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Compositions of MSC’s

Summary

In this document, we treat how decomposition should be handled. Some of the problems are
described in TD026-E Geneva, 28 April –6 May. The document does not explicitly specify which
changes should be done to the Z.120. The main purpose is to find out if the principles are sound.
The document also brings up some open questions that should be answered for future work. The
document is an upgraded version of B906 “Decomposition” presented in Berlin 98. This document
takes a new approach to decomposition. It views decomposition as the result of composition. This is
approach is taken, not because it is true in all situations, but because it hopefully provides new
insights. New information is either directly taken from the minutes in Berlin [B903 Rev2-E] or are
based on the discussions from that meeting.

Main principles
Decomposition should be specified in such a way that when a correct decomposed diagram is
expanded the resulting diagram is also correct. In the case that we are forced to expand inline
expressions, multiple diagrams will be the result. Diagrams must be constructed in such a way that
regardless of in which order references and decomposition’s are expanded they expand to the same
diagram. This property is called commutative referencing. (In the case that we have inline
expressions, only those cases that will render “connected” MSC will be treated as defined. At least
one correct MSC must be the result when inline expressions are used. This means that when
“expanding” all decomposition’s and references we always obtain the same result regardless of the
order in with the expansion is performed.

Transformations/Relations of decomposed symbols
This section will explain how a symbol or message placed on a decomposed instance is interpreted
in the decomposed diagram and what restriction/rules applies. We will treat the symbols/messages
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in the order that they appear in Z.120. Inline expressions and MSC reference expressions will be
treated in their own sections.

Messages/Environment and gates/General ordering

The main problem with gates is that they are unordered. This leads to the situation described in TD-
026-E, 5.3 “Cyclic connectivity graph caused by MSC references with gates”, Geneva 28 Apr. – 6
May 1997.

g2

g2

m1

m2

m1

m2

MSC Gate_Ordering
MSC Message_Deadlock

Gate Ordering
g1

g1

The above example is also applicable if the MSC reference is “replaced” by a decomposed instance,
since the two concepts are similar.

The solution to this problem is to require that the gates be ordered in the same way in the gate
interface. For PR, the order is specified by the position in the file. For GR, the order is specified by
letting the environment be analogous to an environment instance axis (roll the MSC into a vertical
cylinder where the environment edges touches each other – this is the environment instance).

If we take a compositional view on decomposition, it comes out quite natural that these
relationships must hold. Consider the following MSC that has its decomposition written directly
into the diagram:
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Once the compositional approach has been taken, it is not hard to se that the restrictions on gate
ordering are quite reasonable. Since it should be possible to expand decomposition or a reference
into a real diagram, which is a requirement for commutative referencing, a diagram that is
composed gets implicitly an ordering of the gates on the environment. This ordering should be used
to decide if a decomposed diagram fits with its decomposition. Another reason for requiring an
ordering of the gates is that it should preserve a users mental health when finding out if diagrams
connect. This statement is especially true if you mix decomposition with MSC references.
Furthermore adding the requirement that the gates on the environment is ordered guarantees that the
specified MSC is deadlock free if message arrows never goes upwards (this is stated in the Z.120
drawing rules). Note that this requirement does not diminish the expressiveness of the language.
Instead, decomposition should be viewed as the result of composition, and then the ordering of the
gates comes out naturally in the graphical syntax. This in turn puts semantic restrictions on the
textual syntax of gate interfaces so that the gate names are ordered according to the new diagram.
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Conditions

If a condition is present on a decomposed instance, it should also be present in the referenced
diagram to comply with the principle of commutative referencing. A condition may also cross
several instances of which some are decomposed. In this case, the “expanded” diagram is covered
by the same condition.

Note that these requirements are not in line with what is stated in the standard (section 5.2, last two
sentences).

Example:

a b c as CondY
decomposed

mx1

mx2

C1

mx3

MSC CondX

d e

mx1

C1

my1

mx3

MSC CondY
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a b c d e

mx1

mx2

C1

my1

mx3

MSC CondExpanded

Point of discussion:

• Is this definition too restrictive? Should it be enough that at least one of the instances has a
corresponding condition in the relevant place?

Timers

If a timer is present on a decomposed instance, a timer with the same name (and parameters, if
applicable) should be present on one of the instances in the referenced diagram at a corresponding
location. “Compound” timers must naturally reside on one instance axis. Separate timers may reside
on a different axis (as long as they do not constitute the same “physical” timer. It is not sure if this
latest statement can be analysed, since we might have an MSC that is not a description since time
T=0). (Timers should follow the same rules as messages in general and message to self specifically,
se the semantics in section 5.2).

Actions

An Action on a decomposed instance has no formal correspondence in the referenced diagram. This
is due to the fact that an action is an informal (and high level) description of what the referenced
diagram should do at that point. This is in line with what in the Z.120 standard (section 5.2, last 2
sentences). Note that an action should be mapped to “something”. It should be considered wrong to
map it to “nothing”. The Z.120 has to be updated in this respect.

Instance Creation (of decomposed Instances)

If an instance I is created and this instance is I is decomposed all instances in the referenced
diagram must be created. (We are desperately in need of an example).

Open Questions:

• Does the standard describe how the decomposed instance is created at all? Ekkart Rudolph
describes this problem in TD40-E, Geneva 24 March – 1 April 1998, and presents a possible
solution.
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• How are parameters passed to the referenced diagram in the case that two or more instances are
created from the same instance creation of a decomposed instance?

There seems to be one logical restriction on decomposed instance creations: All instances in the
diagram must be dynamically created, either directly by the (Z.120 non-existent) instance create
message, or as normal instance creations. The problem here is not of a semantical nature, but
instead to specify a mechanism that has as little restrictions as possible,

Instance Stop

If an instance stop occurs on a decomposed instance all instances in the referenced diagram must be
stopped (as stated in Z.120).

Coregion

Coregion and decomposition are not treated in Z.120.

Normally, when sending and receiving messages from a decomposed instance, the actual order is
specified by the referenced diagram, the only precondition is that signal sequence should be
possible when the diagrams are expanded. Since a decomposed instance in some sense has the
flavour of a coregion. Our goal is however to really preserve the coregion property. This leads to a
number of cases.

Rules:

• If there is a coregion in the referenced diagram and two or more messages from this coregion
goes to the environment, these messages should exit the decomposed instance within an
coregion.

• If two messages enter through the same coregion as a decomposed instance, there are two cases:
1. They got to the same instance, in that case they must enter that instance within the same
coregion.
2. They go to different instances: In that case, these instances must be connected with messages
in a way that makes the order from the incoming messages significant. There should be a
coregion in a suitable place so that it overrides this dependency. If on the other hand the
messages go to different instances that are not sequentially dependent on each other, they should
not enter through a coregion. Instead they should enter through an “indefinite” region.

• A combination of the two above if there are both incoming and outgoing messages.

It might also be the case that since we now have par as an inline expression, we perhaps no longer
need coregions. I propose an investigation to find out if coregion in combination with general
ordering is a redundant construct.

Inline Expressions and MSC Reference expressions
The status in the grammar is that Inline expressions can not be attached to decomposed instances.
We naturally want to change this. Please note that the discussion below assumes that the gates are
ordered. It is true that this is a restriction compared with the original Z.120, but this restriction does
not diminish the expressive power of the language, instead it is used to extend it.

If there is an inline expression enclosing a decomposed instance it is required that the constructs
inside the inline expression could be expanded consistently. This means that messages exchanges
with the environment in the referenced diagram in principle must follow the same inline expressions
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structure as the one present on the decomposed instance. Messages (and instance) that are not
subject to these restrictions need of course not be enclosed by inline expressions.

The connectivity principle in its simplest case may be described like this:

i
decomposed

j
decomposed

m1

m2

MSC 98-TD-63E

alt

ii
decomposed

ij
decomposed

m1

m2

MSC i

alt
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ij
decomposed

jk
decomposed

m1

m2

MSC j

Unfortunately, not all inline expressions are alternatives. To be able to determine how inline
expressions can match each other we will specify a gate interface type algebra to specify how inline
expressions can be connected.  This algebra will also specify how the inline expressions are
expanded. The type can also be viewed as a compatibility profile since there are reduction rules for
gate types that specify which gates are compatible with each other.

Algebra

The algebra consists of binary and unary operators. The operators have the same names as the inline
expression operators. The parameters for an operator is listed behind the operator (e.g. unary
operator X; binary operator X, Y, … ). We have the following operators:

• Binary: (alt, par)

• Unary: (exc, loop, opt)

Gate interfaces

We will now define how gate interfaces are expressed. A gate interface is quite similar to a
function/procedure prototype, where data types are listed in some order. The difference with gate
interfaces is that equal types can not be connected. Instead, types that are the complement of each
other fit together. The interface A has a complement interface A’. Suppose we have the gate
interface A which have gate interface (out g1, in g2) then this interface can be connected to A’ (in
g1, out  g2). Please note that when connecting interfaces trough decomposition not only messages
are part of the interface, but other constructs (e.g. timers, coregions, conditions, etc.). These
constructs are however not treated below.

When a gate interface is connected to another it will be written as (A : A’).

When a transformation rule will be defined for a gate interface it will be written as expr => expr.
Please note that the transformation rules below are only applicable to gate interface compatibility.
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When there are several interfaces of the same kind, they are denoted by an index (e.g. A1, A2). The
index 0 (e.g. A0) means the empty set.

Rewrite rules and Possible traces

The rewrite rules reduce the complexity of an expression. If you have two expressions and want to
see if they may connect to the same expressions, apply the reduction rules to them until no more
rules are possible to apply. If they are equal then they may be connected to the same interface.

The possible traces that are listed after each rewrite rule assumes that the expression that describes a
gate interface that is on the left side has been fitted to an gate interface that is the complement of the
expression on the right side of the rewrite rule.

Please note that rules marked transmutation do not reduce the complexity of the expression, instead
it is transformed into another form.

seq

This is not an inline expression (it is an MSC reference expression) but will be treated here anyway.
A specific gate interface will be denoted by capital letters so A might consist of gates in g1 and in
g2 (in that order!) and B might consist of gate in g1 and out g3. This could be expressed with the
seq operator

A = in g1 seq  in g2; B = in g1 seq out g3, A’ = out g1 seq out g2

In our type system, we will however simply write:

A, B, A’

Note: The trivial case where two equal expressions are connected to each other is described first in
all rules. They are added to make the notation simpler to understand, but are not part of the rewrite
rules. The normal connection also uses the notation for possible traces.

alt

alt A1, A2, … , An : alt A’1, A’2, … , A’n (A1 : A’1), (A2, A’1), … , (An : A’1), (A2 : A’1),
(A2 : A’2), … , (A2 : A’n), … , (An : A1), … , (An :
A’n)

Rewrite Rule All possible traces

alt A1, A2 => A (A1 : A’), (A2, A’)

alt A1, A2, … , An => alt A1, A2, ..,An-1 (A1 : A’1), (A2, A’1), … , (An : A’1 ), …  ,
(An : A’n-1)

alt A1, A2, … , An , B => alt A1, … An-1 , B (A1 : A’1), (A2, A’1), … , (An : A’1 ), …  ,
(An : A’n-1), (A1 : B’), … , (An : B’)

exc

(A exc B) C : (A’ exc B’) C’ (A B : A’ B’), (A C : A’ C’)

Rewrite Rule Possible traces

(A exc B), C, D, …  => (A alt B), C, D, … (A B : A’ B’), (A, C, D, …  : A’ C’ D’, … )

A exc B => A opt B (A : A’), (A B : A’ B’)
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Since the exc operator always covers all instances in an MSC, these mappings are only applicable
when the mapping is performed on an decomposed instance and only when raising the abstraction
level. It could also be the case that new rules for continuations will change how the exc operator
works, and that it will only be possible to map exc to exc. Currently, the scope for and exc is an
MSC. With continuations, this may change and then the rules above become invalid. It is perhaps
wise to have this restriction until continuations have been settled.

loop

loop <0, n> A : loop <0, n> A’ (A0, …  An: A’0, …  A’n)

Rewrite Rule Possible traces

loop <1, 1> A => A (A : A’)

loop <1, n> A => loop <1, n-1> A
where  1 < n <= inf

(A1, …  An-1 : A’1, …  A’n-1)

loop <n, inf> A => loop <n+1, inf> A
where  0 < n < inf

(An+1, …  Ainf : A’n+1, …  A’inf)

loop <0, 1> A => A (A : A’)

loop <0, 1> A => opt A ( : ), (A : A’)

loop <n, m> A => (An, …  Am)
where -1 < n =< m < inf

(A0, …  An: A’0, …  A’n)
Transmutation

loop <0, n> A => opt (A1,… ,An)
where 0 < n < inf

( : ), (A1, … , An : A’1, … , A’n)
Transmutation

opt

opt A : opt A’ ( : ), (A : A’)

Rewrite rule Possible traces

opt A => A (A : A’)

par

Since a par expression gate interface is similar to a coregion we get the following rules:

par A, B, … , X, Y : par A’, B’, … , X’, Y’ All permutations…

Rewrite rule Possible traces

par A, B, … , X, Y => (par A, B, … ., X) seq Y (see example below)

par A, B => A’, B’ (A, B : A’, B’), (B, A : A’, B’)

Note that since no notation for parallel traces have been given only a simple example is given for
possible traces, since the par operator quickly expands into many different traces.
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Example of applying the rules

Suppose we have the following MSC Reference expressions A1 alt B1 alt C1 opt D1 and A1 alt
B1 loop D1. The MSC’s have the following Interfaces:

MSC Gate Interface MSC Gate Interface

A1, B1 X A2 X’

C1 Y B2 Y’

D1 Z C2 Z’

We transform the first interface to gate expressions and get:

(alt X, X, Y) opt Z

(alt X, Y) opt Z

(alt X, Y) Z

Now this expression can not be reduced any more, so we make the same procedure for the other
expression:

(alt X’ Y’) loop <0, inf> Z’

(alt X’ Y’) loop <1, 1> Z’

(alt X’ Y’) Z’

Now no more reductions can be performed. If we compare both expressions we see that their gate
interfaces match.

Nested inline expressions

It is not as complex as it seems, since it is the outermost inline expression that specifies the gate
interface wee don not need to treat nesting of inline expressions.

Inline expressions and decomposition

Inline expressions interface through decomposition in the same way as inline expressions interface
with each other.

Example:

In the decomposed diagram you have the gate interface alt A, A, A, A. The decomposed instance
might then expose either gate interface A’ or gate interface alt A’, A’ etc. One restriction could
however be considered: Reduction rules may only be applied when raising the abstraction level.
(e.g. you have an loop construct in the referenced diagram in an decomposition but on the
decomposed instance you have three messages). It might also be the case that these restrictions only
should be true for some reduction rules.

MSC References

The status in the grammar is that Inline expressions can not be attached to decomposed instances.
We naturally want to change this.

To resolve the problem the principle of commutative referencing has been established se the
example in “Main principles” above. Most probably, these principles must be formalised.
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Note that this principle only describes the case when we have “MSC references” not when we have
“MSC reference expressions”. In the later case, we have an analogous situation as with inline
expressions.

Appendix A has an example on how decomposition and MSC’s interact when decomposition and
references are combined.

Gates and MSC references

Z.120 says:

Gates, which are not connected on an MSC reference, are implicitly defined to propagate to the next
enclosing frame (either MSC frame or inline expressions frame). A propagated gate will have the
same gate name as the gate it propagated from. This is a practical shorthand which saves a
connection line which otherwise would clutter the diagram.

I would like to point out that this approach does not distinguish information hiding from
information “obscurement”. Unfortunately, drawing messages in HMCS becomes unpractical if the
user is forced to draw messages to the frame form the MSC references. In addition, MSC’s can refer
to HMSC’s, which have no “observable” gate interface. I propose an investigation that should find
out if references can and should expose their gate interface inside MSC’s.

MSC Reference expressions

MSC reference expressions has additional complexity compared to MSC references since they are a
combination of MSC references and inline expressions. Each referenced diagram has a gate
interface type. These gate interface types are then synthesised into the new type by the operators in
the MSC reference expression and the rules above.

Gates and MSC reference expressions

MSC reference expressions ads additional complexity to MSC references which may make it even
harder for the user to know what gate interface he is dealing with.

Action Points and/or Questions
In this section, I summarise which issues I would appreciate that the meeting should take a position
to.

1. Are the expansion rules for inline expressions reasonable. Note that these rules are also applied
for the definition of inline expressions on decomposed instances.

2. Find out if MSC references in MSC’s always should expose their gate interface.

3. How should instance creation parameters be passed to the instances created in an
decomposition.

4. Is coregion with general ordering an redundant construct.

5. Should a condition on a decomposed instance corresponds to a global condition in the referred
diagram, or is it enough that at least one instance in the referred diagram has a corresponding
condition.
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Appendix A: MSC references and Decomposition.
The first diagram gives a road map of what happens when decomposition and references are added
to an MSC Diagram. The following diagrams are the MSC’s refernced in the road map. Note that in
a normal case, the diagram OpenDoor would not changed name. To be able to follow what happens
the we have changed the names in this example. To track which diagram is the “original”, please
follow the arrows that have “Primary transform” attached to its arrows. Note also that the final
names of the diagrams in a real world case would differ depending on the order in which the
operations where performed, due to different abstractions.
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Reference and Decomposition Map

Original

Decompose Reference

Reference Decompose

Verify_User_ControlVerify_User_Control

Control_wRef
Control_Verify

OpenDoor_wRef_wDec

OpenDoor

Control_wRef

OpenDoor_wRef_wDec

Control OpenDoor_wRef Verify_UserOpenDoor_wDec

Control_Verify

ResultResult
Transform

Primary
transform

Result

Primary
transform

Transform Primary
transform

Primary
transform Transform

Result

Transform

Primary
transform

Uses

Uses Uses

Transform

Uses

Uses

Uses

Primary
transform

Uses

Uses

Transform

Uses

Uses
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environment PanelController Controller DoorController Central

Verify_User

OpenDoor

DisplayOK

Open

DoorOpened

DisplayDoorOpened

Display

'Door opened'

MSC OpenDoor_wRef
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environment PanelController Controller Central
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PanelController Controller
decomposed

DoorController
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PanelController Controller DoorController
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OpenDoor
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DoorOpened
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'Door opened'

MSC Control_wRef
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Control
decomposed as

Verify_User_Control
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