a system. Time evolves from top to bottom. The
system’s environment is reflected though a bordering line around the chart.

Instances communicate with each other and with the environment via asynchronous transmission of messages.
The entities involved thus need not be ready for communication at the same time. Sending and receiving of mes-
sages is temporally distant. Communications are represented by arrows between the instances (resp. an instance
and the bordering line for the environment). The MSC M/ in Figure 1(a) includes two examples for commu-
nications. First, instance /] sends a request to instance /2. Afterwards, I2 transmits an acknowledge to //. The
intervals beside parts of instances and arrows describe temporal requirements for the execution. Allowing the for-
mulation of such requirements yields an extension of the MSC language, as explained in the following. Elements
of the extended language are called Timed MSCs.
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Figure 1 Two MSCs

Similar to the approach of R. Alur, G.J. Holzmann and D. Peled [2], we consider time requirements. On the



one hand, they can appear after an the occurrence of an event restricting the time passing until the next event.
On the other hand, they restrict the temporal distance between send and receipt of a message. Time conditions
are given by intervals where the lower bound represents the minimal time and the upper bound the maximal
time allowed between two events. In the graphical representation they are written next to the corresponding
section of an instance or an arrow. This can be seen in the sample MSC M. There two time conditions for the
duration of transmitting a request or acknowledge and one time condition restricting the time between sending
the request and receiving the acknowledge on instance /] appear. The conditions associated to the arrows thus
mean that transmitting the message may take between one and two time units. The interval [0, 5) requires that the
acknowledge hat to arrive at most five time units after the request was sent.

More complex specification can be built from these basic elements using inline expressions. They provide sev-
eral operators for combining single MSCs. Among these in this article just alternative composition is considered.
An example of its usage is found in Figure 1(b). After sending the question ¢ from /] as answer yes or no can ar-
rive. The MSC M2 illustrates the versatility of time conditions. The requirement given through the interval (0, 5]
restricts the occurrence time of the next event independently from the decision which operand in the alternative
is chosen.

The MSC language standardized in 1996 includes some more concepts, such as state conditions, internal ac-
tions, co-regions and high-level MSCs. They are not considered here as they play no role for discussing the
temporal aspects.

3 CONSTRAINT DIAGRAMS

Requirements concerning the behaviour of reactive systems often consist of an assumption and a commitment
part. This assumption/commitment style is embodied in CDs. The idea of this graphical language is illustrated
with the safeness requirement for a register accessed by a writer and a reader in Figure 2: whenever a read (1)
occurred non-overlapping with a write (w) with written value wv = k, this last written value is returned (read
value rv = k). The concept of ‘non-overlapping’ is expressed here by the arrow between the two lines stating
that the read phase (1) occurs after the write phase (w).

rv=k

Figure 2 Safeness requirement

As in MSCs, different lines characterise the behaviour of components of a system considered. The state-based
view in CDs is reflected in annotations of phases on these lines with Boolean expressions. E.g. the first line in the
safeness requirement stands for a behaviour where the writer at the beginning behaves arbitrarily (indicated by
the dashed part of the line), then writes the value k and afterwards leaves the write phase. The diagram leaves it
open how a state change e.g. from write to non-write mode is achieved. This makes CDs a fairly abstract way of
specifying requirements.

The phases on lines are furthermore determined by time requirements indicated by intervals; if no particular



length is supposed, i.e. a length in (0,00) is considered, no annotation is made. Time dependencies between
components are introduced by arrows decorated with intervals between the lines.

All commitments are highlighted by boxes. They may also appear in the past of assumptions in a CD which
allows non-operational requirements to be formulated. An example for this phenomenon is given in Figure 3. It
gives a dual requirement to safeness considered above: Whenever the value k is read, it must have been written
before.
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Figure 3 Correct read requirement

To give the reader a taste of the semantics of CDs defined in [3], we informally explain the Duration Calculus
formulas corresponding to the example CD. Lines in CDs are characterized through so-called sequence formulas
like

C=c¢€1;(JwAwv=k] ANl =e2); [w]

for the line describing behaviour of the write component; where F'1; F» (read ‘F} chop F3’) denotes an interval
where first F} and then F» holds, e.g. ¢ = €; means that the length of the subinterval considered is the value
of the real variable ¢; and [w A wv = k] means that the Boolean expression holds throughout the respective
subinterval. Similarly, the semantics of the line for the reader is

=6y ([-rI A=) [r]; [ .
Constraints described with arrows are semantically captured with inequations like
01+ 02 > €1+ e

for the arrow between the lines for write- and read component.
The overall semantics of the CD is an implication between formulas describing assumptions and formulas for
commitments. Thus, the example CD has the semantics

(L=c1;(JwAwv=k] Al =e2); [-w]
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The relation between CDs and MSCs is discussed in the conclusions.



4 THE NEW SEMANTICS

The aim of this section is to give a semantics for Timed MSCs that captures all the temporal aspects of the
extended language. As a formal foundation, real-time interval logic is a natural choice. But instead of directly
assigning a formula to each MSC, it is interpreted by a set of CDs which collectively describe the intended
behaviour of the chart. This way, we take advantage of the clarity of graphical formalisms as opposed to the
complexity of temporal formulas and it allows a comparison of the expressiveness of MSCs and CDs. Since the
CD-semantics of an MSC M shows how to express M by several CDs, it is also often called the (CD-)translation
of M.

For lack of space, we can’t present the entire semantics definition (as featured in [4]). Instead, we confine
ourselves to explaining the basic ideas behind this definition by discussing the semantics of the two sample MSCs
in Fig. 1. Since the translation of MSCs without coregions and inline expressions has a quite simple structure, we
start with M 1. So, how could M 1 be expressed by CDs?

First of all, it is obvious that MSCs and CDs are based on very different approaches to specifying a system.
MSCs concentrate on the communication structure of a system. To this end, they specify the outputs and inputs
of all the components. Thus, an MSC renders an event-oriented view of a system. CDs follow a different way to
describe the intended behaviour. They focus on the states the components assume during execution. Therefore,
we introduce a state variable ¢r, called the trace variable, which holds at any given point in time the sequence
of events that have happened up to this moment. It acts as a link between events and states. Since CDs focus on
states, it is necessary to record the state of every instance during execution. It is not possible to determine the
value of ¢r directly (i.e. without any state information). Hence, for every instance I in the MSC we need a local
state variable X ; (the term “’local” indicates that X ; doesn’t contribute to the observable behaviour).
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Figure4 Main(M1)

The evolution of the local variables is determined by the CD Main(M1) (Figure 4), which contains no as-
sumptions. (MSCs are thus interpreted as specification for one execution. They could also be viewed as constraints
that must be fulfilled whenever the initial state is reached during execution. This view is taken for handling in-
line expressions and is explained below.) The execution of each instance begins in the initial state start(A1)
and terminates in the final state end(A/1). Events in M 1 correspond to state transitions in M ain(M1). Though
the actual value of the X ;’s has no influence on tr, for clarity, we chose an intuitive name for each state (apart
from control states such as start(M1) and end(M 1)) that indicates which event has happened last. Time con-
ditions and other dependencies resulting from communication between instances are modelled by arrows in a
straightforward manner.

Several CDs are required to correctly describe the behaviour of #r, called the trace-CDs. Due to space limita-



tions, we describe them only briefly without display. For every instance I, the CD TraceChange  ensures that
every state transition at X ; leads to an appropriate modification of ¢r. The trace variable has to be expanded by
the corresponding event. Accordingly, the CD StateChange 1 guarantees that every modification of ¢r is caused
by an appropriate state transition. By these CDs a one-to-one relationship between events and state transitions is
achieved. For technical reasons, two more CDs are necessary. The diagrams T'raceType(M1) and Trace M on
make sure that ¢ evolves correctly. They demand that ¢ contains only events out of M 1 and that ¢r is monotonic.
These trace-CDs correspond to a set of trace properties needed in the Consistency Theorem in Section 5.

This completes the semantics of M 1. Obviously, the graphical structure of M1 and Main(M1) are quite
similar. This is not always the case. As mentioned above, MSCs that feature coregions or inline expressions
complicate the translation. To illustrate the resulting problems, we examine the semantics of MSC M2 from
Figure 1 which features an inline expression. The trace-CDs don’t differ from the ones for A/1. For the CD
M ain(M?2), however, this is not the case.
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Figure 5 (a) Main(M?2), (b) time-CD

The occurrence of an inline expression increases the complexity of the semantics definition. Obviously, the
execution of the alternative composition can’t be described by one single CD since there is more than one possible
behaviour. Because the operands of inline expressions are again MSCs, the semantics of arbitrary MSCs has to be
defined inductively. As for M1, the behaviour outside of inline expressions is described by the CD M ain (M 2)
which can be seen in Figure 5(a). There is one striking difference between M ain(M1) and M ain(M2). While
Main(M1) contains no assumption and therefore describes an unconditional execution, the CD M ain(M2)
only applies if all instances are in the initial state start(M2). Additionally, M ain(7 2) doesn’t require the final
state to be stable forever like in M ain (M 1). These differences are caused by the inductive definition. Since every
MSC is potentially an operand of an inline expression, the translation has to take into account that the chart is
possibly only a small part of a much bigger specification. There is another detail that attracts the attention: the
state transitions at the beginning and the end of the execution of the inline expression are connected by vertical
lines which indicate synchronization of the involved components. This means that the alternative composition
is connected with the rest of the chart via strong sequential composition. We discuss this topic in detail in the
conclusion (Section 6).
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Figure 6 (a) Main(op;), (b) Main(ops)

This leaves the operands of the alternative composition in M2 to be modelled correctly. As indicated, at this
point of the semantics definition the induction starts. Each operand is treated like a single MSC, i.e. for operand
i a CD Main(op;) is defined like before for M1 and M 2. Thus, the translation of M 2 has to be augmented by
two more CDs M ain(op;) and M ain(ops) (which can be seen in Figure 6). There are no additional trace-CDs
needed for the operands since they contain the same instances as M2. The CDs Main(M1) and M ain(M2)
describe the complete execution of the operands but they don’t say when it has to take place, i.e. at what point it
starts and when it ends. To connect the operands with the rest of the system, two more CDs are needed for every
operand j which describe the state transition from the preceding state to start(op ;) and from end(op;) to the
state following the inline expression. Like the trace-CDs, these diagrams were omitted here.

The time condition in M2 is immediately followed by an inline expression. This means that it doesn’t refer
to a unique pair of events. Instead it limits the amount of time between the sending of ¢ and the reception of
the answer which can be yes or no. To model the time condition correctly, another CD is called for. When the
preceding event (the output of ¢) has happened, the next one has to occur within the specified time interval. This is
achieved by the CD in Figure 5(b). The set EventStates contains all local states that correspond to MSC events.
The occurrence of the next event is modelled by the state transition between the phases X ; ¢ EventStates and
X1 € EventStates.

Eventually, the initial state and the final stability of the system which were left out of M ain(M2) due to the
inductive definition have to be specified by additional CDs. The CD start(M2) states that the execution of M 2
begins in start(M2). For every instance I, the CD EndStable ;(M2) guarantees that the system is stable once
it reached the final state end(M2).

The semantics definition of A/2 is now complete. It illustrates the general approach to translating an MSC into
CDs. The semantics of A1 demonstrates just an interesting special case. An MSC M without inline expressions
and coregions has a very simple semantics consisting only of the trace CDs and one more CD which combines
main(M) and the CDs start(M) and EndStabler(M).



5 CONSISTENCY RESULT

Definining a new semantics for a language always leads to the question whether the chosen approach is appro-
priate. To justify our definition, we proved its consistency with the standard process algebra semantics by Mauw
and Reniers [6] which assigns a suitable process term to every MSC. Generally speaking, it states that the set of
values for tr that are allowed by the CD semantics is equal to the set of prefixes of traces described by the process
term (under certain general properties for traces, such as ‘the trace only grows’).

Theorem 1 (Consistency) For an MSC M, let [M] denote its CD semantics and let pref (M) be the set of all
prefixes of traces described by the process term semantics. Then the following equivalence holds:

[M] < ([tr € pref(M)] A TraceProperties) .

Proof. See [4]. O

Recall that ¢r is a free observable in the new semantics [M]. Thus the Consistency Theorem states that every
trace tr which satisfies the CD semantics [M] is a member of pref (M ). Due to the nature of the semantics of
CDs, which just guarantees that an initial part of the specified behaviour takes place, this is the strongest possible
result. On the other hand, the theorem also states that for every trace in pref (M) there exists an interpretation for
tr satisfying the TraceProperties which fulfills the CD semantics [A].

6 CONCLUSIONS

In this extended abstract we sketched a real-time semantics for MSCs that formalizes constructs like messages
with time conditions. For Basic MSCs [6] our CD semantics looks very much alike the original MSC but for
MSCs with more advanced features more complex auxiliary CDs are needed.

One crucial point of the presented semantics is synchronization of the instances at the beginning and the end
of an inline expression. Thus, an inline expression is connected with the rest of the chart via strong sequential
composition. Why didn’t we employ its counterpart, the weak sequential composition, like Mauw and Reniers
did in [7]? Attempts to model the weak sequential composition with CDs proved to be quite complex, presum-
ably due to the state-based nature of CDs. For instance, several problems arise when combining alternative and
weak sequential composition. While the alternative describes a global choice which generally involves several in-
stances, the weak sequential composition allows certain instances to be ahead of others in execution. As a result,
the first instance to reach the alternative composition (during execution) has to inform the others about which
choice he took, so that they can follow him. Fig. 7 shows an example for this problem (the boxes in this MSC
denote internal actions). The process P1 may enter the alternative composition before the message m has arrived
at P2. If, for instance, P2 receives m after P1 has executed the action a, P2 has to execute the action b next.
In this case, P2 must follow the decision previously made by P1. As a consequence, some kind of synchroniza-
tion between P1 and P2 has to take place. However, this synchronization process is by no means displayed in
the graphical notation and thus defeats its intuitive comprehensibility. In addition, the MSC doesn’t reflect the
complete communication structure of the resulting implementation since all of the communications needed for
synchronization are missing.

The MSC in Figure 8 demonstrates another problem caused by the weak sequential composition. Since the
weak sequential composition doesn’t require any synchronization between instances, P1 can send the message
m an arbitrary number of times without it ever reaching its destination. Such a behaviour is obviously unrealistic.
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No matter how the communication between instances is finally implemented, it will only be possible to buffer a
limited amount of messages.
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Figure 8 MSC loop

Ben-Abdallah and Leue encountered similar problems while designing a tool for system development from
MSC:s [1]. They solved them by considering only MSCs with certain properties (for example, demanding that
instances only communicate through handshaking to avoid process divergence). However, we feel that the main
problem is the choice of weak sequential composition as an operator. Hence, we decided to use the strong se-
quential composition for our definition of the MSC semantics.



Finally, we’d like to point out some aspects that distinguish CDs from MSCs. Both formalisms operate on
a different level of abstraction and are based on opposing approaches to specifying a system (event-oriented
versus state-based). CDs leave it open how a state change in one instance is achieved. This makes CDs a fairly
abstract way of specifying requirements independently from a certain communication paradigm. In CDs, arrows
do not indicate communication as in MSCs but time distance between events; the effect of communications is
left implicitly in a CD like in the interrelation between the Boolean expressions wv = k and rv = k in Figure
2. What is explicit in that CD is the temporal distance between sending and receiving a message. Moreover,
commitments may also appear in the past of assumptions in a CD allowing non-operational requirements to be
formulated which is not possible with MSCs. Nevertheless, MSCs can be viewed as a subclass of CDs. It will be
worthwhile to consider extensions of MSCs inspired by concepts used in Constraint Diagrams.

REFERENCES

[1] H. Ben-Abdallah; S. Leue: MESA: Support for szenario-based design of concurrent systems. In B. Steffen, editor,
Tools and Algorithms for the Construction and Analysis of Systems, LNCS 1384, Springer, 1998.

[2] R. Alur; G.J. Holzmann; D. Peled: An Analyzer for Message Sequence Charts. In T. Margaria and B. Steffen, editors,
Proceedings of the 2nd International Workshop on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS95), Passau, Germany, 1996.

[3] C. Dietz: Graphical Formalization of Real-Time Requirements. In B. Jonsson and J. Parrow, editors, Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, LNCS 1135, Springer, Uppsala, Sweden, 1996.

[4] V. Grabowski: Graphische Spezifikationsformalismen: Message Sequence Charts und Constraint Diagrams. Masters
Thesis (in German), FB Informatik, Univ. Oldenburg, Dez. 1997.
http://theoretica.informatik.uni-oldenburg.de/diplom.html

[5] M. R. Hansen; C. Zhou: Duration Calculus: Logical Foundations. Formal Aspects of Computing, 9, 1997, 283-330.

[6] S. Mauw; M.A. Reniers: An Algebraic Semantics of Basic Message Sequence Charts. The Computer Journal 37,
No. 4 (1994).

[7] S. Mauw; M.A. Reniers: High-Level Message Sequence Charts. In A. Cavalli and A. Sarma, editors, SDL’97: Time
for Testing — SDL, MSC and Trends, Proceedings of the eigth SDL Forum, Elsevier Science Publishers B.V., Evry,
France, 1997.

[8] B. Moszkowski: A Temporal Logic for Multi-Level Reasoning about Hardware. IEEE Computer, 18(2), 1985, 10-19.

[9] R. Schlor; W. Damm: Specification and Verification of System Level Hardware Designs using Timing Diagrams.
Proceedings of the European Conference on Design Automation. Paris, France, 1993.

[10] Zhou Chaochen; C.A.R. Hoare; A.P. Ravn: A calculus of durations. Information Processing Letters, 40/5, 1991,
269-276.



